ON $\mu\psi$-CLOSED SETS IN TOPOLOGICAL SPACES

K. ALLI1, M. DHANALAKSHMI2

1Assistant professor, Department of Mathematics, The M. D. T. Hindu College, Tirunelveli, Tamil Nadu, India-627010.
2Research scholar, Department of Mathematics, The M. D. T. Hindu College, Tirunelveli, Tamil Nadu, India-627010.

(Received On: 21-09-16; Revised & Accepted On: 25-10-16)

ABSTRACT

In this paper, we introduce a new class of sets namely, $\mu\psi$-closed sets and their properties. Applying these sets, we introduce and study some seven new spaces namely, $T\mu\psi$, $\alpha T\mu\psi$, $s T\mu\psi$, $p T\mu\psi$, $spT\mu\psi$, $\mu T\mu\psi$ and $\psi T\mu\psi$-spaces and some interrelationships between these spaces.

Keywords: $\mu\psi$-closed set, $\mu\psi$-open set $T\mu\psi$, $\alpha T\mu\psi$, $s T\mu\psi$, $p T\mu\psi$, $spT\mu\psi$, $\mu T\mu\psi$ and $\psi T\mu\psi$-spaces.

2010 Mathematics Subject Classification: 54A05, 54A10, 54D10.

1. INTRODUCTION

N. Levine [4] introduced the class of g–closed sets in 1970. Andrijevic [1], N. Levine [4], Mashoor et.al [7], have respectively introduced semipre-closed sets, semi-closed sets, pre-closed sets which are some weak forms of closed sets.

M. K. R. S. Veerakumar has introduced several generalized closed sets namely, g^*-closed sets, g^*-closed sets, αg–closed sets, semi-open sets, semi-closed sets, μ–closed sets, μ–closed sets and μ–closed sets. In this paper we introduce $\mu\psi$-closed sets and applying these sets seven new spaces namely $T\mu\psi$, $\alpha T\mu\psi$, $s T\mu\psi$, $p T\mu\psi$, $spT\mu\psi$, $\mu T\mu\psi$, $\psi T\mu\psi$ are introduced.

2. PRELIMINARIES

Throughout this paper, we consider spaces on which no separation axioms are assumed unless explicitly stated. For $A \subset X$, the closure and interior of A is denoted by $cl(A)$ and $int(A)$ respectively. The complement of A is denoted by A^c, the power set of X is denoted by $P(X)$.

Definition 2.1: A subset A of a topological space (X, τ) is called

1. a pre-open set [6] if $A \subseteq int(cl(A))$ and pre-closed if $cl(int(A)) \subseteq A$.
2. a semi-open set [3] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.
3. an α-open set [7] if $A \subseteq int(cl(int(A)))$ and α-closed set if $cl(int(cl(A))) \subseteq A$.
4. a semipre-open set [1] if $A \subseteq cl(int(cl(A)))$ and a semipre-closed set if $cl(int(cl(A))) \subseteq A$.
5. a regular open set [9] if $A = int(cl(A))$ and a regular closed set [19] if $cl(int(cl(A))) = A$.

The intersection of all semiclosed (resp. preclosed, semipreclosed, α-closed) sets containing a subset A of X is called semiclosure (resp. preclosure, semipreclosure, α-closure) of A is denoted by $scl(A)$ (resp. pcl(A), spcl(A), acl(A)).

The union of all semiopen sets contained in A is called semiinterior of A and is denoted by $sint(A)$.

