NOTE ON A THEOREM OF ANKENY AND RIVLIN

M. S. Pukhta*

Division of Agri. Engineering, SK. University of Agricultural Sciences & Technology, Kashmir, Srinagar-191121 (India)

E-mail: mspukhta_67@yahoo.co.in

(Received on: 26-07-11; Accepted on: 07-08-11)

ABSTRACT

If p(z) is a polynomial of degree n and does not vanish in |z| < 1, then it was shown by Dewan, Hans and Kaur [7] [Journal of Interdisciplinary Mathematics, Vol (13), No 2, (2010), pp. 163-166] that

$$\{M(p,R)\}^s \le \left(\frac{R^{ns}+1}{2}\right)\{M(p,1)\}^s$$

In this paper ,we obtain a generalization of the above inequality , which in turn also generalize as well as improve the result due to N.C. Ankeny and T. J. Rivlin [1] [Pacific. J. Math., vol. 5 (1955), pp. 849-852].

Key Words: Polynomial, Inequality, Derivatives, Zeros.

1. INTRODUCTION

For an arbitrary entire function f(z), let $M(f,r) = \max_{|z|=r} |f(z)|$ and $m(f,k) = \min_{|z|=k} |f(z)|$. Then for a polynomial p(z) of a degree n, it is a simple consequence of a maximum modulus principle (for ref. See [4, vol 1, p, 137.prob III, 269]) that

$$M(p, R) \le R^n M(p, 1)$$
 for $R \ge 1$. (1.1)

The result is best possible and equality holds for $p(z) = \alpha z^n$ where $|\alpha| = 1$.

While concerning the estimate of |p'(z)| in terms of |p(z)| on |z|=1 for the class of polynomials having no zeros in |z|<1, it was conjectured by P. Erdős and later by lax [3] that if $p(z)\neq 0$ in |z|<1, then

$$M(p',1) \le \frac{n}{2} M(p,1) \tag{1.2}$$

The result is best possible and equality holds for $p(z) = \alpha + \beta z^n$, where $|\alpha| = |\beta|$. For the class of polynomials p(z) of degree n not vanishing in |z| < k, $k \ge 1$, Malik [5] proved

$$\max_{|z|=1} |p'(z)| \le \frac{n}{1+k} \max_{|z|=1} |p(z)| \tag{1.3}$$

Corresponding author: M. S. Pukhta, *E-mail: mspukhta_67@yahoo.co.in

M. S. Pukhta*/ NOTE ON A THEOREM OF ANKENY AND RIVLIN / IJMA- 2(8), August-2011, Page: 1249-1252 The result is best possible and equality holds for $p(z) = (z + k)^n$.

Govil [6] improved the inequality (1.3) and proved that if p(z) is a polynomial of degree n having no zeros in |z| < k, $k \ge 1$, then

$$\max_{|z|=1} |p'(z)| \le \frac{n}{1+k} \left\{ \max_{|z|=1} |p(z)| - \min_{|z|=k} |p(z)| \right\}$$
 (1.4)

The inequality (1.4) is best possible and equality holds for $p(z) = (z + k)^n$.

It was shown by Ankeny and Rivlin [1] that if $p(z) \neq 0$ in |z| < 1, then inequality (1.1) can be replaced by a sharper inequality.

Theorem: A If p(z) is a polynomial of degree n, which does not vanish $\ln |z| < 1$, then

$$M(p,R) \le \left(\frac{R^{n+1}}{2}\right)M(p,1), \quad R \ge 1 \tag{1.5}$$

Recently Dewan et al [7] proved the following generalization as well as an improvement of Theorem A. **Theorem: B** If p(z) is a polynomial of degree n, having no zeros in |z| < 1, then for every positive integer s

$$\{M(p,R)\}^s \le \left(\frac{R^{ns}+1}{2}\right)\{M(p,1)\}^s , R \ge 1$$
 (1.6)

In this paper we generalize Theorem B, which in turn also generalize as well as improve Theorem A. More precisely, we prove

Theorem: 1 If p(z) is a polynomial of degree n, having no zeros in |z| < k, $k \ge 1$, then for every positive integer s, we have

$$\{M(p,R)\}^s \le \left(\frac{R^{ns}+k}{1+k}\right)\{M(p,1)\}^s , R \ge 1$$
 (1.7)

Remark: 1 For s=1 and k=1 the above result reduces to inequality (1.5). If we take k=1 in Theorem 1, then our result reduces to Dewan, Hans and Kaur [7].

Theorem: 2 If p(z) is a polynomial of degree n, having no zeros in |z| < k, $k \ge 1$, then for every positive integer s, we have

$$\{M(p,R)\}^{s} \le \left(\frac{R^{ns}+k}{1+k}\right)\{M(p,1)\}^{s} - \left(\frac{R^{ns}-k}{1+k}\right)\{M(p,1)\}^{s-1} m(p,k) , R \ge 1$$
 (1.8)

If we take k=1 in Theorem 2, then we get the following result due to Dewan, Hans and Kaur [7].

Corollary: If p(z) is a polynomial of degree n, having no zeros in |z| < k, $k \ge 1$, then for every positive integer s, we have

$$\{M(p,R)\}^{s} \le \left(\frac{R^{ns}+1}{2}\right)\{M(p,1)\}^{s} - \left(\frac{R^{ns}-1}{2}\right)\{M(p,1)\}^{s-1} m(p,1) , R \ge 1$$
 (1.9)

The result is best possible and equality holds for $p(z) = z^n + k^n$.

