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ABSTRACT

In this paper we introduce and study the notions of wlg-continuous and wl, ,-continuous, wis-irresolute and wi, ;-
irresolute in ideal topological spaces, and also we studied their properties.
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1. INTRODUCTION AND PRELIMINARIES

Ideals in topological spaces have been considered since 1930. In 1990, Jankovic and Hamlett [2] once again
investigated applications of topological ideals. The notion of I,-closed sets was first by Dontchev.et.al [1] in 1999.
Navaneethakrishnan and Joseph [3] further investigated and characterized I,-closed sets and I,-open sets by the use of
local functions. The notion of I,,-closed sets was introduced by Ravi.etal [4] in 2013. Recently the notion of
wlg-closed sets and wl,,-closed sets was introduced and investigated by Maragathavalli.etal [5]. In this paper, we
introduce the notions of wI;-continuous and wl,,-continuous functions in ideal topological spaces.

An ideal | on a topological space (X, t) is a non-empty collection of subsets of X which satisfies the following
properties. (1) A el and B € A impliesBe I, (2) A € |1 and B € | implies AUBel. An ideal topological space is a

topological space (X, t) with an ideal 1 on X and is denoted by (X, t, ). For a subset A X, A*(l,1)={x eX: AN U ¢l
for every Uet (X,x)} is called the local function of A with respect to | and t [6]. We simply write A* in case there is no
chance for confusion. A Kuratowski closure operator cl*(.) for a topology t *(I, 1) called the *-topology, finer than 7 is
defined cl*(A) = AU A* [7]. If A € X, cl(A) and int(A) will respectively, denote the closure and interior of A in (X, 7).

Definition 1.1: A subset A of a topological space (X, t) is called
1. g-closed [8], if cl (A) € U whenever A € U and U is open in (X, 7).
2. g-closed [9], if cl(A)< U whenever A < U and U is semi open in (X, 1).
3. *g-closed [4], if A* € U whenever A € U and U is g-open in (X, 1).

Definition 1.2: A subset A of a topological space (X, 7) is called
1. Ig-closed [3], if A* < U whenever A < U and U is open in X.
2. Ig-closed [10], if A* < U whenever A < U and U is semi-open in X.
3. wig-closed [5], if int(A*)< U whenever A € U and U is semi-open in X.
4. wl,g-closed [5], if int(A*)< U whenever A < U and U is g-open in X.

Definition 1.3: A function f :(X, t, I)- (Y, o) is said to be
1. g-continuous [11], if for every open set V€ a, f (V) is g-open in (X, 1).
2. g-continuous [9], if for every open set VE g, f (V) is g-open in (X, 7).
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Definition 1.4: A function f: (X, 1, 1) (Y, o) is said to be I,-continuous [12], if V) is Io-closed in (X, t, 1) for
every closed set V in (Y, o).

2. wlz-CONTINUOUS AND wL,,-CONTINUOUS

Definition 2.1: A function f; (X, t, )= (Y, o) is Said to be
1. weaklyls-continuous (briefly wig-continuous) if Fl(V) is weakly I-closed set in (X, t, I) for every closed set
Vin (Y, o).
2. weaklyl,,-continuous (briefly wl,,-continuous) if (V) is weakly I.g-closed set in (X, 7, 1) for every closed
setVin (Y, o).

Definition 2.2: A function f: (X, 1, I;)— (Y, g, I,) is Said to be
(1) wlg-irresolute if V) is wlg-closed in (X, 1, I;) for every wls-closed set V in (Y, g, I,).
(i) wl,g-irresolute iff‘l(V) is wl,,-closed in (X, t, I;) for every wl,,-closed set V in (Y, g, I,).

Theorem 2.3: Every continuous function is wi,-continuous.

Proof: Let f be an continuous function and let V be a closed set in (Y, o). Then f”l(V) is closed set in (X, t, I). Since
every closed set is wi;-closed. Hence (V) is wlg-closed set in (X, t, I). Therefore f is wlz-continuous.

