ON W_I^g-CONTINUOUS AND W_{I^*g}-CONTINUOUS FUNCTIONS IN IDEAL TOPOLOGICAL SPACES

B. MAHESWARI*, A. REVATHI

Assistant Professor,
Department of Mathematics,
SVS College of Engineering, Coimbatore, Tamil Nadu, India.

(Received On: 12-07-16; Revised & Accepted On: 23-09-16)

ABSTRACT

In this paper we introduce and study the notions of W_I^g-continuous and W_{I^*g}-continuous, W_I^g-irresolute and W_{I^*g}-irresolute in ideal topological spaces, and also we studied their properties.

Keywords: W_I^g-closed, W_{I^*g}-closed, W_I^g-continuous, W_{I^*g}-continuous, W_I^g-irresolute, W_{I^*g}-irresolute.

1. INTRODUCTION AND PRELIMINARIES

Ideals in topological spaces have been considered since 1930. In 1990, Jankovic and Hamlett [2] once again investigated applications of topological ideals. The notion of I^g-closed sets was first by Dontchev et.al [1] in 1999. Navaneethakrishnan and Joseph [3] further investigated and characterized I^g-closed sets and I^g-open sets by the use of local functions. The notion of I^g_{*}-closed sets was introduced by Ravi. et.al [4] in 2013. Recently the notion of W_I^g-closed sets and W_{I^*g}-closed sets was introduced and investigated by Maragathamvali.et.al [5]. In this paper, we introduce the notions of W_I^g-continuous and W_{I^*g}-continuous functions in ideal topological spaces.

An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties. (1) $A \in I$ and $B \subseteq A$ implies $B \in I$, (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I). For a subset $A \subseteq X$, $A^*(I, \tau) = \{x \in X: A \cap U \not\in I \text{ for every } U \in \tau (X, x)\}$ is called the local function of A with respect to I and τ [6]. We simply write A^* in case there is no chance for confusion. A Kuratowski closure operator $cl^*(\cdot)$ for a topology $\tau^*(I, \tau)$ called the *-topology, finer than τ is defined $cl^*(A) = A \cup A^*$ [7]. If $A \subseteq X$, $cl(A)$ and int(A) will respectively, denote the closure and interior of A in (X, τ).

Definition 1.1: A subset A of a topological space (X, τ) is called
1. g-closed [8], if $cl (A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
2. g^*-closed [9], if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in (X, τ).
3. g-closed [4], if $A^* \subseteq U$ whenever $A \subseteq U$ and U is g^*-open in (X, τ).

Definition 1.2: A subset A of a topological space (X, τ) is called
1. I^g-closed [3], if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open in X.
2. I^g-closed [10], if $A^* \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
3. W_I^g-closed [5], if $int(A^*) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
4. W_{I^*g}-closed [5], if $int(A^*) \subseteq U$ whenever $A \subseteq U$ and U is g^*-open in X.

Definition 1.3: A function $f:(X, \tau, I) \rightarrow (Y, \sigma)$ is said to be
1. g-continuous [11], if for every open set $V \subseteq \sigma$, $f^{-1}(V)$ is g-open in (X, τ).
2. g^*-continuous [9], if for every open set $V \subseteq \sigma$, $f^{-1}(V)$ is g^*-open in (X, τ).
Definition 1.4: A function \(f: (X, \tau, I) \rightarrow (Y, \sigma) \) is said to be \(I_g \)-continuous [12], if \(f^{-1}(V) \) is \(I_g \)-closed in \((X, \tau, I) \) for every closed set \(V \) in \((Y, \sigma) \).

2. \(wI_g \)-CONTINUOUS AND \(wI_{g*} \)-CONTINUOUS

Definition 2.1: A function \(f: (X, \tau, I) \rightarrow (Y, \sigma) \) is said to be
1. weakly \(I_g \)-continuous (briefly \(wI_g \)-continuous) if \(f^{-1}(V) \) is weakly \(I_g \)-closed set in \((X, \tau, I) \) for every closed set \(V \) in \((Y, \sigma) \).
2. weakly \(I_{g*} \)-continuous (briefly \(wI_{g*} \)-continuous) if \(f^{-1}(V) \) is weakly \(I_{g*} \)-closed set in \((X, \tau, I) \) for every closed set \(V \) in \((Y, \sigma) \).

