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ABSTRACT 
In this paper, a new topological space called Tri star topological space denoted by T*123-space is introduced. 
Consequently, various concepts such as T*123- open, T*123 -pre open, T*123-semi open sets and T*123-continuous 
functions are defined and their properties are investigated. 
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1. INTRODUCTION                                                                                                                                
 
The concept of a bitopological space was first introduced by Kelly [7] in 1963. A nonempty set X with two topologies 
T1, T2 is called a bitopological space, where the topology is defined as T1∪ T2 and denoted by T1T2.  Many research 
papers on bitopological spaces were then published [1] [2] [3] [4] [5]. As an extension of bitopological space, tri 
topological space was first initiated by Kovar[8] in 2000, where a nonempty set X with three topology is called a tri 
topological space. In 2014 Palaniammal and Somasundaram introduced a topology T1∩ T2∩ T3 in the tri topological 
space (X, T1, T2, T3) and studied several properties of this topology [9]. 
 
In this paper, we introduce a new topology called Tri star topology induced by two bitopology and is denoted by T*123. 
The various concepts such as pre open sets, semi open sets and continuous functions in a T*123- topological space are 
analyzed. 
 
2. PRELIMINARIES: 
 
Definition 2.1.1: [6] A topology on a non empty set X is a collection T of subsets of X having the following the 
properties:                                                     

1) X and Φ   are in T. 
2) The union of the elements of any sub collection of T is in T. 
3) The intersection of the elements of any finite sub collection of T is in T.    

               A set X for which a topology T has been specified is called a Topological space. 
 
Definition 2.1.2:[9] Let (X, T) be a topological space. A⊂X is called 

1. Semi-open if A⊆ cl(int(A)) and Semi-closed set if int( cl(A))⊆A. 
2. Pre-open if A⊆ int(cl(A)) and Pre-closed set if cl( int(A))⊆A. 

 
3. TRI STAR TOPOLOGICAL SPACE 
 
In this section we introduce a new topology in (X, T1, T2, T3) 
 
3.1. T123٭-OPEN SETS 
 
Throughout this article we consider bitopological spaces (X, T1, T3) and (X, T2, T3) for which the bitopology elements 
form a topology. 
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Definition 3.1.1: Let (X, T1, T2, T3) be a tri topological space. We define a new topology T123٭-called Tri star 
topology induced by two bitopology, as follows T*123 = (T1∪ T3)∩ (T2∪ T3) where T1∪ T3 and T2∪ T3 are 
bitopology defined on the bitopological spaces (X, T1 ,T3 ) and (X, T2 ,T3 ) respectively.        
 
Definition 3.1.2: A⊂ (X, T1, T2, T3) is called T*

123-open in X, if A є (T1∪ T3)∩ (T2∪ T3). The union of all T*123-open 
sets contained in A is called the T*123-interior of A and denoted by T*123-int A. We say A is T*123-closed in X if Ac is 
T*123-open, and the intersection of T*123-closed sets containing A is called T*123-closure of A and it is denoted by 
T*123-cl(A) .                                                               
 
Example 3.1.3: Let X = {a, b, c} with T1={X,Φ , {a},{a, b}}, T2= {X,Φ , {b}},T3={X,Φ ,{c},{a, c},{b, c}}.  Let 
T*123= (T1∪ T3)∩ (T2∪ T3), then {a, c} is T*123-open and {a, b} is T*123-closed. 
 
Remark 3.1.4: 

1) A is T*123-open if and only if A is open with respect to T1T3 and T2T3.                                     
2) A is T*123-closed if and only if A is closed with respect to T1T3 and T2T3.                                 
3) X and Φ are both T*123-open and T*123-closed. 

 
Theorem 3.1.5: Let (X, T1, T2, T3) be a T*

123-topological space. A is T*123-open if and only if A⊆  T1T3-int(T2T3-int A) 
= T2T3-int(T1T3-int A).    
 
