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ABSTRACT 
In this paper we investigate the notion of soft-contra-πgp-continuity, soft-almost-contra-πgp-continuous function, 
which is weaker than soft-contra-continuity. We also obtain some properties of soft-contra-πgp-continuous functions 
and discuss the relationship between other related functions. Further we apply the notion of soft-πgp-closed sets in soft 
topological spaces to study soft-πgp-homeomorphism. 
 
Keyword: soft topological spaces, soft-contra-πgp-continuity, soft-almost-contra-πgp- continuous function, soft-πgp-
homeomorphism. 
 
 
INTRODUCTION 
 
Soft system provides a general framework with the involvement of parameters. Soft set Theory has a wider application 
and its progress is very rapid in different fields. The soft set theory is a rapidly processing field of mathematics. 
Molodtsov [12] initiated the concept of soft set theory as a new mathematical tool and presented the fundamental 
results of the soft sets. Topological structure of soft sets was initiated by Shabir and Naz [14] and studied the concept of 
soft open sets, soft interior points, and soft neighbourhood of the points, soft separation axioms and subspaces of a soft 
topological space. N. Palaniappan [13] introduced regular generalized closed sets the concept of regular continuous 
functions was introduced by Arya.S.P and Gupta.R [4] in the year 1974. Athar Kharal and B.Ahmed [11] defined the 
notion of a mapping on soft classes and studied several properties of images and inverse images of soft sets. Hussain    
et al. [7] continued to study the properties of soft topological spaces.  
 
In this present paper, we discuss soft-contra-πgp-continuous, soft-contra-πgp-irresolute, soft-almost-contra-πgp-
continuous function and also soft-πgp-homeomorphism in soft topological space and some characterization of these 
mappings are obtained. 
 
2. PRELIMINARIES 
 
Let U be an initial universe set and E be a collection of all possible parameters with respect to U, where parameters are 
the characteristics or properties of objects in U. Let P (U) denote the power set of U, and let A ⊆ E. 
 
Definition 2.1[12]: A pair (F, A) is called a soft set over U, where F is a mapping given by F: A → P (U).In other 
words, a soft set over U is a parameterized family of subsets of the universe U. For a particular e ∈ A. F (e) may be 
considered the set of e-approximate elements of the soft set (F, A). 
 
Definition 2.2[6]: Two soft set (F, A) and (G, B) over a common universe U is said to be soft equal if (F, A) is a soft 
subset (G, B) and (G, B) is a soft subset of (F, A). 
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Definition 2.3[14]: Let τ be the collection of soft sets over X. then τ is called a soft topology on X if τ satisfies the 
following axioms: 

(i) ϕ, X~   belong to τ 
(ii) The union of any number of soft sets in τ belongs to τ. 
(iii) The intersection of any two soft sets in τ belongs to τ. 

 
The triplet (X, τ, E) is called a soft topological space over X. Let (X, τ, E) be a soft space over X, then the members of τ 
are said to be soft open sets in X. 
 
Definition 2.4: A soft subset (A, E) of X is called 

(i) a soft generalized closed (Soft-g-closed)[10], if Cl(A, E) ⊂~ (U, E)  whenever (A, E) ⊂~  (U, E) and  (U, E) is 
soft open in X. 

(ii) a soft-regular open[1], if (A, E)= Int(Cl(A, E)). 
(iii) a soft-pre-open [5], if (A, E) ⊂~ Int (Cl(A, E)). 
(iv) a soft-clopen[5], if (A, E) is both soft open and soft closed. 
(v) a soft-πgr-closed[8], if  srCl(A, E) ⊂~  (U, E)  whenever (A, E) ⊂~  (U, E) and (U, E) is soft π-open in X. 

 
The complement of the soft regular open, soft pre-open sets are their respective, soft regular closed, soft pre-closed and 
set sets. 
 
The finite union of soft regular open sets is called soft π-open set and its complement is soft-π-closed set. The soft 
regular open set of X is denoted by SRO(X) or SRO(X, τ, E). 
 
Definition 2.5: [3] Let (F, E) be a soft set X. The soft set (F, E) is called a soft point , denoted by (Xe, E), if for the 
element e ∈ E, F(e)={x} and F(eˈ)= ϕ for all eˈ∈E-{e}. 
 
