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ABSTRACT 

In this paper we introduce the concept of absorptive CI-algebras and investigate some of its properties in details. 
 
Keywords: CI-algebra, BE-algebra, self-distributive, transitive, absorptive. 
 
Mathematics Subject Classification: 06F35, 03G25, 08A30. 
 
 
1. INTRODUCTION 
 
In 1966, Y. Imai and K. Iseki ([2, 3]) introduced the notion of BCK/BCI-algebras. There exist several generalizations 
of BCK/BCI-algebras, such as BCH-algebras ([1]), BH-algebras ([4]), d-algebras ([8]), etc. As a dualization of a 
generalization of BCK-algebra ([5]), H.S. Kim and Y. H. Kim introduced the notion of BE-algebra ([6]). In 2010, B. L. 
Meng ([7]) introduced the notion of CI-algebras as a generalization of BE-algebras. In this paper we introduce the 
concept of absorptive CI-algebras and investigate some of its properties in details. 
 
2. PRELIMINARIES                                                                                                                                                      
 
Definition 2.1 ([6]): A system (X; ∗, 1)  of type (2, 0) consisting of a non-empty set X, a binary operation ∗ and a fixed 
element 1 is called a BE–algebra if the following conditions are satisfied:  

1. (BE  1)  x ∗ x = 1 
2. (BE  2)  x ∗ 1 = 1                                                                                         
3. (BE  3)  1 ∗ x = 1                                                                                              
4. (BE  4)  x ∗ (y ∗ z)  = y ∗ (x ∗ z) for all x, y, z ∈ X. 

 
Definition 2.2 ([7]): A system (X; ∗, 1) consisting of a non–empty set X, a binary operation ∗ and a  fixed element 1, is 
called a CI–algebra if the following conditions are satisfied: 

1. (CI 1)  x ∗ x = 1 
2. (CI 2)  1 ∗ x = x 
3. (CI 3)  x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X 

 
Example 2.3: Let X = R+ = {x ∈ R: x > o} 
                        
For x, y ∈ X, we define 

x ∗ y = y . 1
𝑥𝑥
 

Then (X; ∗, 1) is a CI–algebra  
 
Example 2.4: The simplest example of a BE–algebra and a CI –algebra are the following. 
 
Let X = {0, 1}. We consider binary operations ∗ and o given by the Cayley tables 
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                        ∗    0        1                            o    0       1  
                        0    1        1                            0    1       0 
                        1    0        1                            1    0       1 
                     Table (2.4(a))                Table (2.4(b)) 
   
Then (i) (X; ∗, 1) is a BE–algebra, 
         (ii) (X; o, 1) is a CI–algebra but not a BE–algebra. 
 
Example 2.5: (a) Let X be a non-empty set and let F(X) be the set of all function f: X → (0, ∞). For f, g ∈ F(X), we 
define   

( )( ) ( )
( )

, .
g x

f g x x X
f x

∗ = ∈  

         
If we put 1(x) = 1for all x ∈ X, then 1 ∈ F(X) and simple computation proves that (F(X); ∗, 1) is a CI–algebra. 
 
(b) For a non-empty set X, let G(X) be the set of all functions f: X → R. For f, g ∈ G(X), we define 

(f o g)(x) = (1- f(x)) + g(x). 
 
Then simple computation shows that (G (X); o, 1) is a CI–algebra.  
 
Lemma 2.6 ([7]): In a CI–algebra (X; ∗, 1) following results are true:  

(1)   x ∗ ((x ∗ y) ∗ y) = 1 
(2)  (x ∗ y) ∗ 1 = (x ∗ 1) ∗ (y ∗ 1) for all x, y ∈ X. 

 
Definition 2.7 ([7]): A CI–algebra (X; ∗, 1) is said to be 

(a) self distributive if for any x, y, z ∈ X,  we have 
x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z), 

(b) transitive if for all x, y, z ∈ X, we have 
(y ∗ z) ∗ ((x ∗ y) ∗ (x ∗ z)) = 1 

 
Theorem 2.8 ([9]): Let (X; ∗, 1) be a system consisting of a non-empty set X, a binary  operation ∗ and  a  fixed 
element  1. Let Y = X x X. For 𝓊𝓊 = (x1, x2), 𝓋𝓋 = (y1, y2) a binary operation ⊗ is defined in Y as  

𝓊𝓊 ⊗ 𝓋𝓋 = (x1 ∗ y1, x2 ∗ y2) 
Then (Y; ⊗, (1, 1))  is  a  CI- algebra iff (X; ∗, 1) is a CI-algebra . 
 