2. PROOFS OF THE THEOREMS

Proof of Theorem: 1 Let $M(p,1) = \max_{|z|=1}^{max} |p(z)|$. Since p(z) is a polynomial of degree n which does not vanish in |z| < 1, therefore, by inequality (1.3), we have

$$|p'(z)| \le \frac{n}{1+k} M(p,1)$$
, for $|z| = 1$

Now p'(z) is a polynomial of degree n-1, therefore, it follows by (1.1) that for all $r \ge 1$, and $0 \le \theta < 2\pi$,

$$|p/(re^{i\theta})| \le \frac{n}{1+k} r^{n-1} M(p,1)$$
 (2.1)

Also for each θ , $0 \le \theta < 2\pi$ and $R \ge 1$, we have

$$\begin{aligned} \left\{ p(Re^{i\theta}) \right\}^s - \left\{ p(e^{i\theta}) \right\}^s &= \int_1^R \frac{d}{dt} \left\{ p(te^{i\theta}) \right\}^s dt \\ &= \int_1^R s \left\{ p(te^{i\theta}) \right\}^{s-1} p'(te^{i\theta}) e^{i\theta} dt \end{aligned}$$

This imples

$$|\{p(Re^{i\theta})\}^{s} - \{p(e^{i\theta})\}^{s}| \le s \int_{1}^{R} |p(te^{i\theta})^{s-1}| |p/(te^{i\theta})| dt$$

Which on combining with inequality (1.1) and (2.1), we get

$$\begin{aligned} \left| \left\{ p \left(R e^{i \theta} \right) \right\}^{s} - \left\{ p \left(e^{i \theta} \right) \right\}^{s} \right| &\leq \frac{ns}{1+k} \int_{1}^{R} t^{ns-1} \{ M(p,1) \}^{s} \ dt \ , \\ &= \left(\frac{R^{ns}-1}{1+k} \right) \{ M(p,1) \}^{s} . \end{aligned}$$

Which implies

$$|p(Re^{i\theta})|^{s} \leq |p(e^{i\theta})|^{s} + \left(\frac{R^{ns}-1}{1+k}\right) \{M(p,1)\}^{s}$$

$$\leq \{M(p,1)\}^{s} + \left(\frac{R^{ns}-1}{1+k}\right) \{M(p,1)\}^{s}$$
(2.2)

Hence from (2.2) we conclude that

$$\{M(p,R)\}^{s} \leq \left(\frac{R^{ns}+k}{1+k}\right)\{M(p,1)\}^{s}.$$

This completes the proof of Theorem 1.

Proof of Theorem: 2 The proof of Theorem 2 follows on the same lines as that of Theorem 1 by using inequality (1.4) instead of (1.3). But for the sake of completeness we give a brief outline of the proof. Since p(z) is a polynomial of degree n which does not vanish in |z| < 1, therefore, by inequality (1.4), we have

$$\max_{|z|=1} |p'(z)| \le \frac{n}{1+k} \{ M(p,1) - m(p,k) \} \quad \text{for } |z| = 1$$

Now $p^{/}(z)$ is a polynomial of degree n-1 , therefore, it follows by (1.1) that for all $r\geq 1$, and $0\leq \theta < 2\pi$,

$$\left| p/(re^{i\theta}) \right| \le \frac{n}{1+k} r^{n-1} \{ M(p,1) - m(p,k) \}$$
 (2.3)

© 2011, IJMA. All Rights Reserved

M. S. Pukhta/ NOTE ON A THEOREM OF ANKENY AND RIVLIN / IJMA- 2(8), August-2011, Page: 1249-1252* Also for each θ , $0 \le \theta < 2\pi$ and $R \ge 1$, we have

$$\left|\left\{p(Re^{i\theta})\right\}^{s} - \left\{p(e^{i\theta})\right\}^{s}\right| \le s \int_{1}^{R} \left|p(te^{i\theta})^{s-1}\right| \left|p/(te^{i\theta})\right| dt$$

Which on combining with inequality (1.1) and (1.2), we get

$$\left| \left\{ p \left(R e^{i\theta} \right) \right\}^{s} - \left\{ p \left(e^{i\theta} \right) \right\}^{s} \right| \le \left(\frac{R^{ns} - k}{1 + k} \right) \left\{ M(p, 1) \right\}^{s} \left\{ M(p, 1) - m(p, k) \right\}$$

Which implies

$$|p(Re^{i\theta})|^s \le \{M(p,1)\}^s + \left(\frac{R^{ns}-k}{1+k}\right)\{M(p,1)\}^s\{M(p,1)-m(p,k)\}$$

From which the proof of Theorem 2 follows.

REFERENCES

- [1] N. C. Ankeny and T. J. Rivlin, on a theorem of S. Bernstein, Pacific .J. Math., vol. 5 (1955), pp. 849-852.
- [2] A. Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory, vol. 54 (1988), pp. 306-313.
- [3] P. D. Lax, proof of a conjecture of P. Erdos on the derivative of a polynomial, Bull. Amer. Math. Soc., Vol 50 (1944), pp. 509-513.
- [4] G. Polya and G. Szego, Aufgaben and Lehrsatze aus der Analysis, Springer-Verlag, Berlin, 1925.
- [5] M.A. Malik, On the derivative of a polynomial, J. London Math. Soc. Vol.1 (1969), pp. 57-60.
- [6] N. K. Govil, Some inequalities for derivatives of polynomials, J. Approx. Theory vol.66 (1991), pp. 29-35.
- [7] K. K. Dewan, S. Hans and J. Kour, On a theorem of Ankeny and Rivlin, Journal of Interdisciplinary Mathematics, Vol (13), No 2, (2010), pp. 163-166.