Corresponding Author: M. Dhanalakshmi2

2Research scholar, Department of Mathematics, The M. D. T. Hindu College, Tirunelveli, Tamil Nadu, India-627010.
Definition 2.2: A subset A of a topological space (X, τ) is called
1. a generalized closed set (briefly g-closed) [4] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
2. an α-generalized closed set (briefly αg-closed) [6] if $\text{acl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
3. a semi generalized closed set (briefly sg-closed) [2] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ).
4. a g^*-closed set [11] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ).
5. an g^*-closed set [12] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g^*-open in (X, τ).
6. a g^*-closed set [12] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g^*-open in (X, τ).
7. a g^*-preclosed set (briefly g^*-closed) [13] if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g^*-open in (X, τ).
8. an g^*-semiclosed set [17] (briefly gs^*-closed) if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g^*-open in (X, τ).
9. a αg^*-closed set [17] if $\text{cl}(A) \subseteq U$ whenever $\alpha cl(A)$, and U is g^*-open in (X, τ).
10. a αg^*-closed set [17] if $\text{cl}(A) \subseteq U$ whenever $\alpha cl(A)$, and U is g^*-open in (X, τ).
11. a ψ^*-closed set [15] if $\text{cl}(A) \subseteq U$ whenever $\psi cl(A)$, and U is g^*-open in (X, τ).
12. a γ^*-closed set [15] if $\text{cl}(A) \subseteq U$ whenever $\gamma cl(A)$, and U is g^*-open in (X, τ).
13. a γ^*-closed set [15] if $\text{cl}(A) \subseteq U$ whenever $\gamma cl(A)$, and U is g^*-open in (X, τ).
14. a $\alpha^* g^*$-closed set (briefly $\alpha^* g^*$-closed) [17] if $\text{pcl}(A) \subseteq U$ whenever $\alpha cl(A)$, and U is g^*-open in (X, τ).
15. a $\alpha^* g^*$-closed set (briefly $\alpha^* g^*$-closed) [17] if $\text{pcl}(A) \subseteq U$ whenever $\alpha cl(A)$, and U is g^*-open in (X, τ).

Notations 2.3
1. $\alpha C(X, \tau)$ is the class of α-closed subsets of (X, τ).
2. $\psi C(X, \tau)$ is the class of ψ-closed subsets of (X, τ).
3. $\psi C(X, \tau)$ is the class of pre-closed subsets of (X, τ).
4. $\psi C(X, \tau)$ is the class of semi-pre-closed subsets of (X, τ).
5. $\psi C(X, \tau)$ is the class of μ-closed subsets of (X, τ).
6. $\psi C(X, \tau)$ is the class of μ-closed subsets of (X, τ).

3. PROPERTIES OF μ_ψ-CLOSED SETS

We introduce the following definition.

Definition 3.1: A subset A of (X, τ) is called μ_ψ-closed set if $\mu cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ψ-open in (X, τ). The class of μ_ψ-closed subsets of X is denoted by $\mu_\psi C(X, \tau)$.

Proposition 3.2: Every closed set is μ_ψ-closed. But the converse is not true which can be seen from the following examples.

Example 3.3: Let $X = \{a, b, c\}$ and $\tau = \{x, \varphi, \{c\}, \{a, b\}\}$. Here, the set $\{b\}$ is μ_ψ-closed but it is not closed.

Proposition 3.4: μ_ψ-closedness is independent of α-closedness and semi-closedness.

Proof: It follows from the following examples

Example 3.5: Let $X = \{a, b, c\}$, $\tau = \{x, \varphi, \{a\}\}$. Here the set $\{b\}$ is α-closed and semi-closed but it is not μ_ψ-closed.

Example 3.6: Let $X = \{a, b, c\}$, $\tau = \{x, \varphi, \{a, b\}\}$. Here the set $\{b, c\}$ is μ_ψ-closed but it is neither α-closed nor semi-closed.

Proposition 3.7: Every μ_ψ-closed set is g-closed (resp. αg-closed, $\alpha^* g$-closed). But the converses are not true as can be seen from the following examples.

Example 3.8: Let $X = \{a, b, c\}$, $\tau = \{\varphi, x, \{b\}\}$. Here the set $\{a\}$ is g-closed (resp. αg-closed, $\alpha^* g$-closed) but it is not μ_ψ-closed.

Proposition 3.9: μ_ψ-closedness is independent of $*g$-closedness, $\alpha^* g$-closedness, ψ-closedness, g^*-ψ-closedness and μ-closedness.

Proof: It follows from the following examples.

Example 3.10: Let $X = \{a, b, c\}$, $\tau = \{\varphi, x, \{a\}\}$. Here the set $\{b\}$ is both $*g$-closed and $\alpha^* g$-closed but it is not μ_ψ-closed.

