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ABSTRACT 
In this paper, the weighted averaging operator from Renyi’s, Daroczy’s and R-norm entropies, vague fuzzy weighted 
averaging operator and vague fuzzy hyprid weighted averaging operator for vague sets are proposed. Also a general 
model for decision making utilising these operators is proposed for vague sets together with a new distance function 
defined based on the distance functions from the literature. 
 
 
INTRODUCTION 
 
Some values of the multi attribute decision models are often subjective. The weights of the criteria and the scoring 
values of the alternatives against the subjective (judgmental) criteria contain always some uncertainties. It is therefore 
an important question how the final ranking or the ranking values of the alternatives is sensitive to the changes of some 
input parameters of the decision model. The simplest case is when the value of the weight of a single criterion is 
allowed to vary. For additive multi attribute models, the ranking values of the alternatives are simple linear functions of 
this single variable and attractive graphical tools can be applied to present a simple sensitivity analysis to a user.  
 
For a wide class of multi attribute decision models there are different methods to determine the stability intervals or 
regions for the weights of different criteria. These consist of the values that the weights of one or more criteria can take 
without altering the results given by the initial set of weights, all other weights being kept constant. There are proposed 
linear programming models to find the minimum modification of the weights required to make a certain alternative 
ranked first. Models are presented as an approach of a more complex sensitivity analysis with the change of the scores 
of the alternatives against the criteria, as well.  
 
SECTION-1: PREVIOUS WORKS 
 
Since the theory of fuzzy sets was proposed in 1965, it has been applied in many uncertain information processing 
problems successfully, since in the real world there is vague information about different applications.  Gau & Buehrer 
[1994] pointed out the drawback of using the single membership value in fuzzy set theory. In order to tackle this 
problem, they proposed the notion of vague sets (VSs), which allow using interval-based membership instead of using 
point-based membership as in FSs.  
 
The interval-based membership generalization in VSs is more expressive in capturing vagueness of data. However, VSs 
are shown to be equivalent to that of IFSs. For this reason, the interesting features for handling vague data that are 
unique to VSs are largely ignored. Atanasov [1986, 1989] proposed Intuition fuzzy set theory. Gau & Buehrer [1994] 
proposed the concept of vague set.  
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Bustince & Burillo [1996] proposed that the vague set was intuitionistic fuzzy sets and unified the intuition fuzzy set 
and the vague set. As the vague set took the membership degree, non-membership degree and hesitancy degree into 
account, and has more ability to deal with uncertain information than traditional fuzzy set, lots of scholars pay 
attentions to the research of vague set. Atanassov & Gargov [1989] extended the intuition vague set and proposed the 
concept of interval intuition vague set, also named interval vague set.  
 
A vague set (VS), as well as an intuitionistic fuzzy set (IFS), is a further generalization of an fuzzy set. Instead of using 
point-based membership as in FSs, interval-based membership is used in a VS. The interval-based membership in VSs 
is more expressive in capturing vagueness of data. In the literature, the notions of IFSs and VSs are regarded as 
equivalent, in the sense that an IFS is isomorphic to a VS.  
 
Furthermore, due to such equivalence and IFSs being earlier known as a tradition, the interesting features for handling 
vague data that are unique to VSs are largely ignored. Decision-making is the process of finding the best option from 
all of the feasible alternatives. Sometimes, decision-making problems considering several criteria are called multi-
criteria decision-making (MCDM) problems.  
 
The MCDM problems may be divided into two kinds. One is the classical MCDM problems, among which the ratings 
and the weights of criteria are measured in crisp numbers. Another is the fuzzy multiple criteria decision-making 
(FMCDM) problems, among which the ratings and the weights of criteria evaluated on imprecision and vagueness are 
usually expressed by linguistic terms, fuzzy numbers or intuition fuzzy numbers.  
 
A MAGDM problem is to find a desirable solution from a finite number of feasible alternatives assessed on multiple 
attributes, both quantitative and qualitative. In order to choose a desirable solution, the decision maker often provides 
his/her preference information which takes the form of numerical values, such as exact values, interval number values 
and fuzzy numbers. However, under many conditions, numerical values are inadequate or insufficient to model real-life 
decision problems. Indeed, human judgments including preference information may be stated in vague information. 
Hence, MAGDM problems under vague environment is an interesting area of study for researchers in the recent days. 

