UNCOUNTABLY MANY POSITIVE SOLUTIONS OF FIRST ORDER NONLINEAR NEUTRAL DELAY DIFFERENCE EQUATIONS

V. ANANTHAN*
Assistant Professor, Department of Mathematics, Aarupadai Veedu Institute of Technology, Vinayaka Missions University, Kanchipuram-603104, Tamilnadu, India.

S. KANDASAMY
Prof. & Head, Dept.of Mathematics, Vinayaka Missions Kirupanantha Varier Engineering College, Salem-636308, Tamilnadu, India.
(Received On: 08-08-16; Revised & Accepted On: 30-08-16)

ABSTRACT
We consider the difference equation
\[\Delta (x_n - P_n x_{n-\tau}) + q_n f(x_{n-\sigma}) = 0 \]
where \(n \geq n_0, \tau > 0, \sigma \geq 0 \) are integers.

INTRODUCTION
We are concerned with the first order neutral Delay nonlinear Difference equation
\[\Delta (x_n - P_n x_{n-\tau}) + q_n f(x_{n-\sigma}) = 0 \] \hspace{1cm} (1)

(H1) \(r_n \in c'((n_0, \infty), (0, \infty)), \sum_{n=n_0}^{\infty} \frac{1}{r_n} = \infty \)
(H2) \(p_n \in c((n_0, \infty), (0, \infty)), p \equiv 0 \)
(H3) \(\emptyset(\lambda) \in c'((-\infty, \infty), (0, \infty)), \emptyset(\lambda) \neq 0, x \neq 0 \)
(H4) \(f(x) \in c'((-\infty, \infty), (-\infty, \infty)), \lambda f(x) > 0, x < 0 \)
(H5) \(G(x) = \frac{F(x)}{\emptyset(\lambda)} > 0 (x \neq 0); G(x) \) is non decreasing \((0, \infty)\) and non increasing \((-\infty, 0)\)
(H6) \(g(n) \in c([n_0, \infty) \rightarrow (0, \infty)), g(n) \geq n \)
A non trivial solution \(\{x_n\} \) is said to be oscillatory if it has arbitrarily large zeros otherwise \(\{x_n\} \) is said to be non oscillatory The proof is an adaptation of that given (1) where the special case \(g(n) = n \) was consider

Lemma 1.1: (Krasnoselskii’s fixed point theorem)
Let \(X \) be a Banach space, Let \(\Omega \) be a bounded close convex subset of \(X \) and let \(s_1, s_2 \) be maps of \(\Omega \) into \(X \) such that \(s_1x + s_2y \in \Omega \) for every \(x, y \in \Omega \).

If \(s_1 \) is contractive and \(s_2 \) is completely continuous. Then the equation \(s_1x + s_2x = x \) solution in \(\Omega \)

Theorem: Suppose that there exist bounded from below and from above by the function \(u_n, v_n \in c'([n_0, \infty), (0, \infty)) \) constant \(c > 0, k_2 \geq k_1 \geq 0, n \geq n_0 + m \) such that
\[u_n \leq v_n, n \geq n_0 \]
\[v_n - u_n \geq k_1, n_0 \leq n \leq n_1 \]
\[\frac{1}{u(n-\tau)} \left(u_n - k_1 \sum_{\sigma=n}^{\infty} p_n f(v_{n-\sigma}) \right) \leq u_n \leq \frac{1}{v(n-\tau)} \left(v_n - k_2 \sum_{\sigma=n}^{\infty} p_n f(u_{n-\sigma}) \right) \leq v_n \leq \frac{c}{n} \leq \frac{c}{n_1} \]
Then eq. (1) has uncountable many positive solution which are bounded by the Functions \(u, v \).
Proof: Let \(c \ (k_0, \infty), \mathbb{R} \) be the set of all continuous bounded functions with The norm \(||x|| = \sup_{t \geq 0} |x_t| \). Then \(c([n_0, \infty),\mathbb{R}) \) is Banach space.

We define a close bounded an convex subset of \(c ([n_0, \infty), \mathbb{R}) \) as
\[
\Omega = \{ x_n \epsilon c ([n_0, \infty), \mathbb{R}) : u_0 \leq x_n \leq v_n, n \geq n_0 \}
\]

For \(k \epsilon [k_1, k_2] \) we define two maps \(s_1 \) & \(s_2: \Omega \rightarrow c ([n_0, \infty)) \) as follows
\[
s_1 x_n = \begin{cases} k + a_n x_n - \tau & n \geq n_1 \\ s_2 x_n + v_n - v_{n_1} & n_0 \leq t \leq n_1 \end{cases}
\]

We will show that for any \(x, y \epsilon \Omega \) we have \(s_1 x + s_2 y \epsilon \Omega \) for every \(x, y \epsilon \Omega \) and \(t \geq t_1 \) with regard to (4) we obtain
\[
s_1 x_n + s_2 y_n = k + a_n x_n - \tau - \sum_{n=0}^{\infty} p_s f (x_{n-s}) \geq k + u_n(t) - k \geq u_n
\]

For \(n \epsilon [n_0, n_1] \) we have
\[
s_1 x_n + s_2 y_n = s_1 x_n + s_2 y_n + v_n - v_{n_1} \leq v_n + v_n - v_{n_1} = v_n
\]

Further more for \(n \geq n_1 \) we get
\[
s_1 x_n + s_2 y_n = k + a_n x_n - \tau - \sum_{n=0}^{\infty} p_s f (x_{n-s}) \geq k + u(t) - k \geq u_n
\]

Let \(n \epsilon [n_0, n_1] \) with regards to (3) we get
\[
v_n - v_{n_1} \geq u_n, \ n_0 \leq t \leq n_1
\]