Definition 2.2: A function \(f: (X, \tau, I_1) \rightarrow (Y, \sigma, I_2) \) is said to be
(i) \(wI_g \)-irresolute if \(f^{-1}(V) \) is \(wI_g \)-closed in \((X, \tau, I_1) \) for every \(wI_g \)-closed set \(V \) in \((Y, \sigma, I_2) \).
(ii) \(wI_{g*} \)-irresolute if \(f^{-1}(V) \) is \(wI_{g*} \)-closed in \((X, \tau, I_1) \) for every \(wI_{g*} \)-closed set \(V \) in \((Y, \sigma, I_2) \).

Theorem 2.3: Every continuous function is \(wI_g \)-continuous.

Proof: Let \(f \) be an continuous function and let \(V \) be a closed set in \((Y, \sigma) \). Then \(f^{-1}(V) \) is closed set in \((X, \tau, I) \). Since every closed set is \(wI_g \)-closed. Hence \(f^{-1}(V) \) is \(wI_g \)-closed set in \((X, \tau, I) \). Therefore \(f \) is \(wI_g \)-continuous.

Example 2.4: Let \(X = Y = \{a, b, c\} \), \(\tau = \{\varphi, \{b\}, \{b, c\}\} \), \(\sigma = \{\varphi, \{c\}\} \) and \(I = \{\varphi, \{b\}\} \). Let the function \(f(X, \tau, I) \rightarrow (Y, \sigma) \) be the identity function. Then the function \(f \) is \(wI_g \)-continuous but not continuous.

Theorem 2.5: Every continuous function is \(wI_{g*} \)-continuous.

Proof: Let \(f \) be an continuous function and let \(V \) be a closed set in \((Y, \sigma) \). Then \(f^{-1}(V) \) is closed set in \((X, \tau, I) \). Since every closed set is \(wI_{g*} \)-closed. Hence \(f^{-1}(V) \) is \(wI_{g*} \)-closed set in \((X, \tau, I) \). Therefore \(f \) is \(wI_{g*} \)-continuous.

Example 2.6: Let \(X = Y = \{a, b, c\} \), \(\tau = \{\varphi, \{b\}, \{b, c\}\} \), \(\sigma = \{\varphi, \{c\}\} \) and \(I = \{\varphi, \{b\}\} \). Let the function \(f(X, \tau, I) \rightarrow (Y, \sigma) \) be the identity function. Then the function \(f \) is \(wI_{g*} \)-continuous but not continuous.

Theorem 2.7: Every \(I_g \)-continuous function is \(wI_{g*} \)-continuous.

Proof: Let \(f \) be an \(I_g \)-continuous function and let \(V \) be a closed set in \((Y, \sigma) \). Then \(f^{-1}(V) \) is \(I_g \)-closed set in \((X, \tau, I) \). Since every \(I_g \)-closed set is \(wI_{g*} \)-closed. Hence \(f^{-1}(V) \) is \(wI_{g*} \)-closed set in \((X, \tau, I) \). Therefore \(f \) is \(wI_{g*} \)-continuous.

Example 2.8: Let \(X = Y = \{a, b, c, d\} \), \(\tau = \{\varphi, \{a, b\}, \{a, b, c\}\} \), \(\sigma = \{\varphi, \{a, b\}, \{a\}\} \) and \(I = \{\varphi, \{a\}\} \). Let the function \(f(X, \tau, I) \rightarrow (Y, \sigma) \) be defined by \(f(a) = b, f(b) = c, f(c) = a, f(d) = d \). Then the function \(f \) is \(wI_{g*} \)-continuous but not \(I_g \)-continuous.

Theorem 2.9: Every \(g* \)-continuous function is \(wI_{g*} \)-continuous.