 
Different types of aggregation operators are found in the literature for aggregating the information. A very common 
aggregation method is the ordered weighted averaging (OWA) operator. It provides a parameterized family of 
aggregation operators that includes as special cases the maximum, the minimum and the average criteria. Since its 
appearance, the OWA operator has been used in a wide range of applications. Induced intuitionistic fuzzy operators are 
already in the literature.  
 
SECTION-2: DISTANCES BETWEEN VAGUE SETS  
 
In conventional fuzzy set a membership function assigns to each element of the universe of discourse a number from 
the unit interval to indicate the degree of belongingness to he set under consideration. The degree of non-belongingness 
is just automatically the complements to 1 of the membership degree. However, a human being who expresses the 
degree of membership of given element in a fuzzy set very often does not express corresponding degree of non-
membership as the complement to 1. This reflects a well-known psychological fact that the linguistic negation not 
always identifies with logical negation.  
 
Thus Atanassov [1986] introduced the concept of an intuitionistic fuzzy set which is characterized by two functions 
expressing the degree of belongingness and the degree of non-belongingness, respectively. This idea, which is a natural 
generalization of usual fuzzy set, seems to be useful in modeling many real life situations, like negotiation processes, 
etc. 
 
Atanasov [1999] and Szmidt & Kacprzyk [2003] suggested some methods for measuring distances between 
intuitionistic fuzzy sets that are generalizations of the well-known Hamming distance, Euclidean distance and their 
normalized counterparts, also in the present paper we propose another generalization of those distances based on the 
Hausdorff metric is given. 
 
Since Zadeh has introduced fuzzy sets in 1965, many new approaches and theories treating imprecision and uncertainty 
have been proposed. Some of these theories, like intuitionistic fuzzy sets theory, are extensions of the classical fuzzy 
set theory. Another, well-known generalization of an ordinary fuzzy set is, the so-called, interval-valued fuzzy set. 
Therefore, one may easily notice that our definition of the distances between intuitionistic fuzzy sets, based on the 
Hausdorff metric, could be immediately expressed in terms of interval-valued fuzzy sets. 
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Definition 2.1: Let ( ) ( )( ), ( ) , ( ), ( )A i A i B i B iA t x f x B t x f x= =  be two vague values. Then the Euclidean distance 
between A and B is given as follows:        

2 2

1

1( , ) ( ( ) ( )) ((1 ( )) (1 ( )))
2

n

A i B i A i B i
i

d A B t x t x f x f x
=

 = − + − − − ∑  

 
SECTION-3: THE VWA OPERATOR FOR GROUP DECISION MAKING  
 
MAGDM with vague theory: Multi Attribute Group Decision Making (MAGDM) problems are wide spread in real life 
situations.  A MAGDM problem is to find a desirable solution from a finite number of feasible alternatives assessed on 
multiple attributes, both quantitative and qualitative. To choose a desirable solution, the decision maker often provides 
his/her preferred information in the form of numerical values, such as exact values, interval number values and fuzzy 
numbers.   
 
However, under many conditions, numerical values are inadequate or insufficient to model real-life decision problems.  
Indeed, human judgments including preference information may be stated in intuitionistic fuzzy information. Hence, 
MAGDM problems under intuitionistic fuzzy environment are an interesting area of study for researchers recently.   
 
Processing of MAGDM problems with intuitionistic fuzzy information or vague fuzzy information, sometimes, leads to 
attribute values taking the form of intuitionistic or vague fuzzy number, respectively. The information about attribute 
weights may sometimes be known, partially known or be completely unknown. MAGDM problems are assumed to 
have a predetermined, limited number of decision alternatives.   
 
Solving a MAGDM problem involves sorting and ranking, and can be viewed as an alternative method for combining 
information in a problem’s decision matrix together with additional information from the decision maker to determine a 
final ranking or selection from the alternatives.  Besides the information contained in the decision matrix, all but the 
simplest MAGDM techniques require additional information from the decision matrix to arrive at a final ranking/ 
selection.   
 
Szmidt & Kacprzyk [2003] proposed some solution concepts like the intuitionistic fuzzy core and consensus winner in 
group decision making with intuitionistic fuzzy preference relations. They also developed an approach to aggregate the 
individual intuitionistic fuzzy preference relations into a social fuzzy preference relation based on fuzzy majority 
equated with a fuzzy linguistic quantifier.   
 
