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ABSTRACT 
We consider the difference equation 

∆ (xn - Pn𝑥𝑥𝑛𝑛−𝜏𝜏) + q (n)  𝑓𝑓(𝑥𝑥𝑛𝑛−𝜎𝜎) = 0                                                                                                                   (1) 
Where 𝑛𝑛 ≥ 𝑛𝑛0, 𝜏𝜏 > 0  & 𝜎𝜎 ≥ 0  are integers. 
 
Also a ϵ C ([t0, ∞), (0, ∞)), 𝑝𝑝𝑛𝑛 , 𝑞𝑞𝑛𝑛ϵ C(R, (0, ∞)) and f ϵ C(R, R), where f is non decreasing function for 𝑓𝑓(𝑥𝑥) > 0, 𝑥𝑥 > 0.       
                                                                                                                                                                      
 
INTRODUCTION 
 
We are concerned with the first order neutral Delay nonlinear Difference equation  

 ∆(xn − Pn xn−τ) + 𝑞𝑞(𝑛𝑛)𝑓𝑓(𝑥𝑥𝑛𝑛−𝜎𝜎) = 0                                                                                                                   (1) 

(H1) rn ϵ c’ [(n0, ∞), (0, ∞)), ∑ 1
𝑟𝑟𝑟𝑟

∞
𝑠𝑠=𝑛𝑛  = ∞ 

(H2) pn ϵ c ((n0, ∞) (0, ∞)) p≡ 0 
(H3) ∅(λ) ϵ c’ ((-∞, ∞), (0, ∞))  ∅ (λ) ≠0 | x≠0) 
(H4) f(x) ϵ c’ ((-∞, ∞), (-∞, ∞))   λf(x) > 0 | x≠0) 
(H5) G(x) = ∆𝑓𝑓(𝑥𝑥)

∅ (λ)
  > 0 (x ≠0): G(x) is non decreasing (0, ∞) and non increasing is (-∞, 0) 

(H6) g(n) ∈ c [(n0,∞) → (0,∞)) g(n) ≥ n 
 
A non trivial solution {xn} is said to be oscillatory if it has arbitrarily large Zeros otherwise {xn} is said to be non 
oscillatory The proof is an adaptation of that given (1) where the special case g(n) = n was consider 
 
Lemma 1.1: (Krasnoselskii’s fixed point theorem) 
 
Let X be a Banach space, Let Ω be a bounded close convex subset of x and let s1 s2 be maps of Ω into x such that         
s1x + s2y ϵ Ω for every x, y ϵ Ω. 
 
If s1 is contractive and s2 is completely continuous. Then the equation s1x+s2x=x solution in Ω 
 
Theorem: Suppose that there exist bounded from below and from above by the function 𝑢𝑢𝑛𝑛 ,𝑣𝑣𝑛𝑛 ∈ 𝑐𝑐 ′ ([n0, ∞), (0, ∞)) 
constant c > 0, k2 > k1 ≥ 0 & n1 ≥ n0+ m such that 

un ≤ vn,   n ≥ n0                                                                                                                                                                                                                                     (2) 
vn –vn1 – un + un1 ≥ 0,   n0 ≤ n≤ n1                                                                                                                       (3) 

1
𝑢𝑢(𝑛𝑛−𝜏𝜏)

  (𝑢𝑢�n – k1+ ∑ 𝑝𝑝∞
𝑠𝑠=𝑛𝑛 s f (vs – �𝜎𝜎)) ≤ an < 1

𝑣𝑣(𝑛𝑛−𝜏𝜏)
  (𝑣𝑣�n – k2+ ∑𝑝𝑝s f (us – �𝜎𝜎)) ≤ c ≤1 n ≥ n1                                                (4) 

Then eq. (1) has uncountable many positive solution which are bounded by the Functions u, v. 
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Proof: Let c ((k0, ∞ ), R) be the set of all continuous bounded functions with The norm ||x|| = supn≥n0 |xn|. Then 
c([n0,∞),R) is Banach space. 
 