Proof: Let \(f \) be an \(g* \)-continuous function and let \(V \) be a closed set in \((Y, \sigma) \). Then \(f^{-1}(V) \) is \(g* \)-closed set in \((X, \tau, I) \). Since every \(g* \)-closed set is \(wI_{g*} \)-closed set. Hence \(f^{-1}(V) \) is \(wI_{g*} \)-closed set in \((X, \tau, I) \). Therefore \(f \) is \(wI_{g*} \)-continuous.

Example 2.10: Let \(X = Y = \{a, b, c, d\} \), \(\tau = \{\varphi, \{b\}, \{a, b, c\}\} \), \(\sigma = \{\varphi, \{c\}\} \) and \(I = \{\varphi, \{c\}\} \). Let the function \(f(X, \tau, I) \rightarrow (Y, \sigma) \) be the identity function. Then the function \(f \) is \(wI_{g*} \)-continuous but not \(g* \)-continuous.

Theorem 2.11: Every \(g \)-continuous function is \(wI_{g*} \)-continuous.

Proof: Let \(f \) be an \(g \)-continuous function and let \(V \) be a closed set in \((Y, \sigma) \). Then \(f^{-1}(V) \) is \(g \)-closed set in \((X, \tau, I) \). Since every \(g \)-closed set is \(wI_{g*} \)-closed set. Hence \(f^{-1}(V) \) is \(wI_{g*} \)-closed set in \((X, \tau, I) \). Therefore \(f \) is \(wI_{g*} \)-continuous.

Example 2.12: Let \(X = Y = \{a, b, c, d\} \), \(\tau = \{\varphi, \{b\}, \{c\}\} \), \(\sigma = \{\varphi, \{c\}\} \) and \(I = \{\varphi, \{b\}\} \). Let the function \(f(X, \tau, I) \rightarrow (Y, \sigma) \) be the identity function. Then the function \(f \) is \(wI_{g*} \)-continuous but not \(g \)-continuous.
Theorem 2.13: Every \(I_g \)-continuous function is \(wI_g \)-continuous.

Proof: Let \(f \) be an \(wI_g \)-continuous function and let \(V \) be a closed set in \((Y, \sigma)\). Then \(f^{-1}(V) \) is \(wI_g \)-closed set in \((X, \tau, I)\). Since every \(wI_g \)-closed set is \(wI_g \)-closed, hence \(f^{-1}(V) \) is \(wI_g \)-closed set in \((X, \tau, I)\). Therefore \(f \) is \(wI_g \)-continuous.

Example 2.14: Let \(X = Y = \{a, b, c, d\} \), \(\tau = \{\varnothing, \{a,b\}, \{c,d\}, X\} \), \(\sigma = \{\varnothing, \{c,d\}, Y\} \) and \(I = \{\varnothing, \{d\}\} \). Let the function \(f: (X, \tau, I) \rightarrow (Y, \sigma) \) be the identity function. Then the function \(f \) is \(wI_g \)-continuous but not \(I_g \)-continuous.

Theorem 2.15: Every \(g \)-continuous function is \(wI_g \)-continuous.

Proof: Let \(f \) be a \(g \)-continuous function and let \(V \) be a closed set in \((Y, \sigma)\), then \(f^{-1}(V) \) is \(g \)-closed set in \((X, \tau, I)\). Since every \(g \)-closed set is \(wI_g \)-closed set. Hence \(f^{-1}(V) \) is \(wI_g \)-closed set in \((X, \tau, I)\). Therefore \(f \) is \(wI_g \)-continuous.

Example 2.16: Let \(X = Y = \{a, b, c, d\} \), \(\tau = \{\varnothing, \{a,b\}, \{a,b,c\}, X\} \), \(\sigma = \{\varnothing, \{d\}, \{c,d\}, Y\} \) and \(I = \{\varnothing, \{a\}\} \). Let the function \(f: (X, \tau, I) \rightarrow (Y, \sigma) \) be the identity function. Then the function \(f \) is \(wI_g \)-continuous but not \(g \)-continuous.

Theorem 2.17: Every \(I_g \)-continuous function is \(wI_g \)-continuous.