Definition 2.6: Let (X, τ, E) and (Y, τ*, E) be two soft topological spaces. A function f: (X, τ, E) → (Y, τ*, E) is said to 
be 

(i) Soft-pre-continuous [15], if f‾1(F, E) is soft-pre-open in (X, τ, E), for every soft-open set (F, E) of (Y, τ*, E). 
(ii) Soft-πgr-continuous [8], if f‾1(F, E) is soft-πgr-open in (X, τ, E), for every soft-open set (F, E) of (Y, τ*, E). 
(iii) Soft-πg-continuous [1], if f‾1(F, E) is soft-πg-open in (X, τ, E), for every soft-open set (F, E) of (Y, τ*, E). 
(iv) Soft-continuous [5], if f‾1(F, E) is soft-open in (X, τ, E), for every soft-open set (F, E) of (Y, τ*, E). 
(v) Soft-g-continuous [2], if f‾1(F, E) is soft-g-open in (X, τ, E), for every soft-open set (F, E) of (Y, τ*, E). 
(vi) Soft-contra-continuous [9] if f‾1(F, E) is soft-closed in (X, τ, E), for each soft-open set in (Y, τ*, E). 
(vii) Soft-contra-g-continuous [9]  if f‾1(F, E) is soft-g-closed in (X, τ, E), for each soft-open set in (Y, τ*, E) 
(viii) Soft-contra-pre-continuous if f‾1(F, E) is soft-pre-closed in (X, τ, E), for each soft-open set in (Y, τ*, E) 
(ix) Soft-contra-πgr-continuous [8] if f‾1(F, E) is soft-πgr-closed in (X, τ, E), for each soft-open set in (Y, τ*, E) 
(x) Soft-contra-πg-continuous [2] if f‾1(F, E) is soft-πg-closed in (X, τ, E), for each soft-open set in (Y, τ*, E) 

 
Definition: 2.9 [5]: 

(i) A soft subset (A, E) of a soft topological space X is called soft-πgp-closed set in X if spcl(A, E) ⊂~ (U, E) 
whenever (A, E) ⊂~  (U, E) and (U, E)  is soft-π-open in X. 
By SπGPC(X), we mean the family of all soft-πgp-closed subsets of the space X. 

(ii) Let X and Y be two topological spaces and the function f: X→Y. Then the function f is soft-πgp-irresolute if 
f‾1(F, E) is soft-πgp-open in X, for every soft-πgp-open set (F, E) of Y. 

 
Definition 2.10 [5]: Let (X, τ, E) and (Y, τ*, E) be two soft topological spaces and f:(X, τ, E)→(Y, τ*, E) be a function. 
Then the function f is said to be soft-πgp-continuous function if  f‾ 1(G, E) is soft-πgp-closed(open) set in (X, τ, E) for 
every soft-closed (open) set (G, E) of (Y, τ*, E). 
 
Definition 2.11 [2]: Let (A, E) be a subset of a space X. The set ∩{(U, E) ∈ τ:(A, E) ⊂~ (U, E) } is called the Kernal of 
(A, E) and it is denoted by Ker(A, E). 
 
Definition 2.12 [5]: Let (X, τ, E) and (Y, τ*, E) be soft topological spaces and f: (X, τ, E ) → (Y, τ*, E) be a function. 
Then the function is called soft-open mapping if f (F, E) ∈(Y, τ*, E) for all (F, E)∈τ. Similarly, a function                
f:(X, τ, E)→(Y, τ*, E) is called a soft-closed mapping if for a closed set (G, E) in τ, the image f(G, E) is soft-closed in 
τ*. 
 
Throughout this paper we denote (X, τ, E), (Y, τ*, E) and (Z, τ**, E) as X, Y and Z.   
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3. Soft-contra-πgp-continuous function 
 
Definition 3.1.1: Let (X, τ, E) and (Y, τ*, E) be two soft topological spaces and f: (X, τ, E) → (Y, τ*, E) be a function. 
Then the function f is soft-contra-πgp-continuous if f ‾1 (F, E) is soft-πgp-closed in X, for every soft-open (F, E) in Y. 
 