Example 3.11: Let $X = \{a, b, c\}$, $\tau = \{\varphi, x, \{a, b, c\}\}$. Here the set $\{b\}$ is μ_ψ-closed but it is not $*g$-closed and not $\alpha^* g$-closed.
Example 3.12: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, x, \{a\}\}$. Here the set $\{b\}$ is both ψ-closed and $g^*\psi$-closed but it is not μ_ψ-closed.

Example 3.13: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, x, \{a\}, \{b, c\}\}$. Here the set $\{b\}$ is μ_ψ-closed but it is not ψ-closed and not $g^*\psi$-closed.

Example 3.14: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, x, \{a\}, \{a, b\}\}$. Here the set $\{b\}$ is μ_ψ-closed but it is not $g^*\psi$-closed.

Example 3.15: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, x, \{a\}, \{b, c\}\}$. Here the set $\{b\}$ is μ_ψ-closed but it is not μ_ψ-closed.

Proposition 3.16: Every μ_ψ-closed set is g^*p-closed. But the converse is not true as can be seen from the following example.

Example 3.17: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, x, \{b, c\}\}$. Here the set $\{b\}$ is g^*p-closed but it is not μ_ψ-closed.

Proposition 3.18: Every μ-closed set is μ_ψ-closed. But the converse is not true as can be seen from the following example.

Example 3.19: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, x, \{c\}, \{a, b\}\}$. Here the set $\{b\}$ is μ_ψ-closed but it is not μ-closed.

Proposition 3.20: Every μ_ψ-closed set is μ_ψ-closed. But the converse is not true as can be seen from the following example.

Example 3.21: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, x, \{a\}, \{a, b\}\}$. Here the set $\{b\}$ is μ_ψ-closed but it is not μ_ψ-closed.

Theorem 3.22: The union (intersection) of any two μ_ψ-closed sets is also a μ_ψ-closed set.

Proposition 3.23: Let A and B be any two subsets of the topology (X, τ). Then
1. A is μ_ψ-closed, then $\mu cl(A)$ does not contain any non empty ψ-closed set.
2. A is μ_ψ-closed and $A \subset B \subset \mu cl(A)$, then B is μ_ψ-closed.

Proof: Let A be μ_ψ-closed and suppose $\mu cl(A)$ is a non empty ψ-closed set F. Therefore, $F \subset \mu cl(A) \subset F'$, which is ψ-open. Since A is μ_ψ-closed, $\mu cl(A) \subset F'$ implies $F \subset (\mu cl(A))^\circ$, also $F \subset \mu cl(A)$ therefore $F \subset (\mu cl(A))^\circ \cap (\mu cl(A)) = \emptyset$.

Let U be a ψ-open set such that $B \subset U$. Since $A \subset B \subset U$ and U is ψ-open $\mu cl(A) \subset U$. Since $B \subset \mu cl(A)$, $cl(B) \subset \mu cl(\mu cl(A))$ implies $\mu cl(B) \subset \mu cl(A) \subset U$ therefore B is μ_ψ-closed.

Theorem 3.24: Let A be a μ_ψ-closed set of a topological space (X, τ). Then
1. $\text{sint}(A)$ is μ_ψ-closed.
2. $\text{pcl}(A)$ is μ_ψ-closed.
3. If A is regular open, then $\text{pint}(A)$ and $\text{scl}(A)$ are also μ_ψ-closed sets.

Proof: First we note that for a subset A of (X, τ), $\text{scl}(A) = A \cup \text{int}(\text{cl}(A))$ and $\text{pcl}(A) = A \cup \text{cl}(\text{int}(A))$. Moreover $\text{sint}(A) = A \cap \text{cl}(\text{int}(A))$ and $\text{pint}(A) = A \cap \text{int}(\text{cl}(A))$.

Since $\text{cl}(\text{int}(A))$ is a closed set, then A and $\text{cl}(\text{int}(A))$ are μ_ψ-closed sets. By the theorem 3.22, $A \cap \text{cl}(\text{int}(A))$ is also a μ_ψ-closed set.