Proof: Let \(f \) be an \(I_g \)-continuous function and let \(V \) be a closed set in \((Y, \sigma)\), then \(f^{-1}(V) \) is \(I_g \)-closed set in \((X, \tau, I)\). Since every \(I_g \)-closed set is \(wI_g \)-closed set. Hence \(f^{-1}(V) \) is \(wI_g \)-closed set in \((X, \tau, I)\). Therefore \(f \) is \(wI_g \)-continuous.

Example 2.18: In example 2.17, let the function \(f: (X, \tau, I) \rightarrow (Y, \sigma) \) be the identity function. Then the function \(f \) is \(wI_g \)-continuous but not \(I_g \)-continuous.

Theorem 2.19: Every \(I_g \)-continuous function is \(wI_g \)-continuous.

Proof: Let \(f \) be an \(I_g \)-continuous function and let \(V \) be a closed set in \((Y, \sigma)\). Then \(f^{-1}(V) \) is \(I_g \)-closed set in \((X, \tau, I)\). Since every \(I_g \)-closed set is \(wI_g \)-closed set. Hence \(f^{-1}(V) \) is \(wI_g \)-closed set in \((X, \tau, I)\). Therefore \(f \) is \(wI_g \)-continuous.

Example 2.20: Let \(X = Y = \{a, b, c, d\} \), \(\tau = \{\varnothing, \{b\}, \{a,b,c\}, X\} \), \(\sigma = \{\varnothing, \{a\}, \{a,c,d\}, Y\} \) and \(I = \{\varnothing, \{d\}\} \). Let the function \(f: (X, \tau, I) \rightarrow (Y, \sigma) \) be the identity function. Then the function \(f \) is \(wI_g \)-continuous but not \(I_g \)-continuous.

Theorem 2.21: Every \(wI_g \)-continuous function is \(wI_g \)-continuous.

Proof: Let \(f \) be a \(wI_g \)-continuous function and let \(V \) be a closed set in \((Y, \sigma)\). Then \(f^{-1}(V) \) is \(wI_g \)-closed set in \((X, \tau, I)\). Since every \(wI_g \)-closed set is \(wI_g \)-closed. Hence \(f^{-1}(V) \) is \(wI_g \)-closed set in \((X, \tau, I)\). Therefore \(f \) is \(wI_g \)-continuous.

Example 2.22: Let \(X = Y = \{a, b, c, d\} \), \(\tau = \{\varnothing, \{d\}, \{a, b, c\}, X\} \), \(\sigma = \{\varnothing, \{a\}, \{a\}, Y\} \) and \(I = \{\varnothing, \{b\}\} \). Let the function \(f: (X, \tau, I) \rightarrow (Y, \sigma) \) be the identity function. Then the function \(f \) is \(wI_g \)-continuous but not \(wI_g \)-continuous.

Theorem 2.23: A map \(f: (X, \tau, I) \rightarrow (Y, \sigma) \) is \(wI_g \)-continuous iff the inverse image of every closed set in \((Y, \sigma)\) is \(wI_g \)-closed in \((X, \tau, I)\).

Proof: Necessary: Let \(v \) be an open set in \((Y, \sigma)\). Since \(f \) is \(wI_g \)-continuous, \(f^{-1}(v^c) \) is \(wI_g \)-closed in \((X, \tau, I)\). But \(f^{-1}(v^c) = X - f^{-1}(v) \). Hence \(f^{-1}(v) \) is \(wI_g \)-closed in \((X, \tau, I)\).

Sufficiency: Assume that the inverse image of every closed set in \((Y, \sigma)\) is \(wI_g \)-closed in \((X, \tau, I)\). Let \(v \) be a closed set in \((Y, \sigma)\). By our assumption \(f^{-1}(v^c) = X - f^{-1}(v) \) is \(wI_g \)-closed in \((X, \tau, I)\), which implies that \(f^{-1}(v) \) is \(wI_g \)-closed in \((X, \tau, I)\). Hence \(f \) is \(wI_g \)-continuous.