Definition: 3.1.2: A space (X, τ) is called πgps-space, if every soft-πgp-open set is soft-closed set. 
 
Theorem 3.1.3: 

(i) Every soft-contra-continuous is soft-contra-πgp-continuous. 
(ii) Every soft-contra-pre-continuous is soft-contra-πgp-continuous. 
(iii) Every soft-contra-g-continuous is soft-contra-πgp-continuous. 
(iv) Every soft-contra-πg-continuous is soft-contra-πgp-continuous. 
(v) Every soft-contra-πgr-continuous is soft-contra-πgp-continuous. 

 
Proof: The proof follows from the definition. 
 
None of the implications is Reversible as shown in the following example.  
 
Example 3.1.4: Let X= {a, b, c, d}, E= {e1, e2}. Let F1, F2,….,F6 are functions from E to P(X) and are defined as 
follows: 

F1(e1) ={c}, F1(e2) ={a}, 
F2(e1) ={d}, F2(e2) ={b}, 
F3(e1) ={c, d}, F3(e2) ={a, b}, 
F4(e1) ={a, d}, F4(e2) ={b, d}, 
F5(e1) ={b, c, d}, F5(e2) ={a, b, c}, 
F6(e1) ={a, c, d}, F6(e2) ={a, b, d}, 

Then τ1 = {Φ, X, (F1, E), (F6, E)} is a soft topology and elements in τ are soft- open sets. 
 
Let H1, H2, H3, H4 are functions from E to P(Y) and are defined as follows: 

H1(e1) ={a}, H1(e2) ={d}, 
H2(e1) ={b}, H2(e2) ={c}, 
H3(e1) ={a, b}, H3(e2) ={c, d}, 
H4(e1) ={b, c, d}, H4(e2) ={a, b, c}, 

Then τ 2= {Φ, X, (H1, E), (H4, E)} is a soft topology on Y. Let f: X→Y be an function of f(a)=d, f(b) = c, f(c)=b, f(d)=a.  
 
Here the inverse image of the soft-closed set (A, E) = {{c, d}, {a, b}} in Y is not soft-open, soft-g-open, soft-pre-
closed, soft-πgr-closed in X. Hence f is not soft-contra-continuous, soft-contra-g-continuous, soft-contra-pre-
continuous, and soft-contra-πgr-continuous. Also soft closed set (B, E) = {{b, c, d}, {a, b, c}} in Y is not soft-πg-open 
set in X. Hence f is not soft-contra-πg-continuous. 
 
Theorem 3.1.5: Let X and Y be the two soft topological spaces and f: X→Y be a function. Then f is soft-πgp-
continuous and the space X is πgps-space, then f is soft-contra-continuous. 
 
Proof: Let (F, E) be a soft-open set in Y. Since f is soft-πgp-continuous, f ‾1(F, E) is soft-πgp-open set in X. Since X is 
πgps-space, f ‾1(F, E) is soft-closed in X. Hence f is soft-contra-continuous. 
 
Theorem 3.1.6: Suppose πGPO(X) is soft-closed under arbitrary union. Then the followings are equivalent for a 
function f: X→Y 

(i) f is soft-contra-πgp-continuous. 
(ii) For every soft-closed subsets of (F, E) of Y, f‾1(F, E) ∈ πGPO(X). 
(iii) For each x∈X and each (F, E) ∈ SC(Y, f(x)), there exist (A, E) ∈ SπGPO(X, x) such that f(A, E)⊂~ (F, E). 

 
Proof:  
(i)⇔ (ii), (ii) ⇒ (iii): is obvious. 
 
(iii) ⇒ (ii): Let (F, E) be any closed set of Y and x∈f‾1(F, E).Then f(x) ∈ (F, E) and there exist (A, E)x ∈SπGPO(X) 
such that f(A, E)x) ⊂~  (F, E).Therefore f‾1(F, E) = ∪ {(A, E)x:x∈f‾1(F)} and f‾1(F, E) is soft-πgp-open. 
 