Proof: If A is T*123-open, then by Remark 3.1.4, A is open with respect to T1T3 and T2T3. Hence A= TiT3-int A,              
i = 1, 2. Then T1T3-int(T2T3-int A)=T1T3-int A = A= T1T3-int A= T2T3-int(T1T3-int A). Hence A⊆T1T3-int(T2T3-int A) 
= T2T3-int(T1T3-int A). 
 
Conversely, A⊆T1T3-int(T2T3-int A) = T2T3-int(T1T3-int A). Since TiT3-int A⊆A, A⊆TiT3-int A⊆A, i =1, 2. It 
follows that A = TiT3-int A. Hence A is T*123-open. 
 
Theorem 3.1.6: Let (X, T1, T2, T3) be a T*

123-topological space then A is T*123-closed if and only if A⊇T1T3-cl(T2T3-
cl A). 
 
Proof: If A is T*123-closed then Ac is T*123-open. By Theorem 3.1.5, Ac⊆T1T3-int(T2T3-int (Ac)). Since T2T3-int (Ac) = 
(T2T3-cl A)c, Ac⊆T1T3-int(T2T3-cl A)c. Also, T1T3-int(T2T3-cl A)c⊆ (T1T3-cl(T2T3-cl A))c, implies Ac⊆ (T1T3-cl(T2T3-
cl A))c. Hence A ⊇T1T3-cl(T2T3-cl A).                                                                                                                                                                                             
 
Retracing the above steps, we get the converse.                                                                                         
 
Theorem 3.1.7:                                                                                                                                    

i) Arbitrary union of T*123-open set is T*123-open.                                                                                               
ii) Finite intersection of T*123-open set is T*123-open.                                                                                          

 
Proof:  
i) Let {Aα│α  є I} be the family of T*123-open sets.  By Theorem 3.1.5, for eachα , Aα ⊆T1T3- int(T2T3-int(Aα)), 

this implies ∪Aα⊆ ∪ (T1T3-int(T2T3-int(Aα)). Since∪ (T1T3-int(T2T3-int(Aα))⊆T1T3-int (∪ T2T3-int(Aα))⊆
T1T3-int (T2T3-int(∪Aα)), this implies ∪Aα⊆T1T3-int (T2T3-int(∪Aα)). Hence union of T*123-open set is     
T*123-open.  

ii) Let {Ai, i=1,2,…n} be the family of  T*123-open sets, then by Theorem 3.1.5, for each i, Ai ⊆T1T3-int(T2T3-int 
Ai).  This implies that ∩Ai ⊆ ∩ (T1T3-int(T2T3-int Ai)). Since ∩  (T1T3-int(T2T3-int Ai)) = T1T3-int (∩ T2T3-int 
Ai) and T1T3-int (∩ T2T3-int Ai) = T1T3-int (T2T3-int ∩Ai), we have ∩  Ai ⊆  T1T3-int (T2T3-int ∩Ai). Thus by 

Theorem3.1.5, 
n

i 1=
∩Ai is T*123-open. 

 
Remark 3.1.8: T*123 defined in Definition 3.1.1, forms a topology. 
 
3.2. T*123  PRE OPEN SETS: 
 
Definition 3.2.1: Let (X, T1, T2, T3) be a T*123 -topological space. A subset A of (X, T1, T2, T3) is called T*123-pre open 
in X, if A⊆T1T3-int(T2T3-cl A). The complement of T*123-pre open set is called T*123-pre closed.  
i.e., T1T3-cl(T2T3-int A)⊆A. 
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Example 3.2.2: Let X = {a, b, c} with T1={X,Φ , {a},{a, b}}, T2= {X,Φ , {b}},T3={X,Φ ,{c},{a, c},{b, c}}. Clearly 
A = {a} is T*123-pre open. 
 
Theorem 3.2.3: Every T*123-open set is T*123-pre open. 
 
Proof: Let A be T*123-open. Then by Theorem 3.1.5, A⊆T1T3-int(T2T3-int A). SinceT1T3-int(T2T3-int A)⊆T1T3-
int(T2T3-cl A), it follows that A⊆T1T3-int(T2T3-cl A). Hence A is T*123-pre open. 
 
Remark 3.2.4: Converse of the above Theorem need not be true. 
 
