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ABSTRACT
In this paper, we are going to study the connected total domination polynomial of K, xP.. The connected total
domination polynomial of a graph G of order n is defined D, (G,i) = cht (G,i)x',where d,(G,i) is the
i=y(G)
number of connected total dominating sets of G with size i and y4(G) is the connected total domination number of G.

Keywords: Connected total dominating set, connected total domination number, connected total domination
polynomial.

1. INTRODUCTION

Let G = (V,E) be a simple graph of order n. For any vertex v € V, the open neighborhood of v is the set
N() = {u € V/uv € E} and the closed neighborhood of v is the set N[v] = N(v) U {v}. For a set S < V, the open
neighborhood of S is N(S) = U N(v) and the closed neighborhood of S is N[S] = N(S) U S. AsetS < V is a connected
total dominating set of G if every vertex v € V is adjacent to atleast one element of S and the induced sub graph < S >
is connected. The connected total domination number y(G) is called a y-set.

The polynomial, Dy(G, x) = Z d_ (G,i)x" is defined as connected total domination polynomial of G.
i=7(G)
where d,, (G, i) is the number of connected total dominating sets with size i.

2. CONNECTED TOTAL DOMINATION POLYNOMIALS

Definition: 2.1 A graph G consists of a pair (V(G), E(G) ), where V(G) is a non empty finite set whose elements are
called points (or) vertices and E(G) is a set of unordered pairs of distinct elements of V(G). The elements of E(G) are
called lines or edges of the graph G.

Definition: 2.2 If e = {u, v} is an edge of a graph G, written e = uw, we say that e joins the vertices u and v. Also
we say that u and v are adjacent vertices, u and v are incident with e. If two vertices or not joined, then we say that
they are not-adjacent.

Definition: 2.3 The graph G is complete if every two distinct vertices of G are adjacent. A complete graph with n
vertices is denoted by K,,.

Definition: 2.4 A walk of a graph G is an alternating sequence of points and lines vy, x1, V1, X2, Vy, v, Vp—1, X, Uy
beginning and ending with points such that each line x; is incident with v;_; and v;, A walk is called a path if all its
points are distinct.
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Definition: 2.5 A subset S of vertices in a graph G is said to be a dominating set, if every vertex v € V — § is adjacent
to atleast one element of S. A dominating set of G is said to be a total dominating set, if every vertex v € V is adjacent
to atleast one element of S.

Definition: 2.6 A total dominating set of G is said to be a connected total dominating set, if the induced sub graph
< § > of G is connected.

Theorem: 2.7 Let G = K, xP,, then the total connected domination polynomial of G is,
Det (G, x) = nx?[1 4 x]*D —n [Z(n -1C, — 2] x2m71 — (n — 1)x?" + 2x™[1 + x]?

Proof: G; = K,, be the complete graph with n vertices, G, = P,, its product G = G; x G, is given in figure 1.1.

G =K, xP,

Figure 1.1
The vertices of G are denoted by {vy1, V12, o) Vin, V21, V225 ooy Von }

Let, Wi/ k=12;i=1.2,...,n}and

V
Vi/ =12, k=12,...,n}

L

The total connected dominating set with cardinality 2 are,
D.(G,2)={{S}/i=12,...,n}

Therefore, d..(G,2) = n

The total connected dominating set with cardinality 3 are,
D.(G,3) ={S;U{x}/ij=12,...n; i#j}

Therefore, d..(G,3) = n [Z(n — 1)C1]

The total connected dominating set with cardinality 4 are,
D. (G4 ={S;U{x,x}/i,jk=12,...,n; i#jk}

Therefore, d.. (G,4) = n [Z(n - 1)C 2]

The total connected dominating set with cardinality 5 are,
D.(G,5) ={S;U{x, x,x}/ i),k 1 =12,...,n;  i#j,k1}

Therefore, .. (G,5) = n [Z(n —-1)C 3]

Proceeding in this way, we get

The total connected dominating set with cardinality n are,
D (G,n) = {S;U{x;, xp, o, %}/ i Ji Ky st =1,2,..m5 i # j kot U{T)/j =12}
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Therefore, d,, (G,n) = n [Z(n —-1C n_z] +2

The total connected dominating set with cardinality n + 1 are,
D, (G,n+1) ={S;U{x;, xp, e, X, X 11}/ L Ky s t +1=1,2,...,n; i #j,k, .., t +1}
U{TUx Y/ (0l €T, j=12 k=12,..,n; j#k}

Therefore, dy, (G,n + 1) = n [2(n ~1C H] +2(ncy)

The total connected dominating set with cardinality n + 2 are,
D (G, +2) = {S;U{x), Xy ooy Xeu2}/ L Ko st +2=12,...m5 i #j,k, .., t +2}
U{T U3/ o x} €T, j=12 kl=12,..,n j#kl}

Therefore, dy, (G,n +2) = n [Z(n —1c, ] +2(nCy)