Szmidt & Kacprzyk [2002] introduced several distance functions and similarity measures for IFSs which were later 
used in various MAGDM problems.  They investigated MADM with intuitionistic fuzzy information and constructed 
several linear programming models to generate optimal weights for attribute. They also presented a new method for 
handling multiple attribute fuzzy decision making problems, where the characteristics of the alternatives are 
represented by intuitionistic fuzzy sets.   
 
Herrera et al. [1999] developed an aggregation process for combining numerical, interval valued and linguistic 
information, and then proposed different extensions of this process to deal with contexts where the information can 
appear as IFSs or multi-granular linguistic information.  
 
Xu &Chen [2006] developed some geometric aggregation operators for MADM problems. They developed an 
evaluation function for the decision making problem to measure the degrees to which alternatives satisfy/do not satisfy 
the decision maker’s requirement.  
 
Chen & Tan [1994] presented new techniques for handling multiple attribute fuzzy decision making problems based on 
vague set theory.  Also Hong & Choi [2000] provided some new techniques for handling multiple attribute fuzzy 
decision making problems based on vague set theory.   
 
Robinson & Amirtharaj [2001, 2012a, 2012b] Xu [2002, 2005] Szmidt & Kacprzyk [2002] and Wei & Wang [2007], 
and Yager [1988] contributed novel approaches to the field of fuzzy decision making.  
 
In this chapter, a new operator is defined the vague weighted averaging (VWA) operator for vague sets. 
 
Definition 3.1: Let 𝑎𝑎�𝑗𝑗  = (𝑡𝑡𝑗𝑗 ,  1 -𝑓𝑓𝑗𝑗 ), j = 1, , …, n be a collection of vague values, and let the vague fuzzy weighted 
averaging operator VWA is defined as: VWA: Qn→ Q ifVMAw(𝑎𝑎�1, 𝑎𝑎�2,…, 𝑎𝑎�𝑛𝑛 ) = ∑ 𝑤𝑤𝑗𝑗𝑛𝑛

𝑗𝑗=1 𝑎𝑎�𝑗𝑗   = ( 1- ∏ (1 − 𝑡𝑡𝑗𝑗 )𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗=1 , 

∏ (1 − 𝑓𝑓𝑗𝑗 )𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗=1 where the weight vector w = (w1, w2, …, wm)T of the attributes can be determined in advance. Note 

that wi>  0 for each i = 1 to n, and ∑ 𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗=1  = 1. 
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Definition 3.2: Let  ( , ), 1, 2,...,j j ja t f j n= =  be a collection of vague values, and let the vague fuzzy hybrid 

weighting average operator VHA is defined as: VHA: Qn→ QifVHAw(𝑎𝑎�1, 𝑎𝑎�2,…, 𝑎𝑎�𝑛𝑛 ) = (1- ∏ (1 − 𝑡𝑡𝑗𝑗 )𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗=1 , 1- 

∏ (1 − 𝑓𝑓𝑗𝑗 )𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗=1 where the weight vector w = (w1, w2, …, wm)T of the attributes can be determined in advance. Note 

that wi> 0 for each i = 1 to n, and ∑ 𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗=1  = 1. 

 
Definition 3.3 (Weight generating method) (Renyi’s, Daroczy’s and R-norm entropies): For an arbitrary positive 
integer n, any weighting vector w = (w1, w2, …, wn)T  is generated by the following rules.  

* 0 if 1 ,iw i r= ≤ <  

( ) ( )
( )( )

* 6 1 2 1
1 2r

n n r
w

n r n r
α− − − −

=
− + − +

   

( ) ( )
( )( )

* 2 2 2 1 6 1
1 2n

n r n
w

n r n r
α− + − −

=
− + − +

 

* * *
i r n

n i i rw w w
n r n r
− −

= +
− −   if r i n< <  

This vector w satisfies wi > 0 for each i = 1 to n, and ∑ 𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗=1  = 1. 

 
Commutativity 3.4: VMAw (𝑎𝑎�1, 𝑎𝑎�2,…, 𝑎𝑎�𝑛𝑛 ) = VMAw (𝑎𝑎1�, 𝑎𝑎2�,…, 𝑎𝑎𝑛𝑛�), where (𝑎𝑎1�, 𝑎𝑎2�,…, 𝑎𝑎𝑛𝑛�) is any permutation of             
(𝑎𝑎�1, 𝑎𝑎�2,…, 𝑎𝑎�𝑛𝑛 ). 
 

