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ABSTRACT 
In this paper, a new class of generalized closed sets called δ(δg)^ -closed sets is introduced and its properties are 
studied in topological spaces. Moreover the relation between δ(δg)^ -closed sets and various other classes of closed 
sets already defined are investigated.  
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1. INTRODUCTION 
  
The concept of generalized closed (briefly g-closed) sets was introduced and investigated by Norman Levine [6] in 
1970. Velicko [10] introduced δ –open sets in 1968 which are stronger than open sets. By combining the concepts of   
δ- closedness and g –closedness, Julian Dontchev [2] proposed a class of generalised closed sets called δg –closed sets 
in 1996. Lellis Thivagar [5] defined a new class of closed set called ĝδ - closed set in 2010. Veerakumar [8] and [9] 

introduced ĝ -closed sets in 2003 and #gδ -closed sets in 2006. Meena and Sivakamasundari [7] defined a new class 
of generalised closed sets called δ(δg)* -closed sets and various properties were analysed. 
 
Motivated by the development of various classes of δ-closed sets, we extend the concept of δ-generalized closed sets to 
a new class of closed sets called δ(δg)^ -closed sets and investigate their relationship with other existing closed sets in 
topological spaces. This new class contains the class of δ(δg)*-closed sets. The following inclusion relation holds. 

δ(δg)* -closed sets ⊂  δ(δg)^ -closed ⊂  #gδ -closed sets 
 
2. PRELIMINARIES 
 
Definition 2.1 [4]: A Topology on a set X is a collection τ of subsets of X having the following properties: 

a. φ and X are in τ. 
b. The union of elements of any sub collection of τ is in τ. 
c. The intersection of the elements of any finite sub collection of τ is in τ. 

 
A set X for which a topology τ has been specified is called a Topological space.  
 
Definition 2.2[7]: A subset A of a Topologica l space (X,τ ) is called   

1. Regular open  if A= int(cl(A)) 
2. Semi-open  if A⊆  cl(int(A)) 
3. Pre-open  if A⊆  int (cl(A)) 
4. α-open  if A⊆  int(cl(int(A))) 
5. semi preopen  if A⊆  cl(int(cl(A))) 
6. π- open if it is the finite union of regular open sets. 
7. δ- open if it is the union of regular open sets. 
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The complement of a regular open (resp.Semi open, pre-open, α-open, semi preopen, π-open, δ-open) set is called 
regular closed (resp.semi closed, pre-closed, α- closed, semi preclosed, π-closed and δ-closed). 
 
Definition 2.3[7]: The intersection of all regular closed (resp.semi-closed, pre-closed, α-closed, semi preclosed,          
π-closed, δ-closed) subsets of (X, τ) containing A is called the regular closure (resp.semi-closure, pre-closure, α-
closure, semi preclosure, π-closure, δ-closure) of A and is denoted by rcl(A) ((resp. scl(A), pcl(A), αcl(A), spcl(A), 
πcl(A) and δcl(A)). 
 
Definition 2.4: A subset A of a topological space (X, τ) is called 

1. generalized closed(briefly g-closed) [6] if cl(A)⊆U whenever A⊆U, U is open in (X, τ). 
2. regular generalized closed(briefly rg-closed) [7] if cl(A)⊆U whenever A⊆U, U regular is open in (X, τ). 
3. δ-generalized closed (briefly δg - closed) [2] if δcl(A)⊆U whenever A⊆U, U  is open in (X, τ). 
4. δ-generalized semi closed(briefly δgs- closed) [3] if δscl(A) ⊆U whenever A⊆U, U is δ-open in (X, τ). 
5. δg*- closed [7] if δcl(A)⊆U whenever A⊆U, U is g-open in (X, τ). 
6. ĝ -closed [10] if cl(A)⊆U whenever A⊆U, U is semi open in (X, τ). 
7. ĝδ -closed [5] if δcl(A)⊆U whenever A⊆U, U is ĝ -open in (X, τ). 
8. δ(δg)*- closed [7] if δcl(A)⊆U whenever A⊆U, U is δg-open in (X, τ). 
9. α-generalized closed (briefly αg-closed) [7] if αcl(A) ⊆U whenever A⊆U, U is open in (X, τ). 
10. ĝα - closed [7] if αcl(A) ⊆U whenever A⊆U, U is ĝ -open in (X, τ). 
11. generalised pre-closed(briefly gp- closed) [7] if pcl(A)⊆U whenever A⊆U, U is open in (X, τ). 
12. generalised pre regular closed(briefly gpr- closed) [7] if pcl(A)⊆U whenever A⊆U, U is regular open in   