Example 3.2.5: Let X = {a, b, c} with T1 = {X,Φ , {a},{a, b}}, T2 = {X,Φ , {b}},T3={X,Φ ,{c},{a, c},{b, c}}. Then 
A = {a, b} is T*123-pre open but not T*123-open. 
 
Theorem 3.2.6: 

i) Arbitrary union of T*123- pre open sets is T*123-pre open. 
ii) Arbitrary intersection of T*123- pre closed sets is T*123-pre closed. 

 
Proof: 
i) Let {Aα |α  є I} be the family of T*123-pre open sets in X.  By Definition 3.2.1, for each α , Aα ⊆T1T3-int(T2T3-

cl(Aα)), this implies that∪Aα⊆ ∪ (T1T3-int(T2T3-cl(Aα)). Since ∪ (T1T3-int(T2T3-cl(Aα))⊆T1T3-int (∪ T2T3-
cl(Aα)) and T1T3-int (∪ T2T3-cl(Aα)) = T1T3-int (T2T3-cl (∪Aα)), this implies that ∪Aα⊆  T1T3-int (T2T3-cl(∪
Aα)).  Hence∪Aα is T*123-pre open. 

ii)  Let {Bα |α  є I} be a family of  T*123-pre closed sets in X.  Let Aα = Bα
c , then {Aα /α є I} is a family of  T*123-pre 

open sets.  By (i), ∪Aα = ∪ Bα
c
  is T*123-pre open. Consequently (∩ Bα)c is T*123-pre open.  Hence (∩ Bα) is 

T*123-pre closed. 
 
Remark 3.2.7: Finite intersection of T*123- pre open sets need not be  T*123-pre open.  
 
Example 3.2.8: Let X = {a, b, c} with T1={X,Φ , {a},{a, b}}, T2= {X,Φ , {b}},T3={X,Φ ,{c},{a, c},{b, c}}.                                                              
{a, b} and {b, c} are T*123- pre open sets, but {a, b}∩ {b, c} ={b} is not T*123- pre open.    
 
Theorem 3.2.9: In a T*123 topological space (X, T1, T2, T3) the set of all T*123- pre open sets form a generalized 
topology.                                                                                                                                        
 
Proof: Proof follows from Remark 3.1.4, Theorem 3.2.3, Theorem 3.2.6 (i) and Remark 3.2.7.                             
 
Definition 3.2.10: Let (X, T1, T2, T3) be a T*123 -topological space. An element x є A is called T*123- pre interior point 
of A, if there exist a T*123- pre open set V such that x є V⊂A.                                                 
 
Definition 3.2.11: The set of all T*123-pre interior points of A is called the T*123- pre interior of A, and is denoted by 
T*123- pre-int(A).                                                                                                                         
 
Theorem 3.2.12: 

i) Let A ⊂ (X, T1, T2, T3). Then T*123- pre int A is equal to the union of all T*123- pre open set contained in A.  
ii) If A is a T*123- pre open set then A= T*123- pre int A. 

 
Proof: 
i) We need to prove that, T*123- pre int A= ∪ {B | B⊂A, B is T*123- pre open set}. Let x є T*123- pre int A. Then 

there exist a T*123- pre open set B such that x є B ⊂  A. Hence x є ∪ {B | B⊂A, B is T*123- pre open set}. 
Conversely, suppose x є ∪ { B | B⊂A, B is T*123- pre open set}, then  there exist a set Bo⊂  A such that x є Bo,  
where Bo is  T*123- pre open set. i.e., x є T*123- pre int A. Hence ∪ {B | B⊂A, B is T*123- pre open set} ⊂T*123- 
pre int A. So T*123- pre int A= ∪ {B B⊂A, B is T*123- pre open set}.  

ii)  Assume A is a T*123- pre open set then A є {BB⊂  A, T*123- pre open set}, and every other element in this 
collection is subset of A. Hence by part (i) T*123- pre int A=A. 