Proceeding in this way, we get

The total connected dominating set with cordinality 2n — 2 are,
Dot (G,2n = 2) = {S;U{x;, Xpe, voes Xey o, X}/ U Jy s @ = 1,2,0.0,m5 0 # j, ., a}
U{’I} Uk, X1, s X 3 {0, 00 ey X0} € T,j=12 kl..,a=12..,n j#kl, ...,a}

Therefore, d,, (G, 2n — 2) = n [Z(n —1C Z(n_l)_z] +2(nC,_,)

The total connected dominating set with cardinality 2n — 1 are,
DCt(Gi Zn_ 1) = {SL _{xi}/ {xi} ESL, l = 1,2,...,”}

Therefore, d., (G,2n — 1) = 2n

The total connected dominating set with cardinality 2n are,
D,(G,2n)=1

Therefore, d.. (G,2n) =1

Hence, the total connected domination polynomial of G is,
D (G,x) =nx?>+ n[2(n-1)C,]x*+ n[2(n-1)C,] x*
ot [n [2(0-1)C,,, ] + z] X+ [n [2(-1)C,, ] + Z(nCl)] s

ot [n [2(n-1)C 1y ] + Z(nCn—Z)] X212 4 Jpp2n=l 4 420

_ nx*+n [Z(n —1)c1]x3 + N [2(n _l)CZ] xt4+..4n [2(n _1)C(n_2)]xn
= Dct (G' X) =
+Nn [2(n _1)C(n—1)] x4 n [2(n _1)(:2(”_1)_2] x2n=2 4 opy2n—1 4 y2n

+[2x™ + 2(nC)x™ ! + -+ + 2(nC,_y)x 2]

= D (6,%) = |nx? + N[2(0—1)C ]2 + n[2(n—1)C,]x* + -+ N[2(N—1)C, , ] "
+n[2(n-1C, ]x" + -+ n[2(N-DCy 1% + n[2(N-D)C, 4, ] x>

+n[2(0-1)Cy, 122 ~ n[2(N—1)C, - 2] 2 ~ (n — x|
+ [2x™ + 2(nCX™ L + -+ + 2(nC,_)x*" 2]

= D (G,x) = nx?[1 +x]**D - n[2(n-1)C, — 2] x> ! — (n — Dx®" + 2x"[1 + x]"
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Theorem: 2.8 Let G = K, X P., then the total connected domination polynomial of G is,
D, (G,x) =nx"[1+x]"® D - n[r(n-1)C, —r]x™' - (n— 1x™ +
(r—2)[n(n— D]x™ 1 + x]@27 + xC=2n[1 + x]** forsomer > 2.

Proof: K, be the complete graph with n vertices, B. is a path of length r. Then its product G = K,, X B.is given in
figure 1.2

[ ] L ] L ] L ] L ]
W Ve Wy A # &
Vi1 -
G =K, XxP.
Figure: 1.2

The vertices of G is denoted by {Vij/ i=12,..,rj=12,...,n}

Let, V/ k=12,..,1;i=12,...,n}and

Si
T = (V)i =12, k=12,...,n)

The total connected dominating set with cardinality r are,
D, (G, 1) ={{S}/i=12,...,n}

Therefore, d., (G, 7) = n

The total connected dominating set with cardinality r + 1 are,
Do (Gr+1) ={S;U{x}/ i,j=12,...,n; i#3U{S,—wU{vyl/ k=12,...,r; ij=12..m i#j}

Therefore, d,, (G,r + 1) = n [r(n = 1)51] +(r—2)[nn—-1)]
The total connected dominating set with cardinality r + 2 are,
D.(Gr+2)={S;U{x,x}/ i,jk=12,...,n; i#jk}U
{SUS —{vi, v JU Y k=12,...r; ,j=12,...,n i#j}
Therefore, d., (6,7 +2) = n[r(n-1)C,] + (r — 2)[n(n — D][(n — 2)rCy]

Proceeding in this way, we get
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The total connected dominating set with cardinality (r — 2)n are,

D (G, (r—2)n) ={S; U {x, x4, 0, x, 3/ ijo Ky t = 1,2,m5 i # ik, )
U{SiUS, — {vi, v } Ui, s}/ k=12,0,15 ij, e, t =12,00,m5 0%, o, t)
U{T}ji=12..7r}

Therefore, d, (G, (r — 2)n) = n[r(n=1)C . ] + ¢ = 2)In(n = D] [(N-2)rC ] +1

The total connected dominating set with cardinality (r — 2)n + 1 are,

Dt (G, (r —2n+1) = {S;U{x;, xp, o, X0, X1}/ iJi by t + 1 =12, ,m5 0 # jk, ot + 13
U {SiUS = ok, v UL, o e}/ k=12,00,15 G, t+1=12,m i #j, ..t +1}
U{TUx/ (a) €T j=12,...,k=12,..,n;j #k }