(i) ⇒ (iii): Let x ∈ X and (F, E) be a closed set in Y with f(x) ∈ (F, X)x, By (i),it follows that f‾ 1(Y-(F, E)) = X-f‾1(F, E) 
is soft-πgp-closed and so f‾ 1(F, E) is soft-πgp-open. Take (A, E) = f‾ 1 (F, E), we obtain that x ∈ (A, E) and                
f(A, E)) ⊂~  (F, E). 
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Theorem 3.1.7: Suppose SπGPO(X) is soft-closed under arbitrary unions. If f: X→Y is soft-contra-πgp-continuous and 
Y is soft-regular, then f is soft-πgp-continuous. 
 
Proof: Let x be an arbitrary point of X and (V, E) be an soft-open set of Y containing f(x).The regularity of Y implies 
that there exist an soft-open set in Y containing f(x) such that s-cl(W, E)⊂~ (V, E). Since f is soft-contra-πgp-
continuous, then there exist (U, E) ∈ s-πGPO(X) contains, such that f(U, E)⊂~  s-cl(W, E). Then f(U, E) ⊂~ s-cl(W, E) 
⊂~  (V,E). Hence f is soft-πgp-continuous. 
 
Theorem 3.1.8: If a function f: X→Y is soft-contra-πgp-continuous and U is soft-open in X; then f/U: (X, τ, E) →     
(Y, τ*, E) is soft-contra-πgp-continuous. 
 
Proof: Let (B, E) be soft-closed in Y. Since f: X→Y is soft-contra-πgp-continuous; f ‾1(B, E) is soft-πgp-open in         
X. (f/U)‾1(B, E) = f ‾1(B, E) ∩ U is soft-πgp-open in X. Hence (f/U) ‾1(B, E) is soft-πgp-open in U. 
 
Definition 3.1.9:  

(i) The Soft πgp-Closure of a soft set (G, E) is defined to be the intersection of all soft πgp-closed sets containing 
the soft set (G, E) and is denoted by s-πgp-cl(G, E). 

(ii) The Soft πgp-Interior of a soft set (G, E) is defined to be the union of all soft πgp-open sets contained the soft 
set (G, E) and is denoted by s-πgp-int(G, E). 

 
Theorem 3.1.10: Suppose that πGPC(X) is soft-closed under arbitrary intersections. Then the following are equivalent   

(i) f is soft-contra-πgp-continuous. 
(ii) The inverse images of every closed set of Y are soft-πgp-open. 
(iii) For each x∈X and each closed set (B, E) in Y with f(x)∈(B, E),there exist a soft-πgp-open set (A, E) in X such 

that x∈(A, E) and f(A, E) ⊂~  (B, E). 
(iv) f (sπgp-cl(A, E)) ⊂~  ker f(A, E) for every subset (A, E) of X. 
(v) sπgp-cl(f‾1(B, E))) ⊂~  f‾1(ker(B, E)) for every subset (B, E) of Y. 

 
Proof:  
(i) ⇒(ii): and (ii)⇒(i) is obviously true. 
 
(i)⇒(iii): Let x ∈ X and (B, E) be soft-closed set in Y with f(x)∈(B, E).By (i), it follows that f‾ 1(Y-(B, E)) is soft-πgp-
closed set and so f ‾1(B, E) is soft-πgp-open. Take (A, E)=f ‾1(B, E).we obtain that x∈(A, E) and f(A, E) ⊂~ (B, E). 
 
(iii)⇒(ii): Let (B, E) be a soft-closed set in Y with x∈f ‾1(B. E). Since f(x)∈(B, E),by (iii),there exist a soft-πgp-open set 
(A, E) in X containing x such that f(A, E) ⊂~  (B, E).It follows that x∈(A,E) ⊂~ f(B,E).Hence f ‾1(B,E) is soft-πgp-open. 
 
(ii)⇒(iv): Let (A,E) be any set of X. Let y∉ ker f(A, E).Then there exist a soft-closed set (F, E) containing y such that 
f(A, E)∩(F, E) = φ . Hence, we have (A, E) ∩f ‾1(F, E)=φ . s-πgp-cl(A,E)∩ f ‾1 (F,E)=φ . Thus f(s-πgp-cl(A,E))⊂(F,E) 
= φ  and y ∉ f(s-πgp-cl(A, E)) and hence f(s-πgp-cl(A, E)) ⊂ ker f(A, E). 
 