Example2.4: Let X =Y = {a, b, ¢}, 1 = {o, {b}, {b,c}, X}, 0 = {o, {c}, Y} and | = {o, {b}}. Let the function
f.(X, 7, I)> (Y, o) be the idendity function. Then the function f is wl,-continuous but not continuous.

Theorem 2.5: Ever continuous function is wl,-continuous.

Proof: Let f be an continuous function and let V be a closed set in (Y, o). Then f*(V) is closed set in (X, t, I). Since
every closed set is wl,,-closed. Hence v is wl,-closed set in (X, 1, I). Therefore f is wl,-continuous.

Example2.6: Let X =Y = {a, b, ¢}, t = {o, {b}, {b, c}, X}, 0 = {o, {c}, Y} and | = {o, {b}}. Let the function
f. (X, 1, )= (Y, o) be the identity function. Then the function f is wl,4-continuous but not continuous.

Theorem 2.7: Ever Ig—continuous function is wlg—continuous.

Proof: Let f be an Ig-continuous function and let V be a closed set in (Y, o), then V) is I-closed set in (X, 1, I).
Since every I5-closed set is wlz-closed. Hence f‘l(V) is wls-closed set in (X, 1, I). Therefore f is wl,-continuous.

Example2.8: Let X =Y ={a, b, ¢, d}, T = {0, {a, b}, {a, b, c}, X}, 0 = {o, {a, b}, {a}, Y} and | = {¢, {a}}. Let the
function f: (X, 1, )= (Y, o) is defined by f(a) = b, f(b) = c, f(c) = a, f(d) = d. Then the function f is wi,-continuous but
not I;-continuous.

Theorem 2.9: Ever g-continuous function is wis-continuous.

Proof: Let f be an g-continuous function and let V be a closed set in (Y, &), then f~ (V) is g-closed set in (X, 1, I).
Since every g-closed set is wi,-closed set. Hence V) is wlg-closed set in (X, 7, I). Therefore f is wlz-continuous.

Example2.10: Let X =Y ={a, b, ¢, d}, t = {0, {b}, {a, b, c}, X}, 0 ={o, {c}, {a, c}, Y} and | = {o, {c}}. Let the
function f: (X, 1, I)— (Y, o) be the identity function. Then the function f is wlz-continuous but not g-continuous.

Theorem 2.11: Ever g-continuous function is wlz-continuous.

Proof: Let f be an g-continuous function and let V be a closed set in (Y, o), then (V) is g-closed set in (X, 1, I).
Since every g-closed set is wig-closed set. Hence V) is wlg-closed set in (X, t, I). Therefore f is wlz-continuous.

Example 2.12: Let X =Y ={a, b, ¢, d}, T = {0, {b}, {c}, {b, c}, X}, 0 = {0, {c}, X} and | = {0, {b}}. Let the function
f: (X, 1, 1) = (Y, o) be the idendity function. Then the function f is wi;-continuous but not g-continuous.
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Theorem 2.13: Ever I,4-continuous function is wl,-continuous.

Proof: Let f be an wl,,-continuous function and let V be a closed set in (Y, o). Then Fl(V) is wl,-closed set in

(X, 1, 1). Since every wl,,-closed set is wls-closed, hence V) is wl,g-closed set in (X, t, I). Therefore f is
wl,;-continuous.

Example 2.14: Let X =Y = {a, b, ¢, d}, = = {o, {a,b},{c,d}, X}, 0 = {0, {c,d}, Y} and | = {¢, {d}}. Let the function
f: (X, 1, 1) - (Y, o) be the idendity function. Then the function f is wl,,-continuous but not I,,-continuous.

Theorem 2.15: Ever g-continuous function is wl,4-continuous.

Proof: Let f be an g-continuous function and let V be a closed set in (Y, &), then f”l(V) is g-closed set in (X, 1, I).
Since every g-closed set is wl,-closed set. Hence FI(V) is wl,g-closed set in (X, t, I). Therefore f is wi,,-continuous.

