CLOSED (OR OPEN) SUB NEAR-FIELD SPACES OF COMMUTATIVE NEAR-FIELD SPACE OVER NEAR-FIELD

Dr. N. V. NAGENDRAM
Professor of Mathematics, Kakinada Institute of Technology & Science, Tirupathi (v), Divili 533 433, East Godavari District, Andhra Pradesh. India.

(Received On: 23-08-16; Revised & Accepted On: 16-09-16)

ABSTRACT

Let N be a commutative near-field space with $1 \neq 0$, and let M be a proper sub near-field space of N. Recall that M is an n-absorbing sub near-field space if whenever $x_1, x_2, \ldots, x_{n+1} \in M$ for $x_1, x_2, \ldots, x_{n+1} \in N$, then there are n of the x_i’s whose product is in M. We define M to be a semi-n-absorbing sub near-field space if $x_{n+1} \in M$ for $x \in N$ implies $x^n \in M$. More generally, for positive integers m and n, we define M to be close sub near-field space more specifically (m, n)-closed sub near-field space if $x^m \in M$ for $x \in N$ implies $x^n \in M$. A number of examples and results on closed (or open) sub near-field spaces of commutative near-field space over a near-field.

Key words: prime sub near-field space, radical near-field space, 2-absorbing sub near-field space, n-absorbing sub near-field space.

SECTION-1: INTRODUCTION

1.1 Definition: n-absorbing sub near-field space. Let N be a commutative near-field space with $1 \neq 0$, M be a Closed (or Open) sub near-field space of commutative near-field space N, and n be a positive integer. M is called n-absorbing sub near-field space of N if whenever $x_1, x_2, \ldots, x_{n+1} \in M$ for $x_1, x_2, x_3, \ldots, x_{n+1} \in N$, then there are n of the x_i’s whose product is in M.

1.2 Note: a 1-absorbing sub near-field space of N is just prime sub near-field space.

1.3 Definition: semi n-absorbing sub near-field space. We define in this paper, M to be a semi n-absorbing sub near-field space of N if whenever $x_1, \ldots, x_{n+1} \in M$ for $x_1, x_2, x_3, \ldots, x_{n+1} \in N$, then there are n of the x_i’s whose product is in M.

1.4 Note: clearly, an n-absorbing sub near-field space of N is also semi n-absorbing sub near-field space of N, and a semi 1-absorbing sub near-field space is just a radical (semi prime near-field space) sub near-field space of N. Hence n-absorbing sub near-field space respectively semi n-absorbing sub near-field space of N generalize prime respectively radical sub near-field space of N.

1.5 Definition: close (or open) sub near-field space. More generally, for positive integers m, n we define M to be an (m, n)-closed (or open) sub near-field space of N if $x^m \in M$ for $x \in N \Rightarrow x^n \in M$.

1.6 Definition: semi n-absorbing sub near-field space. Thus M is a semi-n-absorbing sub near-field space if and only if M is an $(n+1, n)$ – closed (or open) sub near-field space of N.

1.7 Definition: radical sub near-field space. M is a radical sub near-field space if and only if M is a $(2, 1)$-closed (or open) sub near-field space. In fact, an n-absorbing sub near-field space is (m, n)-closed (or open) sub near-field space for every positive integer m.

Corresponding Author: Dr. N. V. Nagendram
Professor of Mathematics, Kakinada Institute of Technology & Science, Tirupathi (v), Divili 533 433, East Godavari District, Andhra Pradesh. India.
E-mail: nvn220463@yahoo.co.in
1.8 Note: clearly, a proper radical sub near-field space of N is (m, n)-closed (or open) radical sub near-field space for 1 ≤ m ≤ n. So we often assume that 1 ≤ n ≤ m.

The concept of 2-absorbing sub near-field space of N over a near-field introduced by Dr. N. V. Nagendram and extended to n-absorbing sub near-field space of N over a near-field with reference to A. Badawi’s study of 2-absorbing ideals of commutative rings. Several related concepts, such as 2-absorbing primary sub near-field space of N have been studied over a near-field and other generalizations of prime sub near-field space of N over a near-field are investigated.

SECTION-2: PROPERTIES OF CLOSED OR OPEN SUB NEAR-FIELD SPACES OF COMMUTATIVE NEAR-FIELD SPACE

In this section, we give the basic properties of semi n-absorbing sub near-field space of N over a near-field and (m, n)-closed (or open) sub near-field space of N over a near-field. We also determine when every proper sub near-field space of N over a near-field is (m, n)-closed (or open) sub near-field space of N over a near-field for positive integers m, n such that 1 ≤ m ≤ n.

2.1 Definition: Maximal sub near-field spaces. If K₁, K₂, ..., Kₙ are maximal sub near-field space of N, then K₁,..., Kₙ is an n-absorbing sub near-field space of N. The following analogous result holds for semi n-absorbing sub near-field space of N over a near-field.

2.2 Theorem: Let N be a commutative near-field space.

(a) A radical sub near-field space of N is (m, n)-closed (or open) sub near-field space of N over a near-field for all positive integers m and n.
(b) An n-absorbing sub near-field space of N is a semi n-absorbing sub near-field space i.e. (n+1, n)-closed (or open) sub near-field space of N over a near-field for every positive integer n.
(c) An (m, n)-closed (or open) sub near-field space of N over a near-field is (m', n')-closed (or open) sub near-field space of N over a near-field for positive integers m ≤ m' and n ≤ n'.
(d) An absorbing sub near-field space of N is (m, n)-closed (or open) sub near-field space of N over a near-field for a positive integer m.
(e) Let P₁, P₂, ..., Pₖ be radical sub near-field spaces of N. Then P₁, P₂, ..., Pₖ is (m, n)-closed (or open) sub near-field space of N over a near-field for every integer m ≥ 1 and n ≥ min {m, k}. In particular, P₁, P₂, ..., Pₖ is a semi k-absorbing sub near-field space of N over a near-field for a positive integer k.

Proof: It is obvious and directly follow (a), (b) and (c) from the definitions.

To prove (d): Let M be an n-absorbing sub near-field space of N for n is positive integer. Suppose that xⁿ ∈ M for x∈N and m > n an integer. Then xⁿ∈N. So M is (m, n)-closed (or open) sub near-field space of N over a near-field for every integer n. Clearly, M is (m, n)-closed (or open) sub near-field space of N over a near-field for every integer m. Proved (d).

To prove (e): Let xᵐ ∈ P₁...Pₖ for x ∈ N. Then xᵐ ∈ Pᵢ for every 1 ≤ i ≤ k, and thus x ∈ Pᵢ is a radical sub near-field space of N. Hence xⁿ ∈ P₁...Pₖ for some n ≥ min {m, k}. Proved (e).

This completes the proof of the theorem.

Note 2.3: It is for every integer n ≥ 2, there is a semi n-absorbing sub near-field space i.e. (n + 1, n)-closed or open sub near-field space of N over a near-field N i.e. neither a radical sub near-field space nor an m – absorbing sub near-field space i.e. (n + 1, n)-closed or open sub near-field space over a near-field N for any positive integer n.

Example 2.3(a): Let N = Z, n ≥ 2 an integer, and M = 2 3ⁿZ. Then M is a semi – n-absorbing sub near-field space i.e. (n+1, n)-closed or open sub near-field space over a near-field N. Let P₁ = 6Z and P₂ = 3Z, Pₙ = 3Z. In fact, M is a semi m-absorbing near-field space for every integer m ≥ n. However, (2 3ⁿ⁻¹)² ∈ M and 2 3ⁿ⁻¹ ∉ M. So M is not a radical sub near-field space of N. Moreover, 2 3ⁿ ∈ i, 3ⁿ ∉ M and 2 3ⁿ⁻¹ ∉ M. So I is not an n – absorbing sub near-field space of N but M is an (n+1)- absorbing sub near-field space of N. Note that for n = 1, M = 6Z is a semi 1-absorbing near-field space i.e. radical sub near-field space of N, but not a 1-absorbing sub near-field space i.e. prime sub near-field space of a near-field N over a near-field.