(iv) ⇒ (v): Let (B, E) be any subset of Y. By (iv), f(s-πgp-cl(f ‾1(B, E)))⊂ ker (B, E) and sπgp-cl (f ‾ 1(ker(B, E))). 
 
(v) ⇒ (i): Let (B, E) be any soft open set in Y. By (v), s-πgp-cl(f ‾1(B,E))⊂f ‾1(ker(B,E))=f ‾1(B,E) s-πgp-cl(f ‾1(B,E))  
= f ‾1(B, E), We obtain f ‾1(B, E) is s-πgp-closed in X. Hence f is soft-contra-πgp-continuous. 
 
3.2. soft-contra-πgp-irresolute  
 
Definition: 3.2.1: A Map f: X→Y is said to be soft-contra-πgp-irresolute if f‾ 1(F, E) is soft-πgp-closed in X, for each 
(F, E) is soft-πgp-open in Y. 
 
Theorem 3.2.2: Let f: X→Y and g: Y→Z be two maps in soft topological space such that gof: X→Z. Then  

(i) If g is soft-πgp-continuous and f is soft-contra-πgp-irresolute, then gof is soft-contra-πgp-continuous. 
(ii) If g is a soft-πgp-irresolute and f is soft-contra-πgp-irresolute, then gof is soft-contra-πgp-irresolute. 

 
Proof: 

(i) Let (F, E) be soft-closed set in Z. Then g ‾1(F, E) is soft-πgp-closed set in Y. Since f is contra-soft-πgp-
irresolute, f ‾1(g ‾1(F, E)) is soft-πgp-open set in X.  Hence gof is soft-contra-πgp-continuous. 

(ii) Let (F, E) be soft-πgp-closed set in Z. Then g ‾1(F, E) is soft-πgp-closed set in Y. Since f is soft-contra-πgp-
irresolute, f ‾1(g ‾1(F, E)) is soft-πgp-open set in X. Hence gof is soft-contra-πgp-irresolute. 
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Theorem 3.2.3: Suppose that s-πGPC(Y) is soft-closed under arbitrary intersections. If f: X→Y is surjective soft-πgp-
open function and g: Y→Z is a function such that gof: X→Z is soft-contra-πgp-continuous, then g is soft-contra-πgp-
continuous 
 
Proof: Suppose that x and y are two soft-points in X and Y such that f(x) = y. Let (B, E) ∈ SC(Z,(gof)(x)).Then there 
exist a s-πgp-open set (A, E) in X containing x such that g(f(A,E))⊂~  (B,E). Since f is s-πgp-open, f (A, E) is s-πgp-
open set in Y containing y such that g(f(A, E)) ⊂~  (B, E).This implies g is soft-contra-πgp-continuous. 
 
Theorem 3.2.4: Every soft-contra-πgp-irresolute is soft-contra-πgp-continuous. 
 
Proof: The proof is obvious. 
 
Remark 3.2.5: Converse of the above need not be true as seen in the following example. 
 
Example 3.2.6: Let X= {a, b, c, d}, E={e1, e2}. Let F1, F2,…,F6 are functions from E to P(X) and are defined as follows: 

F1(e1) ={c}, F1(e2) ={a}, 
F2(e1) ={d}, F2(e2) ={b}, 
F3(e1) ={c, d}, F3(e2) ={a, b}, 
F4(e1) ={a, d}, F4(e2) ={b, d}, 
F5(e1) ={b, c, d}, F5(e2) ={a, b, c}, 
F6(e1) ={a, c, d}, F6(e2) ={a, b, d}, 

 
Then τ1 = {Φ, X, (F1, E), (F6, E)} is a soft topology and elements in τ are soft- open sets. 
 
Let  G1, G2, G3, G4 are functions from E to P(Y) and are defined as follows: 

G1(e1) ={a}, G1(e2) ={d}, 
G2(e1) ={b, c, d}, G2(e2) ={a, b, c}, 

 
Then τ 2= {Φ, X, (G1, E), (G4, E)} is a soft topology on Y. Let f: X→Y be an identity function. Hence it is soft-contra-
πgp-continuous. But the inverse image of (A, E) = {{a, b}, {c, d}} in Y is not soft-πgp-closed set in X.  Hence not soft-
contra-πgp-irresolute. 
 