(X, τ). 
13. g*p- closed [7] if pcl(A)⊆U whenever A⊆U, U is g open in (X, τ). 
14. *g- closed [7] if pcl(A)⊆U whenever A⊆U, U is ĝ -open in (X, τ). 
15. g*s- closed [7] if scl(A)⊆U whenever A⊆U, U is gs open in (X, τ). 
16. generalised semi pre regular closed(briefly gspr- closed) [7] if spcl(A)⊆U whenever A⊆U, U is regular 

open in (X, τ). 
17. (gs)*- closed [7] if cl(A) ⊆U whenever A⊆U, U is gs- open in (X, τ). 
18. regular weakly generalised closed(briefly rwg- closed) [7] if cl(int(A))⊆U whenever A⊆U, U is regular 

open in (X, τ). 
19. generalised δ-closed(briefly gδ- closed) [7] if cl(A)⊆U whenever A⊆U, U is δ-open in (X, τ). 
20. #gs- closed [5] if scl(A) ⊆U whenever A⊆U, U is *g-open in (X, τ). 

21. #gδ - closed [9] if δcl(A) ⊆U whenever A⊆U, U is δ-open in (X, τ). 
22. π-generalised closed(briefly πg- closed) [3] if cl(A) ⊆U whenever A⊆U, U is π- open in (X, τ). 
23. π-generalised pre closed(briefly πgp- closed) [3] if pcl(A) ⊆U whenever A⊆U, U is π-open in (X, τ). 
24. π-generalised semi pre closed(briefly πgsp- closed) [3] if spcl(A)⊆U whenever A⊆U, U is π- open in (X, τ). 
25. π-generalised b-closed(briefly πgb- closed) [3] if bcl(A) ⊆U whenever A⊆U, U is π- open in (X, τ). 
26. π-generalised semi closed(briefly πgs- closed) [3] if scl(A) ⊆U whenever A⊆U, U is π-open in (X, τ). 
27. π-generalised α-closed(briefly πgα- closed) [3] if αcl(A) ⊆U whenever A⊆U, U is π-open in (X, τ). 
28. ψ-closed set [1] if scl(A) ⊆ U whenever A ⊆ U and U is sg-open in X.  
29. ψg-closed set [1] if ψcl(A) ⊆ U whenever A ⊆ U and U is open in X.  
30. ψg*-closed set [1] if ψcl(A) ⊆ U whenever A ⊆ U and U is g*-open in X. 
31. g*-closed set [1] if cl(A) ⊆ U whenever A ⊆ U and U is g-open in X.  

 
Remark 2.5:  r-closed(open) → π -closed(open) →δ -closed(open) → δg* -closed(open) → δ(δg)* - closed(open) →

#gδ -closed(open) → gδ-closed(open) [7]. 
 
Remark 2.6: For every subset A of X,  

i. spcl(A) ⊆ pcl(A)⊆ δcl(A) [7]. 
ii. spcl(A) ⊆ scl(A)⊆ δscl(A) ⊆ δcl(A) (Lemma 3.4 of [3]). 

iii. bcl(A) ⊆  δscl(A) (Corollary 3.28 of [3]). 
 
Remark 2.7:  

i. Every ĝδ -closed set is g-closed and δg –closed (Proposition 3.5 and 3.14  of [5]). 
ii. Every δ-closed set is ĝδ -closed (Proposition 3.2 of [5]). 
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3. δ(δg)^-CLOSED SETS 
 
In this section we introduce a new class of closed sets called δ(δg)^-closed sets which lie between the class of δ(δg)*-
closed sets and the class of  #gδ -closed sets. 
 
Definition 3.1: A subset A of a topological space (X, τ) is said to be δ(δg)^-closed sets if δcl(A)⊆U whenever A⊆U, 
U is ĝδ -open in (X, τ). The class of all δ(δg)^-closed sets of (X, τ ) is denoted by δ(δg)^C(X, τ). 
 
Theorem 3.2: Let A and B are δ(δg)^-closed sets in a topological space (X, τ), then 

i. A B is δ(δg)^-closed in (X, τ). 

ii. A B need not be δ(δg)^-closed in (X, τ).  
 