Therefore,
det (G’ (r—=2)n+ 1) =N [r(n _1)C(r—2)(n+l—r)]
+@ = 2)[n(n - DI(N=2)rC, ] + )¢
The total connected dominating set with cardinality (r — 2)n + 2 are,
D (G, (r—=2n+2)={SU{x;, .. xr42}/ Ljk, st +2=12,.,n; i #j, k...t +2}U
{SL-U.S}- — {vki,vkj}U{xi, o Xe k=12, 4Lj, . t+2=12,...,n i #j,..,.t+2}
U {'I}U{xk,x,}/{xk,x,} €ET;j=12,...15kl=12,.,nj+# k,l}
Therefore, d..G,(r —2)n+2) = N[r(N=1C, ... ]

+( =2)[nn-1D](n- 2)I’C(r_2)(n_r+l)] + (2n)C,
Proceeding in this way, we get

The total connected dominating set with cardinality rn — 2 are,

D (G,rn —2) = {S;U{x), Xy, o) Xpy e X0}/ Lok @ = 1,2, 0,m5 0 # ok, @ JU
{SUS; — (v, v VX0 %, %0} k=12,15 Lj,e,a=12,.,m i #j,..,a3U
{’I}U{xk,xl, v X Y X X1y i X} € T; j=12,...1; kl=12,..,n; j#kl ...,a}

Therefore,

deG,rn—=2) = n [r(-1C, ]+ -2t -DIMN-2)rC, , (5] +@n)Cs_,

The total connected dominating set with cardinality r n — 1 are,
DCtG! (rn - 1) = {Sl - {xi} / {xi} € S[!i = 1;2; ,Tl}
Therefore, d.,(G,7'n —1) = rn

The total connected dominating set with cArdinality r n are,
D.,(G,rn) = 1

Therefore, d; (G, ) = 1

Hence the total connected domination polynomial of G is
D, (G, %) =nx" +|n [r(n—1)C,]+ (r—2) [n(n-1)]] x*

+RFM=DC, 1+ (r-2)In( - 1)][( - 2)rC, Jx*2 +
et VIO D)C 0+ (=2 10 ~DIEO = DC ]+ 1"
[P =1)C, gy ]+ (= 2NN =1)]I(N = 2)IC{ 1+ 20C, |52

tot [n [r(n-1)C .1+ (r=2) [N(N =D)][(N = 2)rC ;) (1. ]+ 2nC,, ]X”“‘2 +rnx™ 4 x™
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= D, (G,x)=[ nx"+n[r(n—1)C, X" +n[r(n—1)C,Ix"* +....+n [r(N —1)C 0., X"

+N (N =1)Cppy g X"+ NN =1)C oy, IX™ 2 4 X X ]
+[ (r=2)[In(n-D]x"* + (r = 2)[n(n-D][(n - 2)rC,]x"*?

oot (F=2)[N(N =D =2)1C oy X"
+(r=2)[In(n-DI[(N-2)rC,, 4, o X

oot (F=2)[N(N=DI[(N = 2)1C _yy 1py X" ]

+ [x(r’z)” +2nC XA 4 L+ 2nC2n72xm’2]

= DCt (G’ X) = [ nx" + n[r(n _1)C1]Xr+1 + n[r(n —1)C2]Xr+2 +....+N W(r-zxn-r)]x(r_z)n

N [r(N=1)C g X2 ot N[F(N=1)C gy, IX™ 2 + N[F(N=1)C X ™
+0[r(n=1)C, .y X" =N[r(n-1)C, - X" = (N-1)x™ ]

+[ (r=2)[In(n-DIx"™* +(r -2)In(n-H][(n—2)rC,]x"*?

oot (F=2)[N(N=DI[(N = 2)IC ,_pyorpy IX "
+(r=2)(M -1 -2)rC;,_p X"

Font (F=2)[IN(N=D][(N=2)rC ) (o X" ]

+ [x(r’z)” +2nC XA 4 L+ 2n02n72xm’2]

Det(G,x) =nx' [1+x]"- n[r(n —1)C, —r]x™*~(n-1)x™ + (r-2)[n(n-1)IX"**[1+x] "2 + x"2" [1+x]*" for some r > 2.

Hence the Proof.

The following Table represents the coefficients of the total domination polynomial of ¢ = K,, x P, forall n < 8.

GCt (G’ l) X2 X3 X4 X5 XG X7 X8 X9 XlO Xll X12 X13 X14 XlS XlG

KyxP, | 3| 14 | 24 6 1

K, xP, | 4| 24 | 62 88 72 8 1

KsxP, | 5| 40 | 140 | 282 | 360 300 160 10 1

KexP, | 6| 60 | 270 | 720 | 1262 | 1524 | 1290 760 300 12 1

K;xP, | 7| 84 | 462 | 1540 | 3465 | 5546 | 6482 | 5586 | 3535 | 1610 | 504 14 1

Kgx P, | 8 | 112 | 728 | 2912 | 8008 | 16016 | 24026 | 27472 | 24080 | 16128 | 8148 | 3024 | 784 | 16 | 1
Table: 2.1
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