3.3 soft-Almost-contra-πgp-continuous functions 
 
Definition 3.3.1: A function f: X→Y is said to be soft -almost-contra-continuous if f ‾1(F, E) is closed in X, for each 
soft-regular-open set (F, E) of Y. 
 
Definition 3.3.2: A function f: X→Y is said to be soft -almost-contra-πgp-continuous if f ‾1(F, E) ∈ SπGPC(X), for 
each (F, E) ∈ SRO(Y). 
 
Theorem 3.3.3: Suppose soft-πgp-open set of X is soft-closed under arbitrary unions. The following statement is 
equivalent for a function f: X→Y,  

(i) f is soft-almost-contra-πgp-continuous. 
(ii) f ‾1(F, E) ∈ soft-πgp-open in X, for every (F, E) ∈ SRC(Y). 
(iii) For each x∈X and each soft-regular closed set (F, E) in Y containing f(x), there exist a soft-πgp-open set       

(A, E) in X containing x such that f(A, E) ⊂~ (F, E). 
(iv) For each x∈X and each soft-regular open set (B, E) in Y not containing f(x), there exists a soft-πgp-closed set    

(G, E) in X not containing x such that f ‾1(B, E) ⊂~ (G, E). 
(v) f ‾1(s-int (cl (G, E))) ∈s-πGPC(X) for every soft-open subset (G, E) of Y. 
(vi) f‾1(s-int (cl (F, E)))∈SπGPO(X) for every soft-closed subset (F, E) of Y. 

 
Proof: 
(i)⇒ (ii): Let (F, E) ∈SRC(Y).Then Y-(F, E)∈SRO(Y). Since f is soft-almost-contra-πgp-continuous. Hence           
f‾1(Y-(F, E)) =X-f‾1 (F, E) ∈SπGPC(X).This implies f‾1(F, E)∈SπGPO(X). 
 
(ii)⇒ (i): Let (F, E) ∈ SRO(Y).Then by assumption (F-(F, E)) ∈ SRC(Y). Since for each (F, E) ∈ SRC(Y).Hence     
f‾1(Y-(F, E))=X-f‾1(F,E) ∈ SπGPO(X) This implies f‾1(F, E) ∈ SπGPC(X). 
 
(ii)⇒(iii): Let (F, E) be any soft-regular closed set in Y containing f(x).f‾ 1(F, E) ∈ SπGPO(X) and x ∈ f‾1(F,E). Take 
(A, E)= f‾1(F, E).then f(A, E) ⊂~ (F, E). 
 
(iii)⇒(ii): Let (F, E) ∈ SRC(Y) and x ∈f‾1(F, E).From (iii), there exist a soft-πgp-open set (A, E) in X containing x such 
that (A, E) ⊂~ f‾1(F, E).we have f‾1(F, E) = ∪ {(A, E):x∈ f‾1(F, E)}.Then f‾1(F, E) is soft-πgp-open. 
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(iii) ⇒ (iv): Let (B, E) be any soft-regular open set in Y containing f(x). Then Y-(B, E) is a soft regular closed set 
containing f(x). By (iii), there exists a soft-πgp-open set (A, E) in X containing x such that f(A,E) ⊂~ Y-(B, E). Hence 
(A, E) ⊂~  f‾1(Y-(B, E)). Then f‾1(B, E) ⊂~ X-(A, E). Let us set (G, E)= X-(A, E).We obtain a soft-πgp-closed set in X 
not containing x such that f‾1(B, E) ⊂~ (G, E). 
 
(iv) ⇒ (iii): Let (F, E) be soft-regular closed set in Y containing f(x). Then Y-(F, E) is soft-regular open set in Y 
containing f(x). By (iv) there exists a soft-πgp-closed set (G, E) in X not containing x such that f‾ 1(Y-(F, E)) ⊂~  (G, E). 
Then X-f‾1(F, E) ⊂~ (G, E) implies X-(G, E)⊂~ f‾1(F, E). Hence f(X-(G, E))⊂~ (F, E).Take (A, E)= X-(G, E). Then      
(A, E) is soft-πgp-open set in X containing x such that f(A, E) ⊂~  (F, E). 
 