Corollary 2.9 ([9]): If (X; ∗, 1) and (Y; o, e) are two CI–algebras, then Z = X x Y is also a CI–algebra under the binary 
operation defined as follows:  
                                                                                                                                                    
For u = (x1, y1) and v = (x2, y2) in Z,                                                                                                                   

u ⊗ v = (x1 ∗ x2, y1 o y2) 
 
Here the distinct element of Z is (1, e). 
 
Theorem 2.10 ([10]): Let (X; ∗, 1) be a CI–algebra and let F(X) be  the class of all functions f: X → X. Let a binary 
operation o be defined in F(X) as follows:                                                                                                                                         
 
For f, g ∈ F(X) and x ∈ X, 

(f o g)(x) = f(x) ∗ g(x). 
 
Then (F(X); o, 1∼) is a CI–algebra where 1∼ is defined as 1∼(x) = 1 for all x ∈ X. 
 
Notation 2.11 ([7]): Let (X; ∗, 1) is a CI–algebra. Let B(X) = {x ∈ X: x ∗ 1 = 1}. B(X) is called the BE–part of X. 
Clearly B(X) is non–empty, since 1 ∈ B(X).                                       
 
3. ABSORPTIVE CI-ALGEBRA 
 
Definition 3.1: A CI–algebra (X; ∗, 1) is said to be absorptive if for any x, y, z ∈ X                                    

(x ∗ y) ∗ (x ∗ z) = (y ∗ z) 
 
Example 3.2: We may consider example 2.4. 
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Algebra given by table (2.4 (a)) is self distributive but not absorptive. For,   

(1 ∗ 0) ∗ (1 ∗ 1) = 0 ∗ 1= 1, 
1 ∗ (0 ∗ 1) = 1 ∗ 1= 1, 
(0 ∗ 1) ∗ (0 ∗ 0) = 1 ∗ 1 = 1, 
0 ∗ (1 ∗ 0) = 0 ∗ 0 = 1, 
but 1 ∗ 0 = 0 . 

 
Again CI–algebra given by table (2.4 (b)) is not self–distributive, because 

0 o (1 o 0) = 0 o 0 = 1 
and (0 o 1) o (0 o 0) = 0 o 1 = 0. 
But it is absorptive. For, 
(1 o 0) o (1 o 1) = 0 o 1 = 0 = 0 o 1, 
(1 o 1) o (1 o 0) = 1 o 0 = 0 = 1 o 0, 
(0 o 1) o (0 o 0) = 0 o 1 = 0 = 1 o 0, 
and  (0 o 0) o (0 o 1) = 1 o 0 = 0 = 0 o 1, 

 
Example 3.3: We may consider example (2.5) (a) and (b).                                                                               
 
If f, g, h ∈ F(X). Then      

 ( ) ( )( )( ) ( )( )
( )( )

f h x
f g f h x

f g x
∗

∗ ∗ ∗ =
∗

 

( )
( )

( )
( )

( )
( )

h x f x
f x g x

h x
g x

=

=

 

( )( )g h x= ∗  for all x ∈ X. 
 
So (f ∗ g) ∗ (f ∗ h) = (g ∗ h). 
 
Hence (F(X); ∗, 1) is an absorptive CI–algebra. 
 
Again if f, g, h ∈ G(X), then 

((f ο g) ο (f ο h) (x) = (1 – (f ο g)(x)) + (f ο h)(x) 
= 1 – [(1 – f(x)) + g(x)] + (1- f(x)) + h(x) 
= 1 – g(x) + h(x) 
= (g ο h)(x)  for all x ∈ X. 

 
So (f ο g) ο (f ο h) = (g ο h). 
 
Hence (G(X); ο, 1) is an absorptive  CI-algebra.  
 
Now we prove the following results: 
 
Proposition 3.4: If (X; ∗, 1) is an absorptive CI–algebra then B(X) = {1}. 
 