Remark 2.24:
(i) The union of any two \(wI_g \)-continuous function is \(wI_g \)-continuous.
(ii) The intersection of any two \(wI_g \)-continuous function is need not be \(wI_g \)-continuous.
Theorem 2.25: Let \(f: (X, \tau, I_1) \rightarrow (Y, \sigma, I_2) \) and \(g: (Y, \sigma, I_2) \rightarrow (Z, \eta, I_3) \) be any two functions. Then the following hold.

(i) \(g \circ f \) is \(\textit{w} \)-continuous if \(f \) is \(\textit{w} \)-continuous and \(g \) is continuous.

(ii) \(g \circ f \) is \(\textit{w} \)-irresolute if \(f \) is \(\textit{w} \)-irresolute and \(g \) is \(\textit{w} \)-continuous.

(iii) \(g \circ f \) is \(\textit{w} \)-irresolute if \(f \) is \(\textit{w} \)-irresolute and \(g \) is irresolute.

Proof:

(i) Let \(v \) be a closed set in \(Z \). Since \(g \) is continuous, \(g^{-1}(v) \) is closed in \(Y \). \(\textit{w} \)-continuous of \(f \) implies, \(f^{-1}(g^{-1}(v)) \) is \(\textit{w} \)-closed in \(X \) and hence \(g \circ f \) is \(\textit{w} \)-continuous.

(ii) Let \(v \) be a closed set in \(Z \). Since \(g \) is \(\textit{w} \)-continuous, \(g^{-1}(v) \) is \(\textit{w} \)-closed in \(Y \). Since \(f \) is \(\textit{w} \)-irresolute, \(f^{-1}(g^{-1}(v)) \) is \(\textit{w} \)-closed in \(X \). Hence \(g \circ f \) is \(\textit{w} \)-continuous.

(iii) Let \(v \) be a \(\textit{w} \)-closed set in \(Z \). Since \(g \) is \(\textit{w} \)-irresolute, \(g^{-1}(v) \) is \(\textit{w} \)-closed in \(Y \). Since \(f \) is \(\textit{w} \)-irresolute, \(f^{-1}(g^{-1}(v)) \) is \(\textit{w} \)-closed in \(X \). Hence \(g \circ f \) is \(\textit{w} \)-irresolute.

Theorem 2.26: Let \(X=A \cup B \) be a topological space with topology \(\tau \) and \(Y \) be a topological space with topology \(\sigma \). Let \(f: (A, \tau, I_1) \rightarrow (Y, \sigma, I_2) \) and \(g: (B, \tau/B) \rightarrow (Y, \sigma, I_2) \) be \(\textit{w} \)-continuous maps such that \(f(x)=g(x) \) for every \(x \in A \cap B \). Suppose that \(A \) and \(B \) are \(\textit{w} \)-closed sets in \(X \). Then the combination \(\alpha: (X, \tau, I_1) \rightarrow (Y, \sigma) \) is \(\textit{w} \)-continuous.

Proof: Let \(F \) be any closed set in \(Y \). Clearly \(\alpha^{-1}(F)=f^{-1}(F) \cup g^{-1}(F) = \text{CUD} \) where \(C = f^{-1}(F) \) and \(D = g^{-1}(F) \). But \(C \) is \(\textit{w} \)-closed in \(A \) and \(B \) is \(\textit{w} \)-closed in \(X \). Hence \(\alpha \) is \(\textit{w} \)-continuous.

Theorem 2.27: A map \(f: (X, \tau, I_1) \rightarrow (Y, \sigma) \) is \(\textit{w} \)-continuous iff the inverse image of every closed set in \((Y, \sigma) \) is \(\textit{w} \)-closed in \((X, \tau, I_1) \).

Proof: Necessary: Let \(v \) be an open set in \((Y, \sigma) \). Since \(f \) is \(\textit{w} \)-continuous, \(f^{-1}(v) \) is \(\textit{w} \)-closed in \((X, \tau, I_1) \). But \(f^{-1}(v) = X - f^{-1}(c) \). Hence \(f^{-1}(v) \) is \(\textit{w} \)-closed in \((X, \tau, I_1) \).