Idempotency 3.5: If VMAw (𝑎𝑎1�, 𝑎𝑎2�,…, 𝑎𝑎𝑛𝑛�),  where  ( , ), ( , )j j ja t f a t f= =  for all j,then VMAw (𝑎𝑎�1, 𝑎𝑎�2,…, 𝑎𝑎�𝑛𝑛 ) = 𝑎𝑎� 
 
Monotonicity 3.6: If 𝑎𝑎�𝑖𝑖≤𝑎𝑎�𝑖𝑖  for all i, then VMAw (𝑎𝑎�1, 𝑎𝑎�2,…, 𝑎𝑎�𝑛𝑛 ) ≤ VMAw (𝑎𝑎1�, 𝑎𝑎2�,…, 𝑎𝑎𝑛𝑛�),  
 
SECTION-4: PROPOSED MODEL OF MAGDM 
 
Assumptions 4.1: Let 1 2{ , ,..., }nA A A A=  be a set of alternatives, 1 2{ , ,..., }nG G G G=  be the set of alternatives, 

1 2( , ,..., )nω ω ω ω=  is the weighting vector of the attribute jG , j=1,2,…,n, where [0,1]jω ∈ , 
1

=1
n

j
j
ω

=
∑ . Let 

1 2{ , ,..., }tD D D D=  be the set of decision makers, 1 2( , ,..., )nV V V V=  be the weighting vector of the decision 

makers, with 
1

[0,1], 1
t

k k
k

V V
=

∈ =∑ .  

Let  ( ) ( )( ) ( ) ( ),
k k k

k ij ij ij m nm n
R r t f

××
= =     be the vague decision matrix, where ( )k

ijt  is the degree of the truth membership 

value that the alternative iA satisfies the attribute jG  given by the decision maker kD  and ( )k
ijf  is the degree of false 

membership value that the alternative for the alternative iA , where ( ) ( ), [0,1]k k
ij ijt f ⊂  and, ( ) ( ) 1k k

ij ijt f+ ≤ , i 
=1,2,…,m,  j=1,2,…,n,  and k=1,2,…,t. 
 
4.2: An algorithm for a developed model of MAGDM: 
 
Here the steps mentioned below are studied for a model of MAGDM. 
 
Algorithm: The following steps are now given: 
Step-1: Utilize the vague decision matrix Rk = (�̃�𝑟𝑖𝑖𝑗𝑗 )(𝑘𝑘)

)m×n = ((𝑡𝑡𝑖𝑖𝑗𝑗 )𝑘𝑘 , 1 - (𝑓𝑓𝑖𝑖𝑗𝑗 )𝑘𝑘 )m×n , and the FWA operator which has 
the associated weighting vector w = (w1, w2, …, wm)T generated from the definition (3.3). Let (�̃�𝑟𝑖𝑖𝑗𝑗 )k = (𝑡𝑡𝑖𝑖𝑗𝑗 k, 1 - 𝑓𝑓𝑖𝑖𝑗𝑗 k),       
i = 1, , , m; j = 1,2,.., n be a matrix of vague values for each k =1 to t. Let Rk = ( (�̃�𝑟𝑖𝑖𝑗𝑗 )(𝑘𝑘)) be the collection of t number 
of m × n matrices of each the form Rk = ((�̃�𝑟𝑖𝑖𝑗𝑗 )(𝑘𝑘)) where k = 1,2,…,t.  Then the operator FWA: [(Mm×n )k→Mm×n )]       
R1, R2,…, Rk) →R (rij) is defined by VWA ((�̃�𝑟𝑖𝑖𝑗𝑗 )(1)), (�̃�𝑟𝑖𝑖𝑗𝑗 )(2)),…, (�̃�𝑟𝑖𝑖𝑗𝑗 )(𝑘𝑘))) which is found due to the definition (3.1). 
Here 1 2V (V ,V ,...,V )t= be the weighting vector of the decision maker or generaled from the definition (3.3). 
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Step-2: Utilizing the information from the collective decision matrix R = (Cij, Dij)m×n found in the step 1. Then 
VFHWA operator R = 𝑟𝑟𝑖𝑖� = ( 𝑡𝑡𝑖𝑖 , 1- 𝑓𝑓𝑖𝑖) is defined by (1-(∏ (1 − 𝑐𝑐𝑛𝑛