Then \(n \epsilon [n_0, n_1] \) and any \(x, y \epsilon \Omega \) we obtain
\[
s_1 x_n + s_2 y_n = s_1 x_n + s_2 y_n + v_n - v_{n_1} \leq v_n + v_n - v_{n_1} = v_n
\]

Then we have prove that \(s_1 x + s_2 y \epsilon \Omega \) for any \(x, y \epsilon \Omega \)

We will show that \(s_1 \) is a contraction mapping on \(\Omega \) for \(x, y \epsilon \Omega \) & \(n \geq n_1 \) we have
\[
||s_1 x - s_1 y|| = ||a_n||x_n + y_n|| \leq c ||x-y||
\]

This implies
\[
||s_1 x + s_2 y|| \leq c ||x+y||
\]

Also for \(n \epsilon (n_0, n_1) \) the above inequalities is valid.

We conclude that \(s_1 \) is a contraction mapping on \(\Omega \)

We now show that \(s_2 \) is completely continuous. First we show that \(s_2 \) is continuous. Let \(x^i = \{x^i_n\} \epsilon \Omega \) be such that \(x^i_n \rightarrow x_n \) as \(n \rightarrow \infty \). Because \(x \epsilon \Omega \) and \(x^i_n \epsilon \Omega \) for \(n \geq n_1 \) we have
\[
(s_2 x^i_n - s_2 x_n) \leq \sum_{n=0}^{\infty} p_s f(x_{n-s}) \leq \sum_{n=0}^{\infty} p_s f(x_{n-s})
\]

Since \(|f (x_{n-s}) - f (x_{n-s})| \rightarrow 0 \) as \(i \rightarrow \infty \) be applying the lebesgue dominant Convergence their we obtain
\[
\lim_{i \rightarrow \infty} |s_2 x^i - s_2 x| = 0
\]

This means the \(s_2 \) is continuous.

we now show that \(s_2 \) is relatively compact in \(\Omega \), it is sufficient to share

By Arzela ascolic theorem that the family of functions \(\{s_2 x: x \epsilon \Omega \} \) is uniformly
\[
\sum_{n=0}^{\infty} p_s f(x_{n-s}) < c/2
\]

The \(x \epsilon \Omega \), \(N_2 > N_1 \geq n \)
where
\[
(s_2 x) (N_2) - (s_2 x) (N_1) \leq \sum_{n=N_2}^{\infty} p_s f(x_{n-s}) + \sum_{n=N_1}^{\infty} p_s f(x_{n-s}) \leq \epsilon/2 + \epsilon/2 = \epsilon
\]
\[(s_2 x) (N_2) - (s_2 x) (N_1) \leq \sum_{n=1}^{N_2} \{ p, f(x_{n-\sigma}) \} (N_2 - N_1), \ n_1 \leq \& \leq n \]

Then there exist \(s_i = c/M \) when \(M = \max p, f(x_{n-\sigma}) \) there exist \(n_1 \leq \& \leq n \)
\[(s_2 x) (N_2) - (s_2 x) (n_1) < c \text{ if } 0 < N_2 - N_1 < s_i \]

Next we show that equation (1) has uncountable many bounded positive solution \(\Omega \).

Let \(\tilde{k} \in [k_1, k_2] \) be such that \(\tilde{k} \neq k \).

We assume that \(x, y \in \Omega \)
\[
x_n = k + an \ x_{(n-\sigma)} + \sum_{n=1}^{n} p_1 f(x_{n-\sigma}), \ n \geq n_1
\]
\[
y_n = \tilde{k} + an \ y_{(n-\sigma)} + \sum_{n=1}^{n} p_1 f(y_{n-\sigma}), \ n \geq n_1
\]

Is follow that there exist a \(n_2 > n_1 \) satisfy
\[
\sum_{n=1}^{n} p_1 [f(x_{n-\sigma}) + f(y_{n-\sigma})] \leq |k - \tilde{k}|
\]

In order to prove that the set of bounded positive solution of equation (1) is Constant it is sufficient to very that \(x \neq y \) for \(n \geq n_2 \)

We get |\(x_n - y_n(1 + x) \) ||\(x-y || \geq |k - \tilde{k}| - \sum_{n=1}^{n} p_1 [f(x_{n-\sigma}) + f(y_{n-\sigma})]

Corollary: Suppose that their exist bounded from below and from above by Function u and v \(\epsilon C ([n_0, \infty) (0, \infty)) \) that \(c > 0 \ k_2 > k_1 \geq 0, n_1 \geq n_0 + m \) such that (2) (4) holds
\[
\Delta u_n - \Delta u_n \leq 0, \ n_1 \leq n \leq n_1
\]
\[
H(t) = v_{n+1} - u_n - u_{n-1} + u_n
\]
\[
H'(t) = \Delta v_{n-1} - \Delta u_n \leq 0
\]
\[
H_u(t) = 0
\]

Example: \(\Delta (x_n - x_{n-1}) + \frac{1}{n} x_{n-1} = 0 \)

Input:
\[
x(n+1) - 2x(n) + x(n-1) + \frac{1}{n} x(n-1) = 0
\]

Plot:

Alternate forms:
\[
\left(\frac{1}{n} + 1 \right) x(n-1) + x(n+1) = 2x(n)
\]
\[
nx(n+1) = (-n-1) x(n-1) + 2nx(n)
\]
\[
\frac{n}{n+1} x(n-1) - 2n \ k(n) + n \ k(n+1) = 0
\]

© 2016, IJMA. All Rights Reserved
Value plot and recurrence plot:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x(n)</td>
<td>0</td>
<td>1</td>
<td>2.5</td>
<td>2.333333</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]