1. $\text{pcl}(A)$ is the union of two μ_ψ-closed sets A and $\text{cl}(\text{int}(A))$. Again by the theorem 3.22, $\text{pcl}(A)$ is μ_ψ-closed.
2. Since A is regular open, then $A = \text{int}(\text{cl}(A))$. Then $\text{cl}(A) = A \cup \text{int}(\text{cl}(A)) = A$. Thus, $\text{cl}(A)$ is μ_ψ-closed. Similarly $\text{pint}(A)$ is also a μ_ψ-closed set.

The converses of the statements in the above theorem are not true as we see from the following examples.

Example 3.25: Let (X, τ) be the space as in the example 3.14. $B = \{b\}$ is not μ_ψ-closed set. However $\text{sint}(B) = \emptyset$ is a μ_ψ-closed set.

Example 3.26: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, x, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Consider $A = \{c\}$. Clearly A is not regular open. However A is μ_ψ-closed and $\text{scl}(A) = \text{pint}(A) = \emptyset$ is μ_ψ-closed.

Remark 3.27: The following diagram shows the relationship established between μ_ψ-closed set and some other sets $A \rightarrow B$ (resp. $A \leftrightarrow B$) represents A implies B but not conversely (resp. A and B are independent of each other).
From the above Propositions and Examples, we have the following diagram.

Definition 3.28: A subset A of a space X is said to be μ_ψ–open if A^c is μ_ψ-closed. The class of all μ_ψ-open subsets of X is denoted by $\mu_\psi O(X, \tau)$.

Proposition 3.29: A subset A of a topological space X is said to be μ_ψ–open if and only if $F \subset \mu int(A)$ whenever $A \supset F$ and F is ψ-closed in X.

Proof: Suppose that A is μ_ψ-open in X and $A \supset F$, where F is ψ-closed in X. Then $A^c \subset F^c$, where F^c is ψ-open in X. Hence we get $\mu cl(A^c) \subset F^c$ implies $\mu int(A) \supset F$.

Conversely, suppose that $A^c \subset U$ and U is ψ-open in X then $A \supset U^c$ and U^c is ψ-closed then by hypothesis $\mu int(A) \supset U^c$ implies $(\mu int(A))^c \subset U$. Hence $\mu cl(A^c) \subset U$ gives A^c is μ_ψ-closed.

Proposition 3.30: In a topological space X, for each $x \in X$, either $\{x\}$ is ψ–closed or μ_ψ–open in X.

Proof: Suppose that $\{x\}$ is not ψ-closed in X. then $X - \{x\}$ is not ψ-open and the only ψ-open set containing $X - \{x\}$ is the space X itself. Therefore, $\mu cl(X - \{x\}) \subset X$ and so $X - \{x\}$ is μ_ψ-closed gives $\{x\}$ is μ_ψ–open.

4. **APPLICATION OF μ_ψ-CLOSED SETS**

As an applications of μ_ψ-closed sets, new spaces namely, T_{μ_ψ}, αT_{μ_ψ}, $s T_{\mu_\psi}$, $p T_{\mu_\psi}$, $sp T_{\mu_\psi}$, μT_{μ_ψ}, ψT_{μ_ψ} spaces are introduced. First we introduce the following definitions.

Definition 4.1: A topological space (X, τ) is called a

1. T_{μ_ψ}-space if every μ_ψ–closed set is closed.
2. αT_{μ_ψ}-space if every μ_ψ–closed set is α-closed.
3. $s T_{\mu_\psi}$-space if every μ_ψ–closed set is semi-closed.
4. $p T_{\mu_\psi}$-space if every μ_ψ–closed set is pre-closed.
5. $sp T_{\mu_\psi}$-space if every μ_ψ–closed set is semipre-closed.
6. μT_{μ_ψ}-space if every μ_ψ–closed set is μ-closed.
7. ψT_{μ_ψ}-space if every μ_ψ–closed set is ψ-closed.