 
Note 3.2.13: 

1. T*123- pre int A is T*123- pre open.                                                                                                                   
2. T*123- pre int A is the largest T*123- pre open set contained in A.                                                                                   

 
Theorem 3.2.14: 

i) T*123- pre int (A∪ B)⊃ T*123- pre int A∪ T*123- pre int B.                                                                      
ii) T*123- pre int (A∩ B) = T*123- pre int A ∩ T*123- pre int B.                                                          
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Proof: 
i) The fact that T*123- pre int A⊂A and T*123- pre int B⊂B implies T*123- pre int A∪ T*123- pre int B⊂  A∪ B. 

Since pre interior of a set is pre open, T*123-pre int A and T*123-pre  int B are pre open. Hence by Theorem 3.2.6 of 
(i), T*123-pre int A∪ T*123- pre int B is pre open and contained in A∪ B. Since T*123- pre int (A∪ B) is the 
largest T*123-pre open set contained in A∪ B, it follows that T*123- pre int A∪ T*123- pre int B ⊂T*123- pre int (A
∪ B). 

ii)   Let x є T*123- pre int (A∩ B). Then there exist a T*123-pre open set V, such that x є V⊂ (A∩ B). That is there 
exist a T*123-pre open set, such that x є V⊂A and x є V⊂B. Hence x є T*123- pre int A and x є T*123- pre int B. 
That is x є T*123- pre int A∩ T*123- pre int B. Thus T*123- pre int (A∩ B)⊂T*123- pre int A ∩ T*123- pre int B.  

        
Retracing the above steps, we get the converse.  
 
3.3. T*123 – PRE CLOSED SETS 
 
Definition 3.3.1: Let (X, T1, T2, T3) be a T*123-topological space. Let A⊂  X. The intersection of all T*123- pre closed 
sets containing A is called T*123- pre closure of A and it is denoted by T*123- pre cl(A). T*123- pre cl(A) = ∩ {B / B⊃
A, B is T*123- pre closed set}.                                                                        
 
Note 3.3.2:                                                                                                                                         

1. T*123- pre cl(A) is also a T*123- pre closed set. 
2. T*123- pre cl(A) is smallest T*123- pre closed set containing A. 

 
Theorem 3.3.3: Every T*123-closed set is T*123-pre closed.                                                                                                                           
 
Proof: Let A be T*123-closed, then by Theorem 3.1.6, we haveT1T3-cl(T2T3-cl A)⊆A.  Since T1T3-cl(T2T3-int A)⊆
T1T3-cl(T2T3-cl A)⊆A, A is T*123-pre closed. 
 
Remark 3.3.4: Converse of the above Theorem need not be true. 
 
Example 3.3.5: Let X = {a, b, c} with T1 = {X,Φ , {a},{a, b}}, T2 = {X,Φ , {b}},T3 = {X,Φ ,{c},{a, c},{b, c}}. Then 
A = {c, b} is T*123-pre closed but not T*123-closed. 
 
Theorem 3.3.6: A is T*123- pre closed if and only if A = T*123- pre cl(A). 
 
Proof: T*123- pre cl(A) =∩ {B/B⊃ A, B is T*123- pre closed set}. If A is a T*123- pre closed set then A is a member of 
the above collection and each member contains A. Hence their intersection is A and T*123- pre cl(A) = A. Conversely, 
if A= T*123- pre cl(A), then A is T*123- pre closed by Note 3.3.2. 
 
3.4. T*123-SEMI OPEN SETS 
 
Definition 3.4.1: Let (X, T1, T2, T3) be a T*123- topological space. A subset A of (X, T1, T2, T3) is called T*123-semi 
open in X, if A ⊆T1T3-cl(T2T3-int A). The complement of T*123-semi open set is called T*123-semi closed.  

i.e., T1T3-int(T2T3-cl A)⊆A. 
 
Example 3.4.2: Let X = {a, b, c} with T1 = {X,Φ , {a},{a, b}}, T2= {X,Φ , {b}},T3={X,Φ ,{c},{a, c},{b, c}}. Clearly 
A = {b} is T*123-semi open. 
 
Theorem 3.4.3: 

i) Every T*123-open set is T*123-semi open. 
ii) Every T*123-closed set is T*123-semi closed. 