(i) ⇒ (v): Let (G, E) be the soft-open subset of Y. Since s-int(cl(G, E)) is soft-regular open, then by (i),                      
f‾1(s-int(cl(G,E))) ∈ SπGPC(X). 
 
(v) ⇒ (i): Let (G, E) ∈ SRO(Y). Then (G, E) is soft-open set in Y. By (v), f‾ 1(s-(int(cl(G,E)))) ∈ SπGPC(X). This 
implies f‾1(G,E) ∈ SπGPC(X). 
 
(ii) ⇔ (vi): is similar as (i)⇔(v). 
 
Theorem 3.3.4: Every soft-contra-πgp-continuous function is soft-almost-contra-πgp-continuous. 
 
Proof: The proof is straight forward. 
 
Remark 3.3.5: Converse of the above need not be true as seen in the following example. 
 
Example 3.3.6: Let X= {a, b, c, d}, E={e1, e2}. Let F1, F2,….,F6 are functions from E to P(X) and are defined as 
follows: 

F1(e1) ={c}, F1(e2) ={a}, 
F2(e1) ={d}, F2(e2) ={b}, 
F3(e1) ={c, d}, F3(e2) ={a, b}, 
F4(e1) ={a, d}, F4(e2) ={b, d}, 
F5(e1) ={b, c, d}, F5(e2) ={a, b, c}, 
F6(e1) ={a, c, d}, F6(e2) ={a, b, d}, 

Then τ1 = {Φ, X, (F1, E), (F6, E)} is a soft topology and elements in τ are soft- open sets. 
 
Let  G1, G2, G3, G4 are functions from E to P(Y) and are defined as follows: 

G1(e1) ={a}, G1(e2) ={d}, 
G2(e1) ={b, c, d}, G2(e2) ={a, b, c}, 

 
Then τ 2= {Φ, X, (G1, E), (G4, E)} is a soft topology on Y. Let f: X→Y be an identity function. Hence it is soft-almost-
πgp-continuous. But the inverse image of (A, E) = {{Φ}, {d}} = {{Φ}, {a}} in Y is not soft-πgp-closed set in X. Hence 
not soft-πgp-continuous. 
 
Theorem 3.3.7: If f: X→Y is an soft-almost-contra-πgp-continuous function and (A, E)  is soft-open subset of X, then 
the restriction f/(A, E): (A, E) →Y is soft-almost-contra-πgp-continuous. 
 
Proof: Let (F, E) ∈ SRC(Y). Since f is soft-almost-contra-πgp-continuous, f‾1(F, E) ∈ SπGPO(X). Since (A, E) is soft-
open set, it follows that (f/(A, E))‾1(F, E) = (A, E) ∩ f‾1(F, E) ∈ SπGPO(A, E). Therefore f/(A, E) is an soft-almost-
contra-πgp-continuous. 
 
4. soft-πgp-homeomorphism 
 
Definition 4.1:  A bijection f: X → Y is called soft πgp-homeomorphism if f is both soft-πgp-continuous and soft-πgp-
open map. 
 
Definition 4.2: A bijection f: X → Y is called soft-πgpC-homeomorphism if f is both soft-πgp-irresolute and f‾1 is soft-
πgp-irresolute. 
 
Definition 4.3: A soft topological space X is called a soft-πgp-space if every soft-πgp-closed set is soft-closed set in X. 
 
Theorem 4.4: For any bijection f: X → Y, the following statements are equivalent. 

(i) f ‾1:Y→X is soft-πgp-continuous. 
(ii) f is a soft-πgp-open map. 
(iii) f is a soft-πgp-closed map. 
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Proof:  
(i) ⇒ (ii): Let (A, E) is a soft open set in X. Then X - (A, E) is soft closed in X. Since f-1 is soft- πgp-continuous,           
(f ‾1) ‾1(X- (A, E)) = f(X- (A, E)) =Y-f ((A, E)) is soft-πgp-closed in Y. Then f((A, E)) is soft-πgp-open in Y. Hence f is 
a soft-πgp-open map.  
 
(ii) ⇒ (iii): Let f be a soft-πgp-open map. Let (A, E) be a soft-closed set in X. Then X- (A, E) is soft-open in X. Since f 
is soft-πgp-open, f(X- (A, E)) = Y-f((A, E)) is soft-πgp-open in Y. Then f((A, E)) is soft-πgp-closed in Y. Hence f is 
soft-πgp-closed.  
 