𝑗𝑗=1 𝑖𝑖𝑗𝑗
)𝑤𝑤𝑗𝑗 ), 1- (∏ (1 − 𝑐𝑐𝑛𝑛

𝑗𝑗=1 𝑖𝑖𝑗𝑗
)𝑤𝑤𝑗𝑗 ), i =1,2,…,m derive the 

collective overall preference values of the alternative iA , which have weight wi in such a way that the weighting vector 
as w = (w1, w2, …, wm)T generated from the definition (3.3). 
 

Step-3: Calculate the distance between the collective overall preference values and the positive ideal vague value r
+
 , 

or the negative ideal vague value r
−
 , where r

+
 = (1,0) and   r

−
 = (0,1). Using the Euclidean distance function we can 

find the distances between the collective overall preference values ir  and the positive ideal vague value r
+
  as 

follows: 

2 2

1

1( , ) ( ( ) ( )) ((1 ( )) (1 ( )))
2 i i

n

i i i i ir rr r
i

d r r t x t x f x f x+ +

+

=

 = − + − − − ∑  

 

 

 
 
Step-4: Rank all the alternatives iA , where i = 1, 2,…,m and select the best one in accordance with the distance 
obtained in step 3. 
 
4.3 - Numerical illustration: 
 
Suppose an investment company, wanting to invest a sum of money in the best option, and there is a panel with five 
possible alternatives to invest the money;  
A1 is an IT company; A2 is a multinational company; A3 is a tools company,  
A4 is an airlines company and A5 is an automobile company.  
 
The investment company must take a decision according to the four following attributes; G1 is the risk analysis, G2 is 
the growth analysis, G3 is the socio-political impact analysis and G4 is the environmental impact analysis.   
 
The five possible alternatives iA , where i = 1, 2,…,m, are to be evaluated by three decision makers whose weighting 
vector is V = (0.12, 0.16, 0.20, 0.24, 0.28)T under the method in definition (3.3) with r = 1, α = 0.4, & n = 5, and above 
said four attributes whose weighting vector is w = (0.16, 0.22, 0.28,0.34)T, which is generated from the method in (3.3) 
with    r = 1, α = 0.4, & n = 4: 

R1 =  























)6295.0,4136.0()7119.0,6256.0()9426.0,8321.0()7983.0,6257.0(
)8215.0,6626.0()9219.0,8311.0()8912.0,7213.0()6283.0,7218.0(
)7981.0,5687.0()6216.0,5527.0()5261.0,4278.0()8011.0,5238.0(
)9442.0,7710.0()8126.0,4261.0()5413.0,6676.0()9001.0,3271.0(
)9986.0,4427.0()8312.0,6286.0()7222.0,5221.0()7256.0,4873.0(

 
 

R2 =  























)8109.0,6210.0()7182.0,4728.0()7278.0,3125.0()6217.0,5273.0(
)4110.0,2101.0()4104.0,2091.0()8001.0,5221.0()8119.0,7317.0(
)5426.0,4491.0()7101.0,5010.0()7216.0,4124.0()9105.0,5387.0(
)9105.0,6225.0()5129.0,3009.0()8108.0,6226.0()8221.0,6321.0(
)7184.0,2217.0()6221.0,1009.0()7221.0,5121.0()7846.0,4351.0(

 
 

R3 =  























)5005.0,4214.0()6121.0,2221.0()9112.0,8001.0()9113.0,7351.0(
)7217.0,5529.0()5334.0,4212.0()8148.0,7139.0()4821.0,3247.0(
)9117.0,6105.0()9211.0,7117.0()6286.0,5821.0()7287.0,5201.0(
)9005.0,7101.0()8225.0,6216.0()7815.0,6245.0()8901.0,7726.0(
)7027.0,6661.0()5221.0,2211.0()9816.0,4419.0()8279.0,3198.0(
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R4 =  