 
Proof: 
i)  If A is T*123-open set then by Theorem 3.1.5, A⊆T1T3-int(T2T3-int A). Since T1T3-int(T2T3-int A)⊆T1T3-cl(T2T3-

int A), A⊆  T1T3-cl(T2T3-int A). Hence A is T*123-semi open. 
ii)  If A is T*123-closed set then by Theorem 3.1.6, we have T1T3-cl(T2T3-cl A) ⊆A. Since T1T3-int(T2T3-cl A)⊆  

T1T3-cl(T2T3-clA), T1T3-int(T2T3-cl A) ⊆A. Hence A is T*123-semi closed. 
 
Remark 3.4.4: Converse of the above Theorem need not be true. 
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Example 3.4.5: 
i)   Let X = {a, b, c} with T1 = {X,Φ , {a},{a, b}}, T2= {X,Φ , {b}},T3={X,Φ , {c},{a, c},{b, c}}.                     

Clearly A = {b} is T*123-semi open, but not T*123-open. 
ii)  Let X = {a, b, c} with T1 ={X,Φ ,{a},{a, b}}, T2 = {X,Φ , {b}},T3 = {X,Φ ,{c},{a, c}, {b, c}}. Clearly A = {a, c} 

is T*123-semi closed, but not T*123-closed. 
 
3.5. CONTINUOUS FUNCTIONS IN T*123-TOPOLOGICAL SPACES                                                                             
 
Definition 3.5.1: Let (X, T1, T2, T3) and (Y,σ 1,σ 2,σ 3) be two T*123-topological spaces. A function f: X→Y is 
called T*123-continuous function, if f -1(V) is T*123-open in X for every T*123- open set V in Y. 
 
Example 3.5.2: Let X  = {a, b, c} with topologies T1 = {X,Φ , {a}}, T2 = {X,Φ , {b, c}}, T3 = {X,Φ , {c},{a,},{b, c}} 
and Y={1,2,3} with topologies σ 1={Y,Φ , {1}}, σ 2= {X,Φ , {2,3}}, σ 3={X,Φ , {1},{2,3}} and f: X→Y be a 
function defined as f(a) = 1, f(b) = 2, f(c) = 3. T*123-open sets in X are {a},{b, c} and T*123-open sets in Y are 
{1},{2,3}. Therefore for every T*123-open set V in Y, f-1(V) is T*123-open set in X. Then f is T*123-continuous function.  
 
Definition 3.5.3: Let X and Y be the two T*123-topological space. A function f: X→Y is called T*123-continuous at a 
point a є X if for every T*123-open set V containing f(a) in Y, there exist a  T*123-open set U containing a in X, such 
that f(U)⊂  V.  
 
Theorem 3.5.4: f: X→Y is T*123-continuous if and only if f is T*123-continuous at each point of X. 
 
Proof: Let f: X→Y be T*123-continuous. Let a є X, and V be a T*123-open set in Y containing f(a). Since f is T*123-
continuous, f -1(V) is T*123-open in X containing a. Let U=f -1(V), then f(U)⊂V, and f(a)єU. Hence f is continuous at a. 
 
Conversely, suppose f is T*123-continuous at each point of X. Let V be T*123-open set in Y. If  f -1(V) = Φ  then it is 
T*123-open. So let f -1(V) ≠ Φ . Take any a є f -1 (V), then f(a) є V. Since f is T*123-continuous at each point there exist 
a T*123-open set Ua containing a such that f (Ua)⊂V.  Let Let U =   (Ua |a є f -1(V)). 
 
Claim: U = f -1(V)                                                                                                                                                 
If x є f -1(V) then x є Ux⊂U. Hence f-1(V)⊂U. On the other hand, suppose yєU then y є Ux for some x and y є f -1 (V). 
Hence U = f -1 (V).  
 
Since Ux is T*123-open, by Theorem 3.1.7 (i) U is T*123-open and hence U = f -1 (V) is T*123-open for every T*123-open 
set V in Y. Hence f is T*123-continuous. 
 