Example 2.3(b): Let N = Q[{Xₙ|n ∈ N}] and M = [{Xₙ}|n ∈ N]. Then Xⁿ⁺¹ ∈ M and Xⁿ⁺¹ ∉ M for every positive integer n. So not a semi n-absorbing sub near-field space i.e. (n+1, n)-closed or open sub near-field space over a near-field N for every positive integer n. Thus M is (m, n) - closed or open sub near-field space over a near-field N if and only if 1 ≤ m ≤ n.
Example 2.3(c): Let N be a commutative near-field space over a noetherian regular delta near-ring. Then every proper sub near-field space of N is an n-absorbing sub near-field space of N, and hence a semi n-absorbing sub near-field space of N, for some positive integer n. Thus by ([4] Th. 2.1), for every proper sub near-field space M of N, there exists a positive integer n such that M is (m, n) - closed or open sub near-field space over a near-field N if and only if 1 ≤ m ≤ n. Here note that the near-field space in (b) is not Noetherian near-field space.

Example 2.3(d): Clearly, an n-absorbing sub near-field space of N is also an (n+1) – absorbing sub near-field space of N. However, this need not be true for semi n-absorbing sub near-field spaces of a near-field space. For example, it is easily seen that M = 16Z is a semi 2-absorbing sub near-field space i.e. (3, 2) - closed or open sub near-field space of Z over a near-field N, but not a semi 3-absorbing sub near-field space i.e. (4, 3) - closed or open sub near-field space of Z over a near-field N.

Example 2.3(e): Let N be a valuation domain which is a commutative near-field space over a noetherian regular delta near-ring. Then a radical sub near-field space of N is also a prime sub near-field space of N i.e. a semi 1-absorbing sub near-field space of N, and hence a semi n-absorbing sub near-field space of N over a near-field, but not a 2-absorbing sub near-field space i.e. (3, 2) - closed or open sub near-field space of Z over a near-field N.

In general, a product of (m, n) - closed or open sub near-field space of N over a near-field need not be (m, n) - closed (example. A product of radical sub near-field spaces need not be a radical sub near-field space).

Theorem 2.4: Let N be a commutative near-field space over a near-field, and M1, M2, …, Mn+1 be sub near-field spaces of N such that M, is (m, n) - closed or open sub near-field spaces of N over a near-field for 1 ≤ i ≤ k. Hence Mn+1 is (m, n) - closed or open sub near-field spaces of N over a near-field for all positive integers m ≤ m1, …, mn1 and n ≤ n1, …, nn1. This completes the proof of the theorem.

Corollary 2.5: Let N be a commutative near-field space over a near-field, and M1, M2, …, Mk be (m, n) – closed or open sub near-field spaces of N over a near-field respectively semi n-absorbing sub near-field spaces of N over a near-field space.

(a) M1 ∩ … ∩ Mk is (m, n) - closed or open sub near-field space of N over a near-field for all positive integers m ≤ m1, …, mn1 and n ≤ n1, …, nn1.

(b) If M1, …, Mk are pair-wise co-maximal, then M1∩ … ∩ Mk is (m, n) - closed or open sub near-field space of N over a near-field.
Note 2.9: Every proper sub near-field space of a near-field space N is strongly (m, n) - closed or open sub near-field space of N over a near-field for $1 \leq m \leq n$, a strongly (m, n) - closed or open sub near-field space of N over a near-field is a (m, n) - closed or open sub near-field space of N over a near-field, and a $(m, 1)$ - closed or open sub near-field space of N over a near-field is also strongly $(m, 1)$ - closed or open sub near-field space of N over a near-field.

Remark 2.10: However, a (m, n) - closed or open sub near-field space of N over a near-field need not be a strongly closed or open sub near-field space of N over a near-field.

Example 2.11: Let $N = \mathbb{Z}[X, Y]$, $M = (X^2, 2XY, Y^2)$ and $P = \sqrt{M} = (X, Y)$. Suppose that $a_m \in M$ for $a \in \mathbb{N}$ and a positive integer. Then $a \in \sqrt{M}$, and thus $a = bX$ for some $b \in \mathbb{N}$, hence $a^2 = b^2X^2 + 2bcXY + c^2Y^2 \in M$, and thus M is a $(m, 2)$ - closed or open sub near-field space of N over a near-field for every positive integer $m \geq 3$. However, $P^2 \not\subset M$ since $XY \notin M$. So M is not a strongly $(m, 2)$ - closed or open sub near-field space of N over a near-field for any integer $m \geq 3$.

Theorem 2.11: Let N be a commutative near-field space, m a positive integer, M a closed or open sub near-field space of N over a near-field, and P a sub near-field space of N over a near-field.

(a) If $P^m \subseteq M$, then $2P^2 \subseteq M$.

(b) Suppose that $2 \in U(N)$. If $P^m \subseteq M$, then $P^2 \subseteq M$ i.e. M is strongly $(m, 2)$ - closed or open sub near-field space of N over a near-field.

Proof: (a) Let $x, y \in P$. Then $x^m, y^m, (x + y)^m \subseteq M$ and thus $x^2, y^2, (x + y)^2 \in M$ since M is $(m, 2)$ - closed or open sub near-field space of N over a near-field. Hence $2xy = (x + y)^2 - x^2 - y^2 \in M$, and thus $2P^2 \subseteq M$. Proved (a)

(b) is obvious follows from (a). Proved (b). This completes the proof of the theorem.

Example 2.12: Let M be a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field if it is possible that $x^n \in M$ for every $x \in P = \sqrt{M}$, but $P^n \subseteq M$. It is also possible that $x^n \in M$ for every $x \in P = \sqrt{M}$, but $P^n \not\subset M$. Finally, it is possible to have $x^m \notin M$ for some $x \in \sqrt{M}$.

Example 2.13: Let $N = Z_3[X, Y, Z]$, $M = (X^2, Y^2, Z^2)$ and $P = \sqrt{M} = (X, Y, Z)$. Suppose that $a \in P$. Then $a = bX + cY + dZ$ for some $b, c, d \in \mathbb{N}$. Hence $a^2 = (b^2X^2 + c^2Y^2 + d^2Z^2) = b^2X^2 + c^2Y^2 + d^2Z^2 \in M$, and thus M is $(3, 2)$ - closed or open sub near-field space of N over a near-field. However, $P^3 \not\subset M$ since $XYZ \notin M$.

Example 2.14: Let $N = Z$ and $M = 16Z$. Then M is $(3, 2)$ - closed or open sub near-field space of N over a near-field. However, $2 \in \sqrt{M} = 2Z$, but $2^3 = 8 \not\in 1$.

Theorem 2.15: Let N be a commutative near-field space, m and n positive integers, M a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field, and T a multiplicatively closed or open sub near-field space of N such that $M \cap T = \phi$.

(a) M_T is a (m, n) - closed or open sub near-field space of N_T over a near-field of N_T.

(b) If $n = 2$, $2 \in T$, and $P^n \subseteq M_T$ for a sub near-field space P of N_T, then $P^2 \subseteq M_T$ i.e. M_T is a strongly $(m, 2)$ - closed or open sub near-field space of commutative near-field space N_T over a near-field.

Proof: To prove (a): Let $x^m \in M_T$ for $x \in N_T$. Then $x = rt$ for some $r \in N$ and $t \in T$, and thus $x^m = r^m t^m = i/s$ for some $i \in M$ and $s \in T$. Hence $r^m s^m = i/s \in M$ for some $z \in T$, and thus $(rs)^m \in M$. Hence $(rs)^m \in M$ since M is (m, n) - closed or open sub near-field space of N_T. The “in particular” statement is clear. Proved (a).