Proof:  

i. Suppose that A B⊆U where U is any ĝδ -open in (X, τ). Then A⊆U and B⊆U. Since A and B are 
δ(δg)^-closed sets of (X, τ), δcl(A)⊆U and δcl(B)⊆U. Also, δcl(A B) = δcl(A) δcl(B). It follows that, 
δcl(A B) ⊆U. Therefore A B is a δ(δg)^-closed set in (X, τ). 

ii. Let X = {a, b, c}, τ = {X, φ, {a}, {b}, {a, b}}. In this topology, the set {c} and {a, c} are δ(δg)^-closed but 
their intersection {c} is not δ(δg)^-closed.  

 
Theorem 3.3: In a topological space (X, τ), every δ-closed set is δ(δg)^-closed but the converse need not be true. 
 
Proof: Let A be a δ-closed set and let U be any ĝδ -open set containing A in (X, τ). Since A is δ-closed, δcl(A)=A. 
Therefore δcl(A) =A ⊆U and hence A is δ(δg)^-closed. 
 
Example: Let X = {a, b, c}, τ = {x, φ, {a, c}}. In this topology the set {b} is δ(δg)^-closed but not δ-closed. 
 
Theorem 3.4: Let (X, τ) be a topological space and A⊆X. Then the class of δg*-closed sets and the class of δ(δg)*-
closed sets are proper subsets of the class of δ(δg)^-closed sets.  
 
Proof:   

i. Let A be δg*-closed set and U be any ĝδ -open set containing A in (X, τ). By Remark 2.7(i), every ĝδ -open 
set is g-open. Since A is δg*-closed, δcl(A)⊆U. Hence A is δ(δg)^-closed. 

ii. Let A be δ(δg)*-closed set and U be any ĝδ -open set containing A in (X, τ). By Remark 2.7(i), every ĝδ -
open set is δg-open. Since A is δ(δg)*-closed, δcl(A)⊆U. Hence A is δ(δg)^-closed. 

 
Remark 3.5: A δ(δg)^-closed set need not be a δg*-closed and need not be δ(δg)*-closed. 
 
Example: Let X = {a, b, c}, τ = {X, φ, {a, b}, {b, c}, {b}}. In this topology, the set {b} is δ(δg)^-closed but not δg*                
closed. 
 
Example: Let X = {a, b, c}, τ = {X, φ, {c}, {a, b}}. In this topology the set {a} is δ(δg)^-closed but not δ(δg)*                 
closed. 
 
Remark 3.6: The following diagram gives a diagrammatic representation of the above Theorems.  

 
   
In the above diagram, A                B means, A implies B but, B does not imply A. 
 
Remark 3.7: r-closed(open) → π -closed(open) →δ -closed(open) → δg* -closed(open) → δ(δg)* -closed(open) 
→δ(δg)^ -closed(open) → #gδ -closed(open) → gδ-closed(open). 
 
 



Stella Irene Mary J.* 1, Janaranjana Sri S.2 / On δ(δg)^-Closed Sets In Topological Spaces / IJMA- 7(10), Oct.-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                      106  

 
Theorem 3.8: Let (X, τ) be a topological space and A⊆X be a δ(δg)^-closed set. Then A is 

i.  gδ-closed   ii.    gpr-closed    iii.   gspr-closed. 
The converse part of this Theorem need not be true. 

 
Proof:   

i. Let A be δ(δg)^-closed set and U be any δ-open set containing A in (X, τ). By Remark 2.7(ii), every δ-open is 
ĝδ -open. Since A is δ(δg)^-closed, δcl(A)⊆U. For every subset A of X, cl(A)⊆ δcl(A). Therefore cl(A)⊆

U. Hence A is gδ-closed. 
ii. Let A be δ(δg)^-closed set and U be any regular open set containing A in (X, τ). By Remark 2.5&7(ii), every 

regular open is ĝδ -open and A is δ(δg)^-closed, δcl(A)⊆U. By Remark 2.6(i), For every subset A of X, 
pcl(A)⊆ δcl(A) and so we have pcl(A)⊆U. Hence A is gpr-closed. 

iii. Let A be δ(δg)^-closed set and U be any regular open set containing A in (X, τ). By Remark 2.5 and 2.7(ii), 
every regular open is ĝδ -open and A is δ(δg)^-closed, δcl(A)⊆U. By Remark 2.6(i), spcl(A) ⊆ δcl(A). And 
so we have, spcl(A)⊆U. Hence A is gspr –closed. 