Proof: Let (X; ∗, 1) is an absorptive CI–algebra. Then   

(x ∗ y) ∗ (x ∗ z) = y ∗ z   for all x, y, z  ∈ X. 
 
If possible, let 1 ≠ x ∈ B(X). This means that x ∗ 1 = 1.                                                                           
 
Now putting y = 1 and z = x we see that above equality is not satisfied. For,  

(x ∗ 1) ∗ (x ∗ x) = 1 ∗ 1 = 1 
      and  1 ∗ x = x. 
 
This proves that B(X) = {1}. 
 
Corollary 3.5: A BE–algebra containing more than 1 element cannot be absorptive. 
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Theorem 3.6: Let (X; ∗, 1) be a CI–algebra and let  (F(X); ο, 1∼) be function CI–algebra discussed in theorem (2.10). 
Then F(X) is absorptive iff X is absorptive. 
 
Proof: Let X be an absorptive CI–algebra. For f, g, h ∈ F(X) and x ∈ X, we have   

((f ο g) ο (f ο h))(x) = (f(x) ∗ g(x)) ∗ (f(x) ∗ h(x)) 
                                 = g(x) ∗ h(x) = (g ο h)(x). 

 
This gives (f ο g) ο (f ο h) = (g ο h) for all f, g, h ∈ F(X).                                                                                                    
 
Hence F (X) is absorptive.  
 
Conversely, suppose that F(X) is absorptive.                                                                                             
 
Then for all f, g, h ∈ F(X), we have   

(f ο g) ο (f ο h) = (g ο h).                                                                             (1) 
 
Let x, y, z ∈ X, we consider fx, fy, fz ∈ F(X) defined as   

fx(t) = x,  fy(t) = y,  fz (t) = z   for all t ∈ X. 
 
Using (1) we get 

((fx ο fy) ο (fx ο fz))(t) = (fy ο fz)(t) for all t ∈ X. 
 
This gives                                                                                                                                                             

(x ∗ y) ∗ (x ∗ z) = (y ∗ z) 
 
Hence X is absorptive.  
 
Theorem 3.7: Let X, Y and Z be CI-algebras as considered in corollary (2.9). Then Z is absorptive iff X and Y are 
absorptive. 
 
Proof: First suppose that (Z; ⊗, (1, e)) is absorptive. Let x, y, z ∈ X. We choose 𝓊𝓊 = (x, e), 𝓋𝓋= (y, e) and 𝓌𝓌 = (z, e) of 
Z.                                                                                                                                          
 
Since Z is absorptive, we have  

(𝓊𝓊 ⊗ 𝓋𝓋) ⊗ (𝓊𝓊 ⊗ 𝓌𝓌) = 𝓋𝓋 ⊗ 𝓌𝓌                                                                                                                          (2) 
 
This gives  

((x ∗ y) ∗ (x ∗ z), e) = (y ∗ z, e) 
          ⇒ (x ∗ y) ∗ (x ∗ z) = y ∗ z. 
 
Hence X is absorptive. Similarly if x, y, z ∈ Y then taking 𝓊𝓊 = (1, x), 𝓋𝓋 = (1, y) and 𝓌𝓌 = (1, z) in (2) we see that Y is 
absorptive. 
 
Conversely, suppose that X and Y are absorptive CI-algebras. Let  𝓊𝓊 = (x1, y1), 𝓋𝓋 = (x2, y2) and 𝓌𝓌 = (x3, y3) where      
x1, x2, x3 ∈ X and y1, y2, y3 ∈Y. Then  

(𝓊𝓊 ⊗ 𝓋𝓋) ⊗ (𝓊𝓊 ⊗ 𝓌𝓌) = ((x1, y1) ⊗ (x2, y2)) ⊗ ((x1, y1) ⊗ (x3, y3)) 
= (x1 ∗ x2, y1 ο y2) ⊗ (x1 ∗ x3, y1 ο y3) 
= ((x1 ∗ x2) ∗ (x1 ∗ x3), (y1 ο y2) ο (y1 ο y3)) 
= (x2 ∗ x3, y2 ο y3) 
= (x2, y2) ⊗ (x3, y3) = 𝓋𝓋 ⊗ 𝓌𝓌. 

Hence Z is absorptive.   
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