To prove (b): Suppose that $P^n \subseteq M_T$ for a sub near-field space P of N_T. Then $2 \in U(N_T)$ since $2 \in T$, and thus $P^2 \subseteq M_T$. Proved (b).

This completes the proof of the theorem.

Corollary 2.16: Let N be a commutative near-field space, M be a proper sub near-field space of N, and m and n positive integers. Then M is a (m, n) - closed or open sub near-field space of commutative near-field space N_T over a near-field if and only if M_T is a (m, n) - closed or open sub near-field space of commutative near-field space N_T over a near-field for every prime or maximal sub near-field space of N containing M. In particular, M is a semi n-absorbing sub near-field space if and only if M is locally a semi n-absorbing sub near-field space of N over a near-field.

Proof: \Rightarrow is obvious.
Let $x^m \in M$ for $x \in N$, $P = \{ r \in N \mid rx^m \in M \}$ a sub near-field space of N and S be a prime sub near-field space of N with $M \subseteq S$. Then $(x/1)^m \in M$ since M is (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field. Thus $tx^m \in M$ for some $t \in N/S$. So $P \subseteq S$. Clearly, $P \not\subseteq Q$ for every prime sub near-field space Q of N with $M \not\subseteq Q$. Hence $P = N$, so $x^m \in M$. Thus M is (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field. The “in particular” statement is clear. This completes the proof of the theorem.

Corollary 2.17: Let N and S be commutative near-field spaces, m and n positive integers, and $f \colon N \to S$ a homomorphism.

(a) If P is a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field respective semi n-absorbing sub near-field space of S, then $f^{-1}(P)$ is a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field respective semi n-absorbing sub near-field space of N.

(b) If f is surjective and M is a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field respective semi n-absorbing sub near-field space of N containing $\ker f$, then $f(M)$ is a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field respective semi n-absorbing sub near-field space of N.

Corollary 2.18: Let m and n be positive integers.

Let $N \subseteq S$ be an extension of commutative near-field spaces. If P is a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field respective semi n-absorbing sub near-field space of S, then $P \cap N$ is a (m, n)-closed or open sub near-field space of commutative near-field space N over a near-field respective semi n-absorbing sub near-field space of N.

Note 2.19: A sub near-field space $N \times T$ has the form $M \times P$ for a sub near-field space of N and P is a sub near-field space of T.

Remark 2.20: A sub near-field space S, it will be convenient to define the improper sub near-field space S to be a $(\omega, 1)$ - closed or open sub near-field space S of commutative near-field space N over a near-field.

Theorem 2.21: Let N and T be commutative near-field spaces, M be a (m_1, n_1) - closed or open sub near-field space of commutative near-field space N over a near-field and P a (m_2, n_2) - closed or open sub near-field space of T. Then $M \times P$ is a (m, n) - closed or open sub near-field space of $N \times T$ for all positive integers $m \leq \min\{m_1, n_1\}$ and $n \geq \max\{n_1, n_2\}$.

Theorem 2.22: Let N be a commutative near-field space and n a $+$ ve integer. Every proper sub near-field space of a commutative near-field space N is a prime sub near-field space if and only if N is a near-field space over a near-field.

Every proper sub near-field space of N is a radical near-field space if and only if N is Von Neumann regular sub near-field space. Every proper sub near-field space of N is (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field.

(a) Every proper sub near-field space of N is a prime sub near-field space if and only if N is a near-field space over a near-field.

(b) Every proper sub near-field space of N is a radical sub near-field space if and only if N is Von Neumann regular near-field space.

(c) If every proper sub near-field space of N is an n – absorbing sub near-field space, then $\dim(N) = 0$ and N has at most n maximal sub near-field spaces.

Proof: is obvious.

Theorem 2.23: Let N be a commutative near-field space and m and n integers with $1 \leq n \leq m$. Then the following statements are equivalent.

(a) Every proper sub near-field space of N is a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field.

(b) $\dim(N) = 0$ and $\omega^n = 0$ for every $\omega \in \Nil(N)$.

Proof: To prove (a) \Rightarrow (b): Let $\omega \in \Nil(N)$. Then $\omega^n N$ ia a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field. So $\omega^n \in \omega^n N$. Thus $\omega^n = \omega^n z$ for some $z \in N$. Hence $\omega^n(1 - \omega^{m-n}z) = 0$, and thus $\omega^n = 0$ since $1 - \omega^{m-n}z \notin U(N)$ because $\omega^n - \omega^n z \notin \Nil(N)$ since $m > n$. Suppose, by way of contradiction, that $\dim(N) \geq 1$. Then there exists prime sub near-field spaces $S \subseteq Q$ of N. Let $x \in Q \setminus S$. As above, $x^m \in \omega^n N$. So $x^m = x^m y$ for some $y \in N$. Thus $x^m(1 - x^{m-n}y) = 0 \in S$, and hence $1 - x^{m-n}y \in S \subseteq Q$ since $x \in Q \setminus S$. But then $1 \in Q$ since $x^{m-n}y \in Q$, a contradiction. Thus $\dim(N) = 0$. Proved (a) \Rightarrow (b).
To prove (b) \Rightarrow (a): Let M be a proper sub near-field space of N, and assume that $x^m \in M$ for $x \in N$. Then N is a regular near-field space since $\dim(N) = 0$, and thus $x = eu + \omega$ for some idempotent $e \in N$, $u \in U(N)$, and $\omega \in Nil(N)$. If $n = 1$, then N is reduced, and thus N is Von Neumann regular near-field space since $\dim(N) = 0$. In this case, every proper sub near-field space of N is a radical sub near-field space, and hence M is (m, n) - closed or open sub near-field space of N over a near-field. Thus we may assume that $n \geq 2$. Let $k \geq n$. So $\omega^k = 0$. Then $x^k = (eu + \omega)^k = eu^k + ku^k \omega + \ldots + ku^{k-1} \omega u + \ldots + ku \omega^k + \omega^k u + \omega^k$.

Theorem 2.24: Let N be a commutative near-field space over a near-field and n a positive integer. Then the following statements are equivalent.

(a) Every proper sub near-field space of N is (m, n) - closed or open sub near-field space of commutative near-field space over a near-field.

(b) There is an integer $m > n$ such that every proper sub near-field space of N is (m, n) - closed or open sub near-field space of commutative near-field space of N over a near-field.

(c) for every proper sub near-field space of N there is an integer $m_1 > n$ such that M is (m, n) - closed or open sub near-field space of commutative near-field space of N over a near-field.

(d) Every proper sub near-field space of N is a semi n-absorbing sub near-field space i.e. (n+1, n) - closed or open sub near-field space of commutative near-field space of N over a near-field.

(e) $\dim(N) = 0$ and $\omega^n = 0$ for every $\omega \in Nil(N)$.

Proof: Is obvious that (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) and (d) \Rightarrow (e) and from theorem 2.15 (e) \Rightarrow (a) for $m > n$ and the fact that every proper sub near-field space is (m, n) - closed or open sub near-field space of commutative near-field space of N over a near-field for 1 $\leq m \leq n$. This completes the proof of the theorem.

Corollary 2.25: Let N be a commutative near-field space and n a positive integer. Then the following statements are equivalent.

(a) Every proper sub near-field space of N is radical sub near-field space.

(b) Every proper sub near-field space of N is (m, n) - closed or open sub near-field space of commutative near-field space over a near-field for all positive integers m, n.

(c) There is a positive integer n such that every proper sub near-field space M of N is (m, n) - closed or open sub near-field space of commutative near-field space of N over a near-field for $m \geq n$.

(d) There is a positive integer n such that every proper sub near-field space M of N is (m, n) - closed or open sub near-field space of commutative near-field space of N over a near-field for $m_1 > n$.