)9197.0,6217.0()8482.0,7428.0()8278.0,3125.0()9916.0,1983.0(
)7377.0,6522.0()8898.0,4494.0()9545.0,2091.0()9238.0,8112.0(
)9891.0,1553.0()8287.0,5529.0()9444.0,7227.0()4821.0,3247.0(
)9005.0,7351.0()9191.0,7317.0()8126.0,5010.0()8108.0,6321.0(
)9526.0,8421.0()8686.0,5527.0()8222.0,4575.0()9111.0,3269.0(

 

 

R5 = 























)9311.0,7513.0()7119.0,6195.0()9211.0,7711.0()6268.0,5210.0(
)9552.0,7101.0()8522.0,6261.0()9861.0,4491.0()9728.0,3198.0(
)8287.0,3125.0()8126.0,2101.0()5515.0,2091.0()9100.0,5122.0(
)7295.0,4163.0()9519.0,8311.0()7176.0,4278.0()7918.0,5218.0(
)9552.0,7717.0()8126.0,6676.0()8986.0,4427.0()8812.0,2686.0(

 

 
4.5 - Explanation: The stpes for the given algorithm are as follows: 

Step-1: Utilizing the decision information given in the matrix  ( )( )

5 4
, 1, 2,3

k
k ijR r k

×
= = , 4,5 and the VWA operator 

which has the associated weighting vector w = (0.28, 0.24, 0.2, 0.16, 0.12)T a collective decision matrix  ( )( )

5 4

k
k ijR r

×
= 

 
is obtained as follows: 

R =  























)7115.0,5570.0()7118.0,5562.0()8594.0,6829.0()7763.0,5702.0(
)6785.0,5680.0()6702.0,5841.0()8729.0,5392.0()7103.0,6554.0(
)7767.0,4723.0()7507.0,5497.0()6887.0,4994.0()7588.0,4980.0(
)8921.0,6901.0()7582.0,5777.0()7085.0,6001.0()8510.0,5917.0(
)8490.0,5999.0()7095.0,4587.0()8048,0,4850.0()8059.0,3948.0(

 

 
Step-2: Utilizing the VFHWA operator, the collective overall preference values of the alternatives iA  j = 1, 2,…, 5 are 
found mentioned below: 
 
Using the weighting vector w = (0.34, 0.28, 0.22, 0.16), 

𝑟𝑟1�= (0.4718, 0.7960); 
𝑟𝑟2�= (0.6087, 0.8101); 
𝑟𝑟3�= (0.5064, 0.7423); 
𝑟𝑟4�= (0.5961, 0.7594); 
𝑟𝑟5�= (0.6006, 0.7837); 

 

Step-3:  Calculating the distances between the collective overall preference values ir  and the positive ideal vague 
value �̃�𝑟 = (1, 0).The distances calculated from the following distance function: 

d (�̃�𝑟𝑖𝑖 , �̃�𝑟) = �1
2
∑ �(𝑡𝑡𝑟𝑟𝑖𝑖� − 𝑡𝑡𝑟𝑟̃)2 + ((1 − 𝑓𝑓𝑟𝑟𝑖𝑖�) − (1 − 𝑓𝑓𝑟𝑟̃))2�𝑛𝑛
𝑖𝑖=1  

Thus  d(𝑟𝑟 ̃1, �̃�𝑟) = 0.6755 ; 
d(𝑟𝑟 ̃2 , �̃�𝑟) = 0.6361; 
d(𝑟𝑟 ̃3 ,�̃�𝑟) = 0.3937 ; 
d(𝑟𝑟 ̃4, �̃�𝑟) = 0.3324; 
d(𝑟𝑟 ̃5 ,�̃�𝑟) = 0.6219; 

 
Step-4: Rank the alternatives based on the shortest distance: A1 >A2>A5> 𝐴𝐴3 > 𝐴𝐴4  Thus A1 is the best alternative. 
Let us consider the replacing of Step-3 with the correlation coefficient proposed Robinson & Amirtharaj [2011]. Then 
the ranking order of the alternatives is obtained as follows: Thus A1 >A2>A5> 𝐴𝐴3 > 𝐴𝐴4 Thus A1 is the best alternative. 
 
From the comparison, it can be observed that there is a change in the ranking of the best alternatives. In the proposed 
method with a distance function, A1 is the best alternative, and with the replacement of step-3 in the algorithm with 
methods as proposed by Robinson & Amirtharaj [2011b], it can be seen that A1 is the best alternative.  
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