Sufficiency: Assume that the inverse image of every closed set in \((Y, \sigma) \) is \(\textit{w} \)-closed in \((X, \tau, I_1) \). Let \(v \) be a closed set in \((Y, \sigma) \). By our assumption \(f^{-1}(v) \) is \(\textit{w} \)-closed in \((X, \tau, I_1) \), which implies that \(f^{-1}(v) \) is \(\textit{w} \)-closed in \((X, \tau, I_1) \). Hence \(f \) is \(\textit{w} \)-continuous.

Remark 2.28:

(i) The union of any two \(\textit{w} \)-continuous functions is \(\textit{w} \)-continuous.

(ii) The intersection of any two \(\textit{w} \)-continuous functions need not be \(\textit{w} \)-continuous.

Theorem 2.29: Let \(f: (X, \tau, I_1) \rightarrow (Y, \sigma, I_2) \) and \(g: (Y, \sigma, I_2) \rightarrow (Z, \eta, I_3) \) be any two functions. Then the following hold.

(i) \(g \circ f \) is \(\textit{w} \)-continuous if \(f \) is \(\textit{w} \)-continuous and \(g \) is continuous.

(ii) \(g \circ f \) is \(\textit{w} \)-continuous if \(f \) is \(\textit{w} \)-continuous and \(g \) is \(\textit{w} \)-continuous.

(iii) \(g \circ f \) is \(\textit{w} \)-irresolute if \(f \) is \(\textit{w} \)-irresolute and \(g \) is irresolute.

Proof:

(i) Let \(v \) be a closed set in \(Z \). Since \(g \) is continuous, \(g^{-1}(v) \) is closed in \(Y \). \(\textit{w} \)-continuous of \(f \) implies, \(f^{-1}(g^{-1}(v)) \) is \(\textit{w} \)-closed in \(X \) and hence \(g \circ f \) is \(\textit{w} \)-continuous.

(ii) Let \(v \) be a closed set in \(Z \). Since \(g \) is \(\textit{w} \)-continuous, \(g^{-1}(v) \) is \(\textit{w} \)-closed in \(Y \). Since \(f \) is \(\textit{w} \)-irresolute, \(f^{-1}(g^{-1}(v)) \) is \(\textit{w} \)-closed in \(X \). Hence \(g \circ f \) is \(\textit{w} \)-continuous.

(iii) Let \(v \) be a \(\textit{w} \)-closed set in \(Z \). Since \(g \) is \(\textit{w} \)-irresolute, \(g^{-1}(v) \) is \(\textit{w} \)-closed in \(Y \). Since \(f \) is \(\textit{w} \)-irresolute, \(f^{-1}(g^{-1}(v)) \) is \(\textit{w} \)-closed in \(X \). Hence \(g \circ f \) is \(\textit{w} \)-irresolute.

Theorem 2.30: Let \(X=A \cup B \) be a topological space with topology \(\tau \) and \(Y \) be a topological space with topology \(\sigma \). Let \(f: (A, \tau, I_1) \rightarrow (Y, \sigma, I_2) \) and \(g: (B, \tau/B) \rightarrow (Y, \sigma, I_2) \) be \(\textit{w} \)-continuous maps such that \(f(x)=g(x) \) for every \(x \in A \cap B \). Suppose that \(A \) and \(B \) are \(\textit{w} \)-closed sets in \(X \). Then the combination \(\alpha: (X, \tau, I_1) \rightarrow (Y, \sigma, I_2) \) is \(\textit{w} \)-continuous.

Proof: Let \(F \) be any closed set in \(Y \). Clearly \(\alpha^{-1}(F)=f^{-1}(F) \cup g^{-1}(F) = \text{CUD} \) where \(C = f^{-1}(F) \) and \(D = g^{-1}(F) \). But \(C \) is \(\textit{w} \)-closed in \(A \) and \(B \) is \(\textit{w} \)-closed in \(X \). Hence \(\alpha \) is \(\textit{w} \)-continuous.

© 2016, IJMA. All Rights Reserved
REFERENCES

5. Maragathavalli, S., Suresh, N., and Revathi, A. Weakly I#-closed sets and weakly I,*g-closed sets in ideal topological spaces.

Source of support: Nil, Conflict of interest: None Declared

[Copyright © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]