Theorem 3.5.5: Let (X, T1, T2, T3) and (Y,σ 1,σ 2,σ 3) be two T*123-topological spaces. Then f: X→Y is T*123-
continuous function if and only if f -1 (V) is T*123- closed in X, whenever V is T*123- closed in Y. 
 
Proof: Let f: X→Y is T*123-continuous function and V be T*123- closed in Y. Then Vc is T*123-open in Y. By 
hypothesis f-1(Vc) is T*123-open in X, i.e., [f -1(V)]c is T*123-open in X. Hence f -1(V) is T*123-closed in X whenever V-is 
T*123- closed in Y. Conversely, suppose f -1 (V) is T*123- closed in X whenever V is T*123-closed in Y. Let U is T*123-
open in Y then Uc is T*123-closed in Y. By assumption f-1(Uc) is T*123-closed in X. i.e., [f -1(U)]c is T*123-closed in X.  
Then f -1(U) is T*123-open in X. Hence f is T*123-continuous. 
 
Theorem3.5.6: Let (X, T1, T2, T3) and (Y,σ 1,σ 2,σ 3) be two T*123-topological space. Then f: X→Y is T*123-
continuous function if and only if  f(T*123-cl A) ⊂T*123-cl [f(A)]. 
 
Proof: Suppose f: X→Y is T*123-continuous and T*123- cl [f(A)] is T*123-closed in Y. Then by Theorem 3.5.5,              
f -1(T*123- cl [f(A)]) is T*123-closed in X. Consequently, T*123- cl[f -1(T*123- cl [f(A)])] = f -1(T*123- cl [f(A)]). Since f(A) 
⊂T*123- cl [f(A)], A ⊂  f -1(T*123- cl [f(A)]) and  T*123- cl(A) ⊂T*123- cl (f -1(T*123- cl [f(A)])) = f -1(T*123- cl [f(A)])  
Hence f (T*123- cl (A)) ⊂T*123- cl [f(A)].  
 
Conversely, if  f(T*123- cl (A)) ⊂T*123- cl [f(A)]  for all  A ⊂  X. Let F be T*123-closed set in Y, so that  

T*123- cl(F)=F                                                                                                                                          (1)                                                                                                                                                                                                                                                                                         
 
By hypothesis, f(T*123- cl (f -1(F)) ⊂T*123- cl [f(f -1(F))] ⊂T*123- cl (F), then by (1), T*123- cl (f -1(F))⊂ F. It follows 
that T*123- cl (f -1(F)) ⊂  f -1(F). But always  f-1(F) ⊂T*123- cl (f -1(F)], so that T*123- cl (f -1(F)) = f -1(F). Hence f -1(F) 
is T*123-closed in X and f is continuous by Theorem 3.5.5. 
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Theorem 3.5.7: Let (X, T1, T2, T3), (Y,σ 1,σ 2,σ 3) and (Z,θ 1,θ 2,θ 3) be three T*123-topological spaces. If f: X→Y 
and g: Y→Z are T*123-continuous mappings then g  f: X→Z is also T*123- continuous. 
 
Proof: Let G be a T*123-open set in Z. Since by g is T*123-continuous, g-1(G) is T*123-open set in Y.                                                 
Now, (g  f)-1G = (f-1

 g-1)G = f-1(g-1(G)). Take g-1(G) = H which is T*123-open in Y, then f-1(H) is T*123-open in X, 
since by f is T*123-continuous.  Hence g  f: X→Z is T*123- continuous function. 
 
3.6. T*123-PRE CONTINUOUS AND T*123-SEMI CONTINUOUS FUNCTIONS 
 
Definition 3.6.1: Let (X, T1, T2, T3) and (Y,σ 1,σ 2,σ 3) be two T*123-topological spaces, then f: X→Y is  T*123-pre 
continuous if    f-1(V) is T*123- pre closed in X whenever V is T*123-closed in Y. 
 