We define a close bounded an convex subset of c ((n0, ∞), R) as  

Ω = {𝑥𝑥�= xn ϵ c ((n0, ∞), R): un ≤ xn ≤ vn, n ≥ n0} 
 
For kϵ [k1, k2] we define two maps s1 & s2: Ω → c ((n0, ∞)) as follows 

s1 xn =  �
𝑘𝑘 + 𝑎𝑎𝑛𝑛xn−τ                n ≥ n1 
s1xn1                   n0 ≤ t ≤ n1

�                                                                                                                  (5) 

 

              s2 xn =  �
−∑ 𝑝𝑝𝑠𝑠𝑓𝑓(𝑥𝑥𝑠𝑠−𝜎𝜎)∞

𝑠𝑠=𝑛𝑛                              n ≥ n1 
s2xn1 + vn − vn1                     n0 ≤ t ≤ n1

�   

  
We will show that for any x, y ϵΩ we have s1x+s2yϵΩ for every x, y ϵ Ω and t ≥ t1 with regard to (4) we obtain 

s1xn + s2yn = k +𝑎𝑎𝑛𝑛xn−τ  - ∑ 𝑝𝑝𝑠𝑠𝑓𝑓(𝑦𝑦𝑠𝑠−𝜎𝜎)∞
𝑠𝑠=𝑛𝑛  

                 ≤ k +an𝑣𝑣𝑛𝑛−𝜏𝜏    - ∑ 𝑝𝑝𝑠𝑠𝑓𝑓(𝑦𝑦𝑠𝑠−𝜎𝜎)∞
𝑠𝑠=𝑛𝑛  

                 ≤ k+ vn – k2 ≤ vn 
 
For n ϵ[n0,n1] we have  

𝑠𝑠1𝑥𝑥𝑛𝑛 + 𝑠𝑠2𝑦𝑦𝑛𝑛 = 𝑠𝑠1𝑥𝑥𝑛𝑛1 + 𝑠𝑠2𝑦𝑦𝑛𝑛1 + 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛1  
                     ≤ 𝑣𝑣𝑛𝑛1 + 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛1 = 𝑣𝑣𝑛𝑛  

 
Further more for n ≥ n1 we get  

s1xn +s2yn ≥ k+anun- τ – ∑ 𝑝𝑝∞
𝑠𝑠=𝑛𝑛 s f (vs-σ) 

                ≥ k+ u (t) – k ≥ un 
 
Let n ϵ (n0, n1) with regards to (3) we get  

𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛1 + 𝑢𝑢𝑛𝑛1 ≥ 𝑢𝑢𝑛𝑛 ,    n0 ≤ t ≤ n1 
 
Then n ϵ [n0, n1] and any x, y ϵ Ω we obtain 

𝑠𝑠1𝑥𝑥𝑛𝑛 + 𝑠𝑠2𝑦𝑦𝑛𝑛 = 𝑠𝑠1𝑥𝑥𝑛𝑛1 + 𝑠𝑠2𝑦𝑦𝑛𝑛1 1 + 𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑡𝑡1  
                       = 𝑢𝑢𝑛𝑛1 + 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛1 ≥ 𝑢𝑢𝑛𝑛  

 
Then we have prove that s1x+s2y ϵ Ω for any x, y ϵ Ω   
 
We will show that s1 is a contraction mapping on Ω for x, y ϵ Ω & n ≥ n1 we have 

|s1xn – s1yn| = |an||xn-τ + yn-τ| ≤ c||x-y|| 
 
This implies 

||s1x- s2y|| ≤ c ||x-y|| 
 
Also for n ϵ (n0, n1) the above inequalities is valid.                                                                  
 
We conclude that S1   is a contraction mapping on Ω 
  
We now show that s2 is completely continuous. First we show that s2 is continuous. Let xi = {xn

(i)} ϵ Ω be such that     
xn

(i) → xn as n → ∞ Because x is close x =(xn) ϵ Ω for n≥n1 we have 
|(s2 xn

i – s2xn) ≤ | ∑ 𝑝𝑝∞
𝑠𝑠=𝑛𝑛 s[fxi

s-σ - f(xs-σ)] 
                      ≤ ∑ 𝑝𝑝∞

𝑠𝑠=𝑛𝑛1 s |fxi
s-σ - f(xs -σ)| 

 
Since |f (xi

s-σ) – f (xs-σ)|→0 as i→∞ be applying the lebesgue dominant Convergence their we obtain                          
Lim i →∞  |s2 xi – s2 x || = 0  This means the s2  is continuous. 
 