(e) There is a positive integer n such that every proper sub near-field space M of N is a semi n – absorbing sub near-field space i.e. (n+1, n) - closed or open sub near-field space of commutative near-field space of N over a near-field.

(f) N is a Von Neumann regular near-field space.

Proof: Is obvious that (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) and (e) \Rightarrow (f) and since a reduced commutative near-field space N with $\dim(N) = 0$ is Von Neumann regular near-field space. Also (f) \Rightarrow (a) by theorem 2.22. The "moreover"statement holds since an integral domain is Von Neumann regular near-field space if and only if it is a near-field over a near-field. This completes the proof of the theorem.

Corollary 2.26: Let N be a reduced commutative near-field space and n a positive integer. Then every proper sub near-field space of N is an n-absorbing sub near-field space of N if and only if N is isomorphic to the direct product of at most n near-field spaces over a near-field.

Note 2.27: Let N be a commutative Noetherian near-field space. Then every proper sub near-field space of N is an n-absorbing sub near-field space, and thus a semi n-absorbing sub near-field space i.e. (n+1, n) - closed or open sub near-field space of commutative near-field space of N over a near-field for positive integer n. However, if there is a fixed positive integer n such that every proper sub near-field space of N is a semi n-absorbing sub near-field space of N, then $\dim(N) = 0$.

SECTION 3. PRINCIPAL SUB NEAR-FIELD SPACES OF COMMUTATIVE NEAR-FIELD SPACE

In this section, we specialize to the case of principal sub near-field space of N over a near-field in integral domains. For an integral domain N, we determine $N(M) = ((m, n) \in N \times N / M)$ is (m, n)-closed or open sub near-field space of N over a near-field for $M = p_{1}^{k_{1}} \ldots p_{l}^{k_{l}} N$, where p_{1}, \ldots, p_{l} are non-associate prime sub near-field space of N over a near-field and $k_{1}, k_{2}, \ldots, k_{l}$ are positive integers.

© 2016, IJMA. All Rights Reserved
Theorem 3.1: Let N be an integral domain, m and n integers with $1 \leq n \leq m$, and $M = p^kN$, where p is a prime element of N and k is a \pmve integer. Then the following statements are equivalent.

(a) M is a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field.

(b) $k = ma + r$, where a and r are integers such that $a \geq 0$, $1 \leq r \leq n$, $a(m \mod n) + r \leq n$, and if $a \neq 0$, then $m = n + c$ for some integer c with $1 \leq c \leq n - 1$.

(c) If $m = bn + c$ for integers b and c with $b \geq 2$ and $0 \leq c \leq n - 1$, then $k \in \{1, 2, ..., n\}$. If $m = n + c$ for an integer c with $1 \leq c \leq n - 1$, then $k \in \bigcup_{h=1}^{n} \{mi + h \mid i \in Z \text{ and } 0 \leq ic \leq n - h\}$.

Proof: is obvious.

Theorem 3.2: Let N be an integral domain, $n +ve$ integer, and $M = p^kN$, where p is a prime element of N and k is a $+ve$ integer. Then the following statements are equivalent.

(a) M is a semi n-absorbing sub near-field space of commutative near-field space N over a near-field i.e. $(n+1, n)$ - closed or open sub near-field space of commutative near-field space N over a near-field.

(b) $k = (n + 1)a + r$, where a and r are integers such that $a \geq 0$, $1 \leq r \leq n$, and $a + r \leq n$.

(c) $k \in \bigcup_{j=1}^{n} \{(n + 1)i + h \mid i \in Z \text{ and } 0 \leq i \leq n - h\}$ for every $1 \leq j \leq i$ moreover, $\{k \in N| p^kN \text{ is } (n+1, n)\}$ - closed or open sub near-field space of commutative near-field space N over a near-field $\} = n(n+1)/2$.

Proof: is obvious.

Corollary 3.3: Let N be an integral domain, $M = p^kN$, where p is a prime element of N and k is a positive integer. Then M is a semi 2-absorbing sub near-field space of commutative near-field space N over a near-field if and only if $k \in \{1, 2, 4\}$.

Note 3.3(a): This can be extended to product of prime powers of sub near-field spaces of N. If $p_1, p_2, ..., p_n$ are non associate prime elements of N and $k_1, k_2, ..., k_n$ are positive integers, and n a positive integer. Then $p_1^{k_1} \cap p_2^{k_2} \cap ... \cap p_n^{k_n} = p_1^{k_1} \cdot p_2^{k_2} \cdot ... \cdot p_n^{k_n}$ for all positive integers $k_1, k_2, ..., k_n$.

Note 3.3(b): $p_1^{k_1} \cdot p_2^{k_2} \cdot ... \cdot p_n^{k_n}$ is an m-absorbing sub near-field space of N if and only if $m \geq k_1 + k_2 + ... + k_n$.

Theorem 3.4: Let N be an integral domain, m and n a positive integers with $1 \leq n \leq m$, and $M = p^kN = p_1^{k_1} \cdot p_2^{k_2} \cdot ... \cdot p_n^{k_n}$, $p_1, p_2, ..., p_n$ are non associate prime elements of N and $k_1, k_2, ..., k_n$ are positive integers. Then the following statements are equivalent.

(a) Let M be (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field.

(b) p^kN is a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field for every $1 \leq j \leq i$.

(c) if $m = bn + c$ for integers b and c with $b \geq 2$ and $0 \leq c \leq n - 1$, then $k_j \in \{1, 2, 3, ..., n\}$ for every $1 \leq j \leq i$. If $m = n + c$ for an integer c, $1 \leq c \leq n - 1$, then $k_j \in \bigcup_{h=1}^{n} \{mv + h \mid v \in Z \text{ and } 0 \leq vc \leq n - h\}$ for every $1 \leq j \leq i$.

Proof: To prove (a) \Rightarrow (b): Let $M_j = p^kN$ for $x \in N$. Let $y = x(p_1^{k_1} \cdot \cdots \cdot p_i^{k_i})/p_j^{k_j} \in N$. They $y^m \in M$, and hence $y^m \in M$, since M is (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field for every $1 \leq j \leq i$. Proved (1) \Rightarrow (2).

To prove (b) \Rightarrow (a): obvious and clear since $p_1^{k_1}N \cap \cdots \cap p_n^{k_n}$. Proved (b) \Rightarrow (a). And is clear and obvious (b) \Rightarrow (c). This completes the proof of the theorem.

Corollary 3.5: Let N be an principal sub near-field space, M be a proper sub near-field space of N, and m and n integers with $1 \leq n \leq m$, Then the following statements are equivalent.

(a) Let M be (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field.

(b) $M = p_1^{k_1} \cdot p_2^{k_2} \cdot ... \cdot p_n^{k_n} = p_1^{k_1} \cdot p_2^{k_2} \cdot ... \cdot p_n^{k_n}$, $p_1, p_2, ..., p_n$ are non associate prime elements of N and $k_1, k_2, ..., k_n$ are positive integers. One of the following holds good.

(i) if $m = bn + c$ for integers b and c with $b \geq 2$ and $0 \leq c \leq n - 1$, then $k_j \in \{1, 2, 3, ..., n\}$ for every $1 \leq j \leq i$.

(ii) If $m = n + c$ for an integer c, $1 \leq c \leq n - 1$, then $k_j \in \bigcup_{h=1}^{n} \{mv + h \mid v \in Z \text{ and } 0 \leq vc \leq n - h\}$ for every $1 \leq j \leq i$.

© 2016, IJMA. All Rights Reserved
Corollary 3.6: Let N be an integral domain, $M = p_1^{k_1}, p_2^{k_2}, \ldots, p_k^{k_k}$, where p_1, p_2, \ldots, p_k are non-associate prime elements of N and k_1, k_2, \ldots, k_k are positive integers, and n a positive integer. Then the following statements are equivalent.