Example 4.2: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, x, \{a\}\}$. Here $\mu_\psi C(X, \tau) = \{x, \emptyset, \{b, c\}\}$. Then (X, τ) is T_{μ_ψ}-space. The space in the following example is not a T_{μ_ψ}-space. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, x, \{a, b\}\}$. Here $\mu_\psi C(X, \tau) = \{x, \emptyset, \{c\}, \{b, c\}, \{a, c\}\}$.

Example 4.3: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, x, \{b\}\}$. Here $\mu_\psi C(X, \tau) = \{x, \emptyset, \{a, c\}\}$. Then (X, τ) is αT_{μ_ψ}-space. The space in the following example is not αT_{μ_ψ}-space. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, x, \{a, b\}\}$. Here $\mu_\psi C(X, \tau) = \{x, \emptyset, \{c\}, \{b, c\}, \{a, c\}\}$ and $\alpha C(X, \tau) = \{\emptyset, x, \{a, b\}\}$.

Proposition 4.4: If (X, τ) is a αT_{μ_ψ}-space then every singleton of X is either ψ–closed or μ-open.

Proof: Let $x \in X$. Suppose $\{x\}$ is not ψ–closed, then $X - \{x\}$ is not ψ–open. This implies that X is the only ψ–open set containing X-{x}. So X-{x} is μ_ψ-closed of (X, τ). Since (X, τ) is αT_{μ_ψ}-space, X-{x} is α-closed and every α-closed
is µ-closed implies X-{x} is µ–closed or equivalently {x} is µ–open. The converse of the above proposition is not true as it can be seen from the following example.

Example 4.5: Let X = {a, b, c} and τ = {∅, x, {a, c}}. Here every singleton of X is either ψ–closed or µ–open but is not αTµψ-space.

Proposition 4.6: Every αTµψ (resp. sTµψ)-space is pTµψ-space.

Proof: It follows from the fact that every α-closed (resp. semi-closed) is pre-closed. The converse of the above proposition is not true as it can be seen by the following example.

Example 4.7: Let X = {a, b, c} and τ = {∅, x, {a}, {b, c}}. Here (X, τ) is pTµψ–space but it is not a αTµψ (resp. not a sTµψ)-space.

Proposition 4.8: Every Tµψ-space is pTµψ-space, spTµψ-space, µTµψ–space and ψTµψ-space but not conversely.

Example 4.9: The space (X, τ) in Example 4.5 is pTµψ-space, spTµψ-space, µTµψ–space and ψTµψ-space but not Tµψ-space.

Proposition 4.10: Every Tµψ (resp. α T µψ) space is μTµψ-space, but not conversely.

Proof: Let A be µψ-closed set in a topological space X, which is T µψ-space. Hence A is closed implies A is µ-closed. Therefore T µψ-space is μ T µψ-space. Similarly A is µψ-closed set in topological space X which is α T µψ-space. Hence A is α-closed implies A is µ-closed. Therefore αTµψ-space is μ T µψ-space.

Converse is not true as it can be seen by the following example. The space (X, τ) in the example 4.9 is µT µψ–space but it is neither T µψ-space nor αT µψ-space.

Theorem 4.11: The following statements are true but the respective converses are not true in general.

1. If (X, τ) is a T µψ-space, then every singleton of X is either ψ-closed or pre-open.
2. If (X, τ) is a αT µψ-space, then every singleton of X is either ψ-closed or pre-open.
3. If (X, τ) is a sT µψ-space, then every singleton of X is either ψ-closed or pre-open.
4. If (X, τ) is a ψT µψ-space, then every singleton of X is either sg-closed or µψ-open.

Proof:

1. Let x ∈ X and suppose that {x} is not a ψ-closed of (X, τ). This implies that X-{x} is not ψ–open set. So X is the only ψ–open set such that X-{x} ⊆ X. Then X-{x} is a µψ –closed set of(X, τ). Since is a T µψ–space, then X-{x} is closed or equivalently {x} is open.
2. The proofs for the first assertions of 2 to 5 are similar to as that of the first assertions of (1). The space (X, τ) as in the example 4.7 shows that the converses of 1 to 5 need not be true.

Remark 4.12: The following diagram shows relationship among the spaces considered in this paper.
REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]