we now show that s2 is relatively compact in Ω, it is sufficient to share 
 
By Arzela ascolic theorem that the family of functions {s2x: x ϵ Ω} is uniformly 

∑ 𝑝𝑝∞
𝑠𝑠=𝑛𝑛 s f (xs-σ)  < ϵ/2 

 
The x ϵ Ω, N2 > N1 ≥ n        
where     

|(s2 x) (N2) -  (s2 x) (N1)׀ ≤ ∑ 𝑝𝑝∞
𝑠𝑠=𝑁𝑁2 s f (xs-σ) +∑ 𝑝𝑝∞

𝑠𝑠=𝑁𝑁1 s f (xs-σ) 
                                       ≤ Ԑ/2+Ԑ/2=Ԑ 
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|(s2 x) (N2) -  (s2 x) (N1)׀ ≤ ∑ 𝑝𝑝𝑁𝑁2∞

𝑠𝑠=𝑛𝑛1 s f (xs-σ) 
                                        ≤ Max {ps f(xs – τ)} (N2- N1),  n1 ≤ & ≤ n 

 
Then there exist s1 = ϵ/M   when M= max pxf(xs-σ) there exist n1 ≤ & ≤ n 

|(s2x) (N2) - (s2x) (n1)| < ϵ  if 0 < N2 - N1< s1 
 
Next we show that equation (1) has uncountable many bounded positive solution Ω. 
 
Let  𝑘𝑘� ∈ [𝑘𝑘1, 𝑘𝑘2] be such that 𝑘𝑘� ≠ 𝑘𝑘. 
 
We assume that x, y ϵ Ω 

s1x + s2x =x, 𝑠𝑠1�y + 𝑠𝑠2� y =y 
xn = k + an 𝑥𝑥(𝑛𝑛−𝜎𝜎) - ∑ 𝑝𝑝∞

𝑠𝑠=𝑛𝑛 s f (xs-σ ),   n ≥n1 
yn =𝑘𝑘� + an 𝑦𝑦(𝑛𝑛−𝜎𝜎) - ∑ 𝑝𝑝∞

𝑠𝑠=𝑛𝑛 s f (ys−σ),   n ≥n1 
  
Is follow that there exist a n2 > n1 satisfy  

∑ 𝑝𝑝∞
𝑠𝑠=𝑛𝑛2 s[ f (xs-σ )  + f(ys-σ )] ≤ �𝑘𝑘 − 𝑘𝑘�� 

 
In order to prove that the set of bounded positive solution of equation (1) is Constant it is sufficient to very that x≠ y for          
n ≥ n2.  
 
We get |xn – yn|(1+x) || x-y|| ≥ �𝑘𝑘 − 𝑘𝑘�� - ∑ 𝑝𝑝∞

𝑠𝑠=𝑛𝑛 s (f(xs-σ) + f(ys -σ) 
 
Corollary: Suppose that their exist bounded from below and from above by Function u and vϵ C [(n0, ∞) (0, ∞)) that     
c > 0 k2 > k1 ≥ 0, n1 ≥ n0 + m such that (2) (4) holds 

∆un - ∆un ≤ 0 n1 ≤ n ≤ n1 
H (t) = vn+1 – un – un+1 + un 
H1 (t) =∆vn -∆ un ≤ 0 
Hn(t) = 0 

 
Example: ∆ (xn – xn-1) + 1

𝑛𝑛
 xn-1 =0  

 
Input: 

( ) ( ) ( ) ( )11 2 1 1 0x n x n x n x n
n

+ − + − + − =  

  
Plot: 

 
 
Alternate forms: 

( ) ( ) ( )1 1 1 1 2x n x n x n
n

 + − + + = 
 

 

( ) ( )1 1nx n n+ = − − ( )1x n − + ( )2nx n  

( ) ( ) ( ) ( )1 1 2 1n xn x n n xn n xn
n

− + − − + +
0=  
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Value plot and recurrence plot: 
 

 
 
Values: 

n  0 1 2 3 4 

( )x n  0 1 2 2.5 2.33333 
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