(a) Let M be semi n-absorbing sub near-field space i.e. $(n+1, n)$ - closed or open sub near-field space of commutative near-field space N over a near-field.

(b) $k_j \in \bigcup_{h=1}^n \{(n+1)v + h \mid v \in Z \text{ and } 0 \leq v < n-h \}$ for every $1 \leq j \leq i$.

Corollary 3.7: Let N be a principal sub near-field space, M a proper sub near-field space of N, and n a positive integer. Then the following statements are equivalent.

(a) Let M be semi n-absorbing sub near-field space i.e. $(n+1, n)$ - closed or open sub near-field space of commutative near-field space N over a near-field.

(b) $M = p_1^{k_1}, p_2^{k_2}, \ldots, p_k^{k_k}N$, where p_1, p_2, \ldots, p_k are non-associate prime elements of N and k_1, k_2, \ldots, k_k are positive integers, and $k_j \in \bigcup_{h=1}^n \{(n+1)v + h \mid v \in Z \text{ and } 0 \leq v < n-h \}$ for every $1 \leq j \leq i$.

Theorem 3.8: Let N be an integral domain, m and n a positive integers with $1 \leq n \leq m$, and $M = p^kN$, where p is prime element of N and k is a positive integer. Then the following statements are equivalent.

(a) Let M be (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field.

(b) Exactly one of the following statements holds good.

(i) If $1 \leq k \leq n$.

(ii) there is a $+ve$ integer a such that $k = ma + r = ma + r = na + d$ for integers r and d with $1 \leq r, d \leq n-1$.

(iii) There is a $+ve$ integer a such that $k = ma + r = n(a + 1)$ for integer r with $1 \leq r \leq n-1$.

Proof: To prove (a) \Rightarrow (b): Suppose that M is (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field. Then $k = ma + r$, where a and r are integers such that $a \geq 0$, $1 \leq r \leq n$, $a \mod n + r \leq n$ and if $a \neq 0$, then $m = n + c$ for an integer c with $1 \leq c \leq n - 1$. Thus if $a = 0$, then $1 \leq k \leq n$. Hence assume that $a \neq 0$. Note that $m \mod n = c$. Since $c < 0$ and $ac + r \leq n$, we conclude that $1 \leq r \leq n$. Since $k = ma + r$ and $m = n + c$, we have $k = (n + c) + r = ma + ac + r$. Let $d = ac + r$. Then $d \leq n$. If $d < n$, then $k = ma + r = ma + d$, where $1 \leq r, d \leq n-1$. Then $k = ma + r = n(a + 1)$, where $1 \leq r \leq n - 1$. Proved (a) \Rightarrow (b).

To prove (b) \Rightarrow (a): Suppose that $1 \leq k \leq n$. It is clear that M is a (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field. Next, suppose that there is an integer $a \geq 1$ such that $k = ma + r = na + d$, where $1 \leq r, d \leq n - 1$. Then $m = n + (d - r)/a$, and thus $m = n + c$ for an integer c with $1 \leq c \leq n - 1$. Hence M is (m, n) - closed or open sub near-field space N over a near-field. Finally, suppose that there is an integer $a \geq 1$ such that $k = ma + r = n(a + 1)$, where $1 \leq r \leq n - 1$. Then $m = n + (n - r)/a = n + c$ for an integer c with $1 \leq c \leq n - 1$, and thus M is (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field. This completes the proof of the theorem.

Theorem 3.9: Let a, d, m, n, r and w be positive integers $1 \leq r \leq m$, $1 \leq w \leq n < m$, and $1 \leq d \leq a$.

(a) If $ma + r = na + w$, then $1 \leq r \leq w < n$ and $1 \leq a < n$

(b) If $ma + r = n(a + 1)$, then $1 \leq r \leq n$ and $1 \leq a < n$

(c) If $ma + r = n(a + 1) + d$, then either $m = n + 1$ or $1 \leq a < n$.

Proof: To prove (a): Suppose that $ma + r = na + w$. Then $w - r = a(m - n) > 0$ and $1 \leq w \leq n$. Thus $1 \leq r \leq w < n$, and hence $0 < w - r < n$. Thus $a = (w - r)/(m - n)$ since $0 < w - r < n$ and $m - n \geq 1$. Proved (a).

To prove (b): Suppose that $ma + r = n(a + 1)$. Then $n - r = a(m - n) > 0$. Thus $1 \leq r < n$, and $a = (n - r)/(m - n)$ since $0 < n - r < n$ and $m - n \geq 1$. Proved (b).

To prove (c): Suppose that $ma + r = n(a + 1) + d$ and $a \geq n$. Then $0 < m - n = a(m - n)/a = (n + d - r)/a = n/a + d/a - r/a < 2$ since $1 < n \leq a$. Thus $m - n = 1$. Proved (c).

This completes the proof of the theorem.

Theorem 3.10: Let N be an integral domain, n a positive integer, and $M = p^kN$, where p is prime element of N and k is a positive integer. Let m be a positive integer and n be the smallest $+ve$ integer such that M is (m, n) - closed or open sub near-field space of commutative near-field space N over a near-field.

(a) If $m \geq k$, then $m = k$.

(b) Let $m < k$ and write $k = ma + r$, where a is a $+ve$ integer and $0 \leq r \leq m$.

(i) If $r = 0$, then $n = m$.

© 2016, IJMA. All Rights Reserved
(ii) If \(r \neq 0 \) and \(a \geq m \) then \(n = m. \)

(iii) If \(r \neq 0 \) and \(a < m \) and \((a + 1)k\), then \(n = k\(a + 1\). \)

(iv) If \(r \neq 0 \) and \(a < m \) and \((a + 1)k\), then \(n = [k/(a + 1)] + 1. \)

Proof: To prove (a): If \(m \geq k \), then \(p^n \in M \). So \(n \geq k \). Clearly, \(M \in (m, k) \) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. So \(n = k \) is the smallest integer such that \(M \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field when \(m \geq k \). Proved (a).

To prove (b): Assume that \(m > 1 \) and \(n \leq m \) by the above (a) comments.

To prove (i): Suppose that \(r = 0 \). Then \(M \) is not \((m, m - 1)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field since \((p^a)^m = p^k \in M \) and \((p^a)^{m - 1} = p^{ma - a} \notin M \). Thus \(n = m \) since \(M \) is \((m, m)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Proved (i).

To prove (ii): Suppose that \(r \neq 0 \) and \(a \geq m \). If \(n \neq m \) then \(n < m < k \). Thus either \(k = ma + r = na + d \) or \(k = ma + r = n(a + 1) \), where \(1 \leq r, d < n \). Hence \(a < n < m \) which is a contradiction to \(n \neq m \). So \(n = m \). Proved (ii).

To prove (iii): Suppose that \(r \neq 0 \), \(a < m \) and \((a + 1)k\). Let \(i = k/(a + 1) \). Then \(k = ma + r = i(a + 1) \) with \(1 \leq i < m \). So \(i \leq r < i \). \(M \) is \((a, i)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field if it is clear that \(i \) is the smallest such positive integer. Thus \(n = i = k/(a + 1) \). Proved (iii).