Example 2.16: Let X =Y = {a, b, ¢, d}, t = {9, {a,b}.{ab,c}, X}, a = {o, {d}, {c,d}, Y} and | = {o, {a}}. Let the
function f: (X, 1, I) — (Y, o) be the idendity function. Then the function f is wl,,-continuous but not g-continuous.

Theorem 2.17: Ever Ig-continuous function is wlg-continuous.

Proof: Let f be an I -continuous function and let V be a closed set in (Y, o), then Fl(V) is I-closed set in (X, 1, I).
Since every I,-closed set is wig-closed set. Hence f‘l(V) is wlg-closed set in (X, t, I). Therefore f is wlz-continuous.

Example 2.18: In example 2.17, let the function f: (X, 1, I) = (Y, o) be the idendity function. Then the function f is
wlg-continuous but not I,-continuous.

Theorem 2.19: Ever I,-continuous function is wl,4-continuous.

Proof: Let f be an I,-continuous function and let V be a closed set in (Y, o). Then V) is I,-closed set in (X, 1, I).
Since every I,-closed set is wl,-closed set. Hence f‘l(V) is wl,g-closed set in (X, 1, I). Therefore f is wl,,-continuous.

Example 2.20: Let X =Y ={a, b, c, d}, T = {o, {b}, {ab,c}, X}, 0 ={o, {a}, {a.c.d}, Y} and | = {o, {d}}. Let the
function f: (X, 7, I) — (Y, o) be the idendity function. Then the function f is wI,,-continuous but not I,-continuous.

Theorem 2.21: Ever wl,,-continuous function is wiz-continuous.

Proof: Let f be a wl,,-continuous function and let V be a closed set in (Y, o). Then Fl(V) is wl,g-closed set in

(X, 1, 1). Since every wl,,-closed set is wl,-closed. Hence f‘l(V) is wig-closed set in (X, 1, I). Therefore f is wi,-
continuous.

Example 2.22: Let X =Y ={a, b, ¢, d}, T = {o, {d}, {a, b, c}, X}, 0 = {o, {a}, Y} and | = {o, {b}}. Let the function
f: (X, 7, 1) = (Y, o) be the idendity function. Then the function f is wl,-continuous but not wl,,-continuous.

Theorem 2.23: A map f: (X, 7, I) = (Y, o) is wiz-continuous iff the inverse image of every closed set in (Y, o) is
wig- closed in (X, , I).

Proof: Necessary: Let v be an open set in (Y, o). Since f is wig- continuous, 1 wOis wlig- closed in (X, t, I). But
£ (v&) = X —f ' (v) . Hence f*(v) is wi;- closed in (X, T, I).

Sufficiency: Assume that the inverse image of every closed set in (Y, o) is wig- closed in (X, 7, I). Let v be a closed set
in (Y, g). By our assumption Fl(vc) =X —f‘l(v) is wi- closed in (X, 7, I) , which implies that fH(v) is Wi~ closed in
(X, 7, 1). Hence f is wi- continuous.

Remark 2.24:

() The union of any two wi- continuous function is wigcontinuous.
(ii) The intersection of any two wi;- continuous function is need not be wi;- continuous.
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Theorem 2.25: Let f: (X,z, I1) = (Y, o, Ip) and g: (Y, o, 15)=(Z, n, I3) be any two functions. Then the following hold.
() gefiswly- continuous if f is wi;continuous and g is continuous.
(i) geo fis wiy- continuous if f is wisirresolute and g is wizcontinuous.
(iii) go f is wl;- irresolute if f is wiirresolute and g is irresolute.

Proof:
(i) Letv be aclosed set in Z. Since g is continuous, g™(v) is closed in Y. wig-continuous of f implies, fHg(v)) is
wig-closed in X and hence g o f is wiz-continuous.
(i) Let v be a closed set in Z. Since g is wig-continuous, gl(v) is wig-closed in Y. Since f is wi-irresolute,
f1(g*(V)) is wi;-closed in X. Hence g o f is wi;-continuous.
(iii) Let v be a wiz-closed in Z. Since g is wi;- irresolute, g(v) is wig-closed in Y. Since f is wi;-irresolute,
(g™ (v)) is wi-closed in X. Hence g o f is wi,-irresolute.