(iii) ⇒ (i): Let (A, E) be soft-closed set in X. Then f((A, E)) is soft-πgp-closed in Y. That is (f ‾1)‾1 ((A, E)) is soft-πgp-
closed in Y. Hence f-1 is soft-πgp-continuous. 
 
Theorem 4.5: Let f: X→ Y be a bijective and soft-πgp-continuous map. Then the following Statements are equivalent. 

(i) f is a soft-πgp-open map. 
(ii) f is a soft-πgp-homeomorphism. 
(iii) f is a soft-πgp-closed map. 

 
Proof:  
(i) ⇒ (ii): Follows from the definition. 
 
(ii) ⇒ (iii): Let (A, E) be a soft-closed set in X. Then X- (A, E) is soft-open in X. Since f is a soft-πgp-homeomorphism, 
f(X- (A, E) )= Y-f((A, E)) is soft-πgp-open in Y. Then f((A, E)) is soft-πgp-closed in Y. Hence f is a soft-πgp-closed 
map. 
 
(iii) ⇒ (i): Let (A, E) be a soft-open set in X. Then X- (A, E) is soft-closed in X. Since f is a soft-πgp-closed map,           
f (X-(A, E)) =Y-f((A, E)) is soft-πgp-closed in Y. Then f ((A,E)) is soft-πgp-open in Y. Hence f is a soft-πgp-open map. 
 
Theorem 4.6: If f: X→Y and g:Y→Z are soft-πgpC-homeomorphisms, then gof: X→Z is also a soft-πgpC-
homeomorphism. 
 
Proof: Let (A, E) be a soft-πgp-open set in Z. Now (g∘f)‾1((A, E))=f ‾1(g ‾1((A, E)))=f ‾1((A, E)), where                        
(A, E) = g ‾1((A, E)). By hypothesis, (A, E) is soft-πgp-open in Y and again by hypothesis, f ‾1((A, E)) is soft-πgp-open 
in X. Therefore (gof) is soft-πgp-irresolute. Also for a soft-πgp-open set (G, E) in X, we have (g∘f)((G,E)) = g(f((G,E))) 
= g((W,E)), where (W, E) = f(G, E). By hypothesis, f((G, E)) is soft-πgp-open in Y and again by hypothesis, g(W, E) is 
soft-πgp-open in Z. Therefore (g∘f)‾1is soft-πgp-irresolute. Hence g∘f is soft-πgpC-homeomorphism. 
 
Theorem 4.7: Every soft-πgp-homeomorphism from a soft-πgp-space into another soft-πgp-space is a soft-
homeomorphism. 
 
Proof: Let f: X → Y, be a soft-πgp-homeomorphism. Then f is bijective, soft-πgp-continuous and soft-πgp-open. Let 
(A, E) be an soft-open set in X. Since f is soft-πgp-open and since Y is soft-πgp-space, f((A, E)) is soft-open in Y. This 
implies f is soft-open map. Let (A, E) be soft-closed in Y. Since f is soft-πgp-continuous and since X is soft-πgp-space, 
f ‾1((A, E)) is soft-closed in X. Therefore f is soft- continuous. Hence f is a soft-homeomorphism. 
 
Theorem 4.8: Every soft-πgp-homeomorphism from a soft-πgp-space into another soft-πgp-space is a soft-πgpC-
homeomorphism. 
 
Proof: Let f: X → Y be a soft-πgp-homeomorphism. Then f is bijective, soft-πgp-continuous and soft-πgp-open. Let 
(A, E) be an soft-πgp-closed set in Y. Then (A, E) is soft-closed in Y, since f is soft-πgp-continuous f ‾1((A, E)) is soft-
πgp-closed in X. Hence f is a soft-πgp-irresolute map. Let (V, E) be soft-πgp-open in X. Then (V, E) is soft-open in X. 
Since f is soft-πgp-open, f((V, E)) is soft-πgp-open set in Y. That is (f ‾1) ‾1((V, E)) is soft-πgp-open in Y and hence       
f ‾1 is soft- πgp-irresolute. Thus f is soft-πgpC-homeomorphism. 
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