To prove (iv): Suppose that \(r \neq 0 \), \(a < m \), and \((a+1)\) does not divide \(k \). Let \(i = [k/(a + 1)] \). Then \(k = ma + r = i(a + 1) + d \), where \(1 \leq d \leq a \) and \(1 \leq i \leq m \). Thus either \(m = i + 1 \) or \(1 \leq d \leq a < i \). Let us first suppose that \(m = i + 1 \). Since \((a + 1)k\), \(k \neq i + 1 \) and thus \(M \) is not \((m, i)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Hence \(n = m = i + 1 = [k/(a + 1)] + 1 \) is the smallest positive integer such that \(M \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Further suppose that \(1 \leq d \leq a < i \) and \(m \neq i + 1 \). So, \(i + 1 < m \). Since \(k = i(a + 1) + d \), we have \(k = (i + 1)a + i + d - a \). Let \(j = i + d - a \in Z \). Then \(1 \leq j \leq i \) since \(1 \leq d \leq a < i \). Thus \([k/(a + 1)] \) = \(a \). Since \(k = ma + r = (i + 1)a + j \) with \(1 \leq j \leq i \), we have \(1 \leq r < j \leq i \). Hence \(M \) is \((m, i + 1)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Since \((a + 1)\) does not divide \(k \), we have \(k \neq i \) \((a + 1)\), and thus \(M \) is not \((m, i)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Hence \(n = i + 1 = [k/(a + 1)] + 1 \) is the smallest positive integer such that \(M \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Proved (iv).

This completes the proof of the theorem.

Note 3.10 (a): For fixed positive integers \(n \) and \(k \), we determine the largest positive integer \(m \) \((\infty)\) such that \(M = p^kN \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. If \(M \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field for every positive integer \(m \), we will say that \(M \) is \((\infty, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field.

Theorem 3.11: Let \(N \) be an integral domain, \(n \) a positive integer, and \(M = p^kN \), where \(p \) is prime element of \(N \) and \(k \) is a positive integer.

(a) If \(n \geq k \), then \(M \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field.

(b) Let \(n < k \) and write \(k = na + r \), where \(a \) is a positive integer and \(0 \leq r \leq n \). let \(m \) be the largest positive integer such that \(M \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field.

(i) If \(a > n \), then \(m = n \)

(ii) If \(a = n \) and \(r = 0 \), then \(m = n + 1. \)

(iii) If \(a = n \) and \(r \neq 0 \), then \(m = n. \)

(iv) If \(a < n, r = 0 \) and \((a - 1)k\), then \(m = k\(a - 1\) - 1. \)

(v) If \(a < n \) and \(r = 0 \), and \((a - 1)k\), then \(m = [k\(a - 1\)]. \)

(vi) If \(a < n \) and \(r \neq 0 \), and \(a\k\), then \(m = [k\(a - 1\)] - 1. \)

(vii) If \(a < n, r \neq 0 \), and \(a\k\), then \(m = [k\a - 1]. \)

Proof: To prove (a): Let \(x^n \in M \) for \(x \in N \) and \(m \) a positive integer. Then \(p|x^n \). So \(p|x \) since \(p \) is prime. Thus \(p^a|x^a \). So \(x^a \in M \) since \(n \geq k \). Hence \(M \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Proved (a).
To prove (b): by the above comments, \(m \geq n \). Suppose that \(M \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field and \(m > n \). If \(r = 0 \), then \(k = m(a – 1) + w = na \), where \(1 \leq w < n \) and \(a – 1 < n \). If \(r \neq 0 \), then \(k = ma + d = na + r \), where \(1 \leq d < r < n \) and \(a < n \). Proved (b).

To prove (i): Suppose that \(a > n \). If \(m \neq n \), then \(m > n \). So either \(a – 1 < n \) or \(a < n \) by the above comments. In either case, \(a \leq n \), a contradiction. Thus \(m = n \). proved (i).

To prove (ii): Suppose that \(a = n \) and \(r = 0 \). So \(k = n^2 \) and \(n \geq 2 \) since \(n < k \). Note that \((p^n)^{n+1} \in M \Rightarrow a (n + 1) \geq k = n^2 \Rightarrow a \geq n \Rightarrow an \geq n^2 = k \Rightarrow (p^n)^{n+1} \in M \). So \(M \) is \((n+1, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. However, \(M \) is not \((n+2, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field since \((p^n)^{n+2} \notin M \). Thus \(m = n + 1 \). Proved (ii).

To prove (iii): Suppose that \(a = n \) and \(r \neq 0 \). If \(m > n \), then \(a < n \) by the above comments, is a contradiction \(\therefore m = n \). Proved (iii).

To prove (iv): Suppose that \(a < n \), \(r = 0 \), and \((a – 1) \) does not divides \(k \). Let \(f = k / (a – 1) \). So \(k = f(a – 1) \) and \(a < n < f \). Hence \(M \) is \((f, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Note that by a contradiction of \(f \), if \(k \) is the largest +ve integer such that \(M \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Proved (iv).

To prove (v): Suppose that \(a \leq n \), \(r = 0 \), and \((a – 1) \) does not divides \(k \). Let \(f = k / (a – 1) \). So \(k = f(a – 1) + d \) and \(1 \leq d < a – 1 \). Since \(a \leq n < f \) we have \(1 \leq d < a – 1 < f \). Since \(k = f(a – 1) + d = na \) with \(1 \leq d < f \), we have \(d < n \). Hence \(M \) is \((f, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Note that by a contradiction of \(f \), if \(k = f(a – 1) + c \) for some \(1 \leq c < a – 1 \), then \(i < f \). Thus \(m = f = [k(a – 1)] \) is the largest +ve integer such that \(M \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Proved (v).

To prove (vi): Suppose that \(a < n \), \(r \neq 0 \), and \(a \) does not divides \(k \). Let \(f = k / a \). So \(k = fa \) and \(f \geq n + 1 \). Then \(M \) is not \((f, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Let us assume that \(f – 1 > n \). Thus \(k = fa = f(a – 1 + 1) = a + a \). Since \(a < n < f – 1 \) and \(k = f(a – 1) + d = na + r \). We conclude that \(M \) is \((f, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Note that by construction of \(f \), if \(k = ia + c \) for some \(1 \leq c < a \), then \(i < f \). Thus \(m = f = [k(a – 1)] \) is the largest +ve integer such that \(M \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Proved (vi).

To prove (vii): Suppose that \(a < n \), \(r \neq 0 \), and \(a \) does not divides \(k \). Let \(f = k / a \). So \(k = fa + d \), where \(1 \leq d < a \). Since \(a < n < f \), we have \(1 \leq d < a < f \). Since \(k = fa + d = na + r \) and \(1 \leq d < f \), we have \(d < n \). Thus \(M \) is \((f, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Note that by construction of \(f \), if \(k = ia + c \) for some \(1 \leq c < a \), then \(i < f \). Thus \(m = f = [k/a] \) is the largest positive integer such that \(M \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field. Proved (vii). This completes the proof of the theorem.

Theorem 3.12: Let \(N \) be an integral domain and \(M = p_1^{k_1}, p_2^{k_2}, \ldots, p_k^{k_k}N \), where \(p_1, p_2, \ldots, p_k \) are non associate prime elements of \(N \) and \(k_1, k_2, \ldots, k_k \) are positive integers.

(a) Let \(m \) be a positive integer. If \(n_j \) is the smallest positive integer such that \(p_j^{n_j}N \) is \((m, n_j)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field for \(1 \leq j \leq i \), then \(n = \max \{n_1, n_2, \ldots, n_i\} \) is the smallest positive integer such that \(M \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field.

(b) Let \(n \) be a positive integer. If \(m_j \) is the largest positive integer (or \(\infty \)) such that \(p_j^{m_j}N \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field for \(1 \leq j \leq i \), then \(m = \min \{m_1, m_2, \ldots, m_i\} \) is the largest positive integer (or \(\infty \)) such that \(M \) is \((m, n)\) - closed or open sub near-field space of commutative near-field space \(N \) over a near-field.

Proof: Is obvious.

SECTION-4: GENERAL RESULTS ON CLOSED OR OPEN SUB NEAR-FIELD SPACES OF COMMUTATIVE NEAR-FIELD SPACE.