Theorem 2.26: Let X=AUB be a topological space with topology 7 and Y be a topological space with topology o. Let
f. (A;r/A)— (Y,0) and g: (B, ©/B)— (Y,0) be wiz-continuous maps such that f(x)=g(x) for every x € ANB. Suppose
that A and B are wig-closed sets in X. Then the combination a:(X, 7, 1)- (Y, o) is wl- continuous.

Proof: Let F be any closed set in Y. Clearly a*(F)=f*(F) U g*(F) = CUD where C = f'(F) and D = g*(F). But C is
wiz-closed in A and A is be wiz-closed in X and so C is wi closed in X. Since we have proved that if BEASX, B is
wig-closed in A and A is wiz-closed in X, then B is wig-closed in X. Also CUD is wig-closed in X. Therefore o}(F) is
Wig-closed in X. Hence o is wlz-continuous.

Theorem 2.27: A map f: (X, 7, 1) - (Y, 0) is WL, -continuous iff the inverse image of every closed set in (Y, o) is
wl, - closed in (X, 7, I).

Proof: Necessary: Let v be an open set in (Y, o). Since f is wi, ;- continuous, 1w is wl, - closed in (X, 7, I). But
1 (v©) = X—f ' (v) . Hence f(v) is wl. - closed in (X, 7, I).

Sufficiency: Assume that the inverse image of every closed set in (Y, ) is Wi, 4- closed in (X, 7, I). Let v be a closed
set in (Y, a). By our assumption f‘l(vc) =X —f'(w)is wl, ;- closed in (X, 7, 1) , which implies that fi(v) is Wi, -
closed in (X, 7, 1). Hence f is wi, ;- continuous.

Remark 2.28:
(i) The union of any two wi, - continuous function is wi, ;-continuous.
(ii) The intersection of any two wI, ;- continuous function is need not be wl, ;- continuous.

Theorem 2.29: Let f: (X,z, 1) = (Y, g, Iy) and g: (Y, g, I)=(Z, n, 13) be any two functions. Then the following hold.
() gofiswl,g - continuous if f is wi,,continuous and g is continuous.
(i) ge fis wl, - continuous if f is wi, jirresolute and g is 1,,continuous.
(i) go fis Wi, ;- irresolute if f is wi, jirresolute and g is irresolute.

Proof:
(i) Letv be a closed set in Z. Since g is continuous, g™(v) is closed in Y. wl,,-continuous of f implies, f(g(v))
is wi,4-closed in X and hence g o f is wi, ;-continuous.
(i) Let v be a closed set in Z. Since g is wl,4-continuous, g(v) is wl,,-closed in Y. Since f is wi, 4-irresolute,
(g™ (V)) is WL ,4-closed in X. Hence g o f is wl, ;-continuous.
(i) Let v be a wi, ;-closed in Z. Since g is wl, - irresolute, g(v) is wi,,-closed in Y. Since f is Wi, s-irresolute,
f(g(v)) is WL, ,-closed in X. Hence g o f is wi, -irresolute.

Theorem 2.30: Let X=AUB be a topological space with topology 7 and Y be a topological space with topology o. Let
f: (A;r/A)— (Y,0) and g:(B, 7/B)- (Y,0) be wl,,-continuous maps such that f(x)=g(x) for every x € ANB. Suppose
that A and B are Wi, -closed sets in X. Then the combination a:(X,7,D)- (Y,0) is W, g- continuous.

Proof: Let F be any closed set in Y. Clearly o (F)=f*(F) U g(F) = CUD where C = f*(F) and D = g™(F). But C is
wl,,-closed in A and A is be wi, ;-closed in X and so C iswl, 4 closed in X. Since we have proved that if BEACX, B is
wl,,-closed in A and A is wl,g-closed in X, then B is wi,,-closed in X. Also CuD is wli,,-closed in X. Therefore
o (F) is wl,,-closed in X. Hence a is wi,4-continuous.
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