Example 3.6.2: Let X  = {a, b, c} with topologies T1 = {X,Φ , {a},{a, b}}, T2 = {X,Φ ,{b},{c}, {b, c}}, T3={X,Φ , 
{c},{a, c}} and Y = {1,2,3} with topologies σ 1 = {Y,Φ , {1},{1,2}}, σ 2 = {X,Φ ,{2},{3},{2,3}}, σ 3={X,Φ , 
{3},{2,3}} and  let f: X→Y be a function defined as f(a) = 1, f(b) = 2, f(c) = 3. Here T*123-closed sets in Y are {2} 
and {1, 2}. Then the inverse images of these sets are {b}, {a, b} and they are T*123- pre closed in X. Hence f is T*123-
pre continuous. 
 
Theorem 3.6.3: Every T*123-continuous function is T*123-pre continuous. 
 
Proof: Let f: X→Y be T*123-continuous. i.e., f-1(V) is T*123- closed in X, whenever V is T*123-closed in Y. By 
Theorem 3.3.3, every T*123-closed set is T*123-pre closed, and hence f-1(V) is T*123- pre closed in X whenever V is 
closed in Y. Hence f: X→Y be T*123-pre continuous. 
 
Remark 3.6.4: Converse of above Theorem need not be true.  
 
Example 3.6.5: Let X ={a, b, c} with topologies T1={X,Φ , {a},{a, b}}, T2={X,Φ ,{b},{c}, {b, c}}, T3={X,Φ , 
{c},{a, c}} and Y={1,2,3} with topologies σ 1={Y,Φ , {1},{1,2}}, σ 2= {X,Φ ,{2},{3},{2,3}}, σ 3={X,Φ , 
{3},{2,3}} and  let f: X→Y be a function defined as f(a) = 2, f(b) = 1, f(c) = 1. Here f is T*123-pre continuous but not 
T*123-continuous. For {2} is T*123-closed in Y, f-1({2}) = {a} is T*123-pre closed in X, but not T*123-closed in X. 
 
Definition 3.6.6: Let (X, T1, T2, T3) and (Y,σ 1,σ 2,σ 3) be two T*123-topological space, then f: X→Y is T*123-semi 
continuous if  f-1(V) is T*123- semi closed in X whenever V is closed in Y. 
 
Example 3.6.7: Let X  = {a, b, c} with topologies T1 = {X,Φ , {a},{a, b}}, T2 = {X,Φ ,{b},{c}, {b, c}}, T3={X,Φ , 
{c},{a, c}} and Y={1,2,3} with topologies σ 1={Y,Φ , {1},{1,2}}, σ 2= {X,Φ ,{2},{3},{2,3}}, σ 3={X,Φ , 
{3},{2,3}} and  let f: X→Y be a function defined as f(a) = 1, f(b) = 2, f(c) = 3. Here T*123-closed sets in Y are {2} 
and {1,2}. Then the inverse images of these sets are {b}, {a, b} and they are T*123- semi closed in X. Hence f is T*123-
semi continuous.   
 
Theorem 3.6.8: Every T*123-continuous function is T*123-semi continuous. 
 
Proof: Let f: X→Y be T*123-continuous. i.e.,f-1(V) is T*123- closed in X, whenever V is T*123-closed in Y. By 
Theorem 3.4.3 (ii), every T*123-closed set is T*123-semi closed. This implies that f-1(V) is T*123- semi closed in X 
whenever V is closed in Y.  Hence f: X→Y be T*123-semi continuous. 
 
Remark 3.6.9: Converse of above Theorem need not be true. 
 
Example 3.6.10: Let X  ={a, b, c} with topologies T1={X,Φ , {a},{a, b}}, T2= {X,Φ ,{b},{c}, {b, c}}, T3={X,Φ , 
{c},{a, c}}and Y={1,2,3} with topologies σ 1={Y,Φ , {1},{1,2}}, σ 2= {X,Φ ,{2},{3},{2,3}}, σ 3={X,Φ , 
{3},{2,3}} and  let f: X→Y be a function defined as f(a) = 2, f(b) = 1, f(c) = 1. Here f  is T*123-semi continuous but 
not T*123-continuous, since {2} is T*123-closed in Y, f-1({2}) = {a} is T*123-semi closed in X, but not T*123-closed in X. 
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