In this section, we continue the study of \((m, n)\)-closed or open sub near-field space of \(N \) over a near-field and give several examples to illustrate earlier results. For a proper sub near-field space \(M \) of \(N \) over a near-field we investigate
the two functions f_t and g_t defined by $f_t(m) = \min \{ n/M \text{ is } (m, n)\text{-closed or open sub near-field space of } N \}$ and $g_t(n) = \sup \{ m/M \text{ is } (m, n)\text{-closed or open sub near-field space of } N \}$.

We assume throughout that all closed or open sub near-field space of N are commutative with $1 \neq 0$ and that $f_t(1) = 1$ for all near-field homomorphism $f_t : N \to S$. For such a near-field space N, $\dim(N)$ denotes the Krull dimension of N, $\sqrt{\forall M}$ denotes the radical sub near-field space of a near-field space M of N, and $\text{nil}(N)$, $\text{Z}(N)$, and $U(N)$ denote the set sub near-field space nilpotent elements, zero divisors, and units of N, respectively; and N is reduced $\text{nil}(N) = \{0\}$.

Recall that N is von Neumann regular if for every $x \in N$, there is $y \in N$ such that $x^2y = x$, and that N is π-regular if for every $x \in \mathbb{N}$, there is $y \in \mathbb{N}$ a positive integer n such that $x^2y = x^n$. Moreover, N is π-regular respectively von Neumann regular if and only if $\dim(N) = 0$ respectively N is reduced $\text{nil}(N) = \{0\}$.

Thus N is π-regular sub near-field space if and only if $N/\text{nil}(N)$ is von Neumann regular sub near-field space of N over a near-field. As usual, \mathbb{N}, \mathbb{Z}, \mathbb{Z}_n and \mathbb{Q} will denote the positive integers, integers, integers modulo n, and rational numbers respectively.

Let M be a proper sub near-field space of a commutative near-field space N over a near-field. We define $\text{N}(M) = \{(m, n) \in N \times N/M \text{ is } (m, n)\text{-closed or open sub near-field space of } N \text{ over a near-field}\}$. Thus $\{(m, n) \in N \times N/1 \leq m \leq n\} \subseteq \text{N}(M) \subseteq N \times N$ and $\text{N}(M) = N \times N$ if and only if $\sqrt{\forall M} = M$. We start with some elementary properties of $\text{N}(M)$. If we define $\text{N}(N) = N \times N$, then the results in this section hold for all sub near-field spaces of N over a near-field.

Theorem 4.1: Let N be a commutative near-field space over a near-field. M and P be proper sub near-field spaces of a near-field space N over a near-field, and m, n and k positive integers.

(a) $(m, n) \in \text{N}(M)$ for all positive integers m and n with $m \leq n$.
(b) If $(m, n) \in \text{N}(M)$, then $(m, n) \in \text{N}(M)$ for all positive integers m and n with $1 \leq m' \leq m$ and $n' \geq n$.
(c) $(m, n) \in \text{N}(M)$, then $(kn, kn) \in \text{N}(M)$.
(d) $(m, n), (n, k) \in \text{N}(M)$, then $(m, k) \in \text{N}(M)$.
(e) If $(m, n), (m+1, n+1) \in \text{N}(M)$, for $m > n$, then $(m+1, n) \in \text{N}(M)$.
(f) If $(n, 2), (n+1, 2) \in \text{N}(M)$, for an integer $n \geq 3$, then $(n+2, 2) \in \text{N}(M)$, and
(g) $(m, 2) \in \text{N}(M)$ for every positive integer m.
(h) $(m, n) \in \text{N}(M)$, for positive integers m and n with $n \leq m/2$, then $(m+1, n) \in \text{N}(M)$ and $(k, n) \in \text{N}(M)$, for every positive integer k.
(i) $(m, n) \in \text{N}(M)$, for every positive integers m and n with $n \leq m/2$, then $N(M \times P) = N(M) \cap N(P) \subseteq N(M \cap P)$.

Proof: To prove (a) to (d): It easily follows from the basic definitions. Hence Proved (a) to (d).

For (e) to (f): If $m < n$, then $(m+1, n) \in \text{N}(M)$ by (a). For $m \geq n$, suppose that $x^{m+1} \in M$ for $x \in N$, then $x^{m+1} \in M$ since M is $(m+1, n+1)$ - closed or open sub near-field space of N over a near-field. Thus $x^m \in M$ since $m \geq n + 1$, and hence $x^n \in M$ since M is (m, n) - closed or open sub near-field space of N over a near-field. Thus M is $(m+1, n)$ - closed or open sub near-field space of N over a near-field. Proved (e).

For (f): Suppose that $x^{m+2} \in M$ for $x \in N$. Then $(x^2)^n = x^{2n} \in M$ since $2n \geq n + 2$ because $n \geq 2$. Hence $x^4 = (x^2)^2 \in M$ since $(n, 2)$ - closed or open sub near-field space of N over a near-field. But then $x^n \in M$ since $n \geq 3$. Thus $x^2 \in M$ since M is $(n+1, 2)$ - closed or open sub near-field space of N over a near-field. Hence M is $(n+2, 2)$ - closed or open sub near-field space of N over a near-field. Similarly, $(k, 2) \in \text{N}(M)$ for every integer $k \geq n + 3$. So by (b), M is $(k, 2)$ - closed or open sub near-field space of N over a near-field for every positive integer k. Proved (f).

For (g): Let $x^{m+1} \in M$ for $x \in N$. Then $(x^2)^m = x^{2m} \in M$, and hence $x^{2m} = (x^2)^m \in M$ since M is (m, n) - closed or open sub near-field space of N over a near-field. Thus $x^m \in M$ since $2m \leq m$, and hence $x^m \in M$ since M is (m, n) - closed or open sub near-field space of N over a near-field. Thus M is $(m+1, n)$ - closed or open sub near-field space of N over a near-field. Similarly, $(k, n) \in \text{N}(M)$ for every integer $k \geq n$, and hence $(k, n) \in \text{N}(M)$ for every positive integer k by (b). Proved (g).

To prove (h): obvious with the help of proof of (g). Proved (g).

For (i): Clearly $M \times P$ is (m, n) - closed or open sub near-field space of N over a near-field if and only if M and P are both (m, n) - closed or open sub near-field space of N over a near-field. Thus $N(M \times P) = N(M) \cap N(P)$. Thus $N(M) \cap N(P) \subseteq N(M \cap P)$ follows that $N(M \times P) = N(M) \cap N(P) \subseteq N(M \cap P)$. Hence proved (i).

This completes the proof of the theorem.
Note 4.2: The m ≠ n hypothesis is needed and since (n, n) ∈ N(M) for every positive integer n.

Note 4.3: The n ≥ 3 hypothesis is needed and for n = 1, we have (1, 2), (2, 2) ∈ N(M) for every proper sub near-field space M of N, but in general, (3, 2) ∉ N(M). For n = 2, we have (2, 2), (3, 2) ∈ N(M) does not imply (4, 2) ∈ N(M). For example, let N = Z and M = 16Z. Then (2,2), (3,2) ∉ N(M), but (4,2) ∈ N(M).

Note 4.4: The inclusion may be strict. For example, let N = Z, M = 8Z and P = 16Z. Then (3, 2) ∉ N(P) = N(M ∩ P). However, (3, 2) ∈ N(M). So N(M) ∩ N(P) ⊆ N(M ∩ P).

Note 4.5: More generally, N(M × P) = N(M) ∩ N(P) for all sub near-field spaces M and P of a commutative near-field space of N and T, respectively.

Let M be a proper sub near-field space of a commutative near-field space N over a near-field and m and n be +ve integers. We define $f_1(m) = \min \{n/M is (m, n) - closed or open sub near-field space of N over a near-field\} \in \{1,2,...,m\}$ and $g_1(n) = \sup \{m/M is (m, n) - closed or open sub near-field space of N over a near-field\} \in \{n, n+1,....\} \cup \{\infty\}$. So $f_1 : N \rightarrow N$ and $g_1 : N \rightarrow N \cup \{\infty\}$. The columns respectively rows of N(M) determine f_1 (or g_1). Then either function f_1 or g_1 is determined the other, and either function determines N(M). It is sometimes useful to view f_1 (or g_1) as an N-valued respectively N valued non-decreasing sequence $f_1 = (f_1(m))$ (or $g_1 = (g_1(n))$). Note that $f_1 = (1,1,1,...)$ if and only if $f_1 = (\infty,\infty,\infty,...)$, if and only if $\forall M = M$. if we define N(N) = N × N, then $f_N = (1,1,1,...)$ and $g_N = (\infty,\infty,\infty,...)$. Also f_1 is eventually constant if and only if g_1 is eventually constant, if and only if g_1 is eventually ∞. We next give some elementary properties of the two functions f_1 and g_1.

Theorem 4.6: Let N be a commutative near-field space, M be a proper sub near-field space of N and m and n are +ve integers. Let $f_1(m) = \min \{n/M is (m, n) - closed or open sub near-field space of N over a near-field\}$ and $g_1(n) = \sup \{m/M is (m, n) - closed or open sub near-field space of N over a near-field\}$.

(a) $1 \leq f_1(m) \leq m$
(b) $f_1(m) \leq f_1(m+1)$
(c) If $f_1(m) < m$, then either $f_1(m+1) = f_1(m)$ or $f_1(m+1) \geq f_1(m) + 2$.
(d) $n \geq g_1(n) \leq \infty$.
(e) $g_1(n) \leq g_1(n+1)$
(f) If $g_1(n) > n$, then either $g_1(n+1) = g_1(n)$ or $g_1(n+1) \geq g_1(n) + 2$.

Proof: Obvious.

Theorem 4.7: Let N be a commutative near-field space and M and P proper sub near-field spaces of N. Let $f_1(m) = \min \{n/M is (m, n) - closed or open sub near-field space of N over a near-field\}$ and $g_1(n) = \sup \{m/M is (m, n) - closed or open sub near-field space of N over a near-field\}$.

(a) $f_{M \cap P} \leq f_M \lor f_P$
(b) $g_{M \cap P} \leq g_M \lor g_P$
(c) $N(M \cap P) = N(M) \cap N(P)$.

Proof: Obvious.

Theorem 4.8: Let N be a sub near-field space and x, y ∈ N co-prime elements. Then N(xyN) = N(xN ∩ yN) = N(xN) ∩ N(yN). Moreover, $f_{xyN} = f_{xN} \lor f_{yN}$ and $g_{xyN} = g_{xN} \land g_{yN}$.

Proof: Obvious.

Theorem 4.9: Let N be a commutative near-field space, n a positive integer, and M an n-absorbing sub near-field space of N. Then $f_1(m) \leq n$ for every positive integer m. Thus f_1 and g_1 are eventually constant. In particular, if N is Noetherian, then f_1 and g_1 are eventually constant for every proper sub near-field space M of N.

Proof: Obvious.

ACKNOWLEDGEMENT

The author being a Professor is indebted to the referee for his various valuable comments leading to the improvement of the advanced research article. This work was supported by the chairman Sri B Srinivasa Rao, Kakinada Institute of Technology & Science (K.I.T.S.), R&D education Department S&H (Mathematics), Divili 533 433. Andhra Pradesh INDIA.
REFERENCES

24. N V Nagendram research paper on "Near Left Almost Near-Fields (N-LA-NF)" communicated to for 2nd international conference by International Journal of Mathematical Sciences and Applications, IJMSA @mindreader publications on 23-04-2012 also for publication.
25. N V Nagendram, T Radha Rani, Dr T V Pradeep Kumar and Dr Y V Reddy “A Generalized Near Fields and (m, n) Bi-Ideals over Noetherian regular Delta-near rings (GNF-(m, n) BI-NR-delta-NR)”, published in an International Journal of Theoretical Mathematics and Applications (TMA), Greece, Athens, dated 08-04-2012.

29. N V Nagendram, Ch Padma, Dr T V Pradeep Kumar and Dr Y V Reddy "Ideal Comparability over Noetherian Regular Delta Near Rings(IC-NR-Delta-NR)" Published in International Journal of Advances in Algebra (IJAA, Jordan), ISSN 0973-6964 Vol:5,NO:1(2012), pp.43-53@ Research India publications, Rohini, New Delhi.

32. N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy “On Semi Noetherian Regular Matrix Delta Near Rings and their Extensions(SNRM-delta-NR)”, Jordan, @ResearchIndiaPublications, AdvancesinAlgebraISSN 0973-6964 Volume 4, Number 1 (2011), pp.51-55@ Research India Publications pp.51-55.

34. N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy “On Bounded Matrix over a Noetherian Regular Delta Near Rings(BMNR-delta-NR)”, Int. J. of Contemporary Mathematics, Vol. 2, No. 1-2, Jan-Dec 2011, Copyright @ Mind Reader Publications, ISSN No: 0973-6298, pp. 11-16.

37. N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy “On Structure Thoery and Planar of Noetherian Regular delta-Near–Rings (STPLNR-delta-NR)”, International Journal of Contemporary Mathematics, IJCM ,accepted for 1st international conference conducted by IJSM, New Delhi December 18,2011, pp.79-83, Copyright @ Mind Reader Publications and to be published in the month of Jan 2011.

38. N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy “On Matrix’s Maps over Planar of Noetherian Regular delta-Near–Rings (MMPLNR-delta-NR)”, International Journal of Contemporary Mathematics , IJCM, accepted for 1st international conference conducted by IJSM, New Delhi December 18,2011, pp.203-211, Copyright @ Mind Reader Publications and to be published in the month of Jan 2011.

42. N V Nagendram, N Chandra Sekhara Rao2 "Optical Near field Mapping of Plasmonic Nano Prisms over Noetherian Regular Delta Near Fields (ONFMPN-NR-Delta-NR)" accepted for 2nd international Conference by International Journal of Mathematical Sciences and Applications, IJMSA @ mind reader publications, New Delhi going to conduct on 15 – 16 th December 2012 also for publication.

43. N V Nagendram, K V S K Murthy (Yoga), "A Note on Present Trends on Yoga Apart From Medicine Usage and It’s Applications (PTYAFMUIA)" Published by the International Association of Journal of Yoga Therapy, IAYT 18th August, 2012.

45. N V Nagendram “Amenability for dual concrete complete near-field spaces over a regular delta near-rings (ADC-NFS-R-δ-NR)" accepted for 3rd international Conference by International Journal of Mathematical Sciences and Applications, IJMSA @ mind reader publications, New Delhi going to conduct on 15 – 16 th December 2014 also for publication.

© 2016, IJMA. All Rights Reserved
Closed (or Open) sub near-field spaces of commutative near-field space over Near-field / IJMA- 7(9), Sept.-2016.

66. Dr. N V Nagendram “A Note on B4-Near-fields over R-delta-NR (B4-NFS-R-δ-NR)”, Published by International Journal of Mathematical Archive, IJMA, ISSN. 2229-5046, Vol.6, No.8, Pg. 144 – 151, 2015.

69. Dr. N V Nagendram "Certain Near-field spaces are Near-fields(C-NFS-NF)", Published by International Journal of Mathematical Archive, IJMA, ISSN. 2229-5046, Vol.7, No.4, Pg. 1 – 7, 2016.

71. Dr. N V Nagendram "A note on commutativity of periodic near-field spaces", accepted and to be Published by International Journal of Mathematical Archive, IJMA, ISSN. 2229 - 5046, Vol.7, No. 6, Pg. 27 – 33, 2016.

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]