 
Example: Let X = {a, b, c}, τ = {X, φ, {a, c}}. In this topology, the set {a} is gδ-closed but not δ(δg)^-closed. 
 
Example: Let X = {a, b, c}, τ = {X, φ, {a, b}, {b, c}, {b}}. In this topology, the set {b} is gpr-closed but not δ(δg)^-               
closed. 
 
Example: Let X = {a, b, c}, τ = {X, φ, {a, b}, {b, c}, {b}}. In this topology, the set {b} is gspr-closed but not δ(δg)^                
closed. 
 
Theorem 3.9: Let (X, τ) be a topological space and A⊆X. Then, 

i. A is δ(δg)^-closed set implies, A is #gδ -closed. 
ii. A is δ(δg)^-closed set implies, A is δgs-closed.. 

       The converse part of (i) and (ii) need not be true. 
 
Proof:   

i. Let A be δ(δg)^-closed and U be any δ-open set containing A in (X, τ). By Remark 2.7(ii), every δ-open set is 
ĝδ -open and A is δ(δg)^-closed, δcl(A)⊆U. Hence A is #gδ -closed. 

ii. Let A be δ(δg)^-closed set and U be any δ-open set containing A in (X, τ). By Remark 2.7(ii), every δ-open is 
ĝδ -open and A is δ(δg)^-closed, δcl(A)⊆U. By Remark 2.6 (iii), δscl(A) ⊆ δcl(A). And hence, δscl(A)⊆U 

and A is δgs -closed. 
 
Example: Let X = {a, b, c}, τ = {X, φ, {a, c}}. In this topology, the set {c} is #gδ -closed but not δ(δg)^-closed. 
 
Example: Let X = {a, b, c}, τ = {X, φ, {a, c}}. In this topology, the set {c} is δgs-closed but not δ(δg)^-closed 
 
Theorem 3.10: Let (X, τ) be a topological space and A⊆X. Then the class of δ(δg)^-closed sets is a proper subset of 
each of the classes of rg-closed, rwg-closed, πg-closed, πgp-closed and πgb-closed sets.  
 
Proof:   

i. Let A be δ(δg)^-closed set and U be any regular open set containing A in (X, τ). By Remark 2.5 and 2.7(ii), 
every regular open is ĝδ -open and A is δ(δg)^-closed, δcl(A)⊆U. For every subset A of X, cl(A)⊆ δcl(A) 
and so we have cl(A)⊆U. Hence A is rg-closed. 

ii. Let A be δ(δg)^-closed set and U be any regular open set containing A in (X, τ). By Remark 2.5 and 2.7(ii), 
every regular open is ĝδ -open and A is δ(δg)^-closed, δcl(A)⊆U. As int(A)⊆U, we have cl(int(A))⊆  
cl(A) ⊆ δcl(A). Then cl(int(A))⊆U. Hence A is rwg-closed. 

iii. Let A be δ(δg)^-closed set and U be any π-open set containing A in (X, τ). By Remark 2.5 and 2.7(ii), every π-
open is ĝδ -open and A is δ(δg)^-closed, δcl(A)⊆U. By Remark 2.6, cl(A)⊆ δcl(A). And so we have,  cl(A)
⊆U. Hence A is πg -closed. 

iv. Let A be δ(δg)^-closed set and U be any π-open set containing A in (X, τ). By Remark 2.5 and 2.7(ii), every   
π-open is ĝδ -open and A is δ(δg)^-closed, δcl(A)⊆U. By Remark 2.6, pcl(A)⊆ δcl(A). And so we have, 
pcl(A)⊆U. Hence A is πgp -closed. 
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v. Let A be δ(δg)^-closed set and U be any π-open set containing A in (X,τ). By Remark 2.5 and 2.7(ii), every π-

open is ĝδ -open and A is δ(δg)^-closed, δcl(A)⊆U. By Remark 2.6(iii), bcl(A)⊆ δcl(A). And so we have, 
bcl(A)⊆U. Hence A is πgb-closed. 

 
Remark 3.11: The converse of the above Theorem need not be true. 
 
Example: Let X = {a, b, c}, τ = {X, φ, {a, c}}. In this topology, the set {a} is rg-closed but not δ(δg)^-closed. 
 
Example: Let X = {a, b, c}, τ = {X, φ, {a, c}}. In this topology, the set {a} is rwg-closed but not δ(δg)^-closed. 
 
Example: Let X = {a, b, c}, τ = {X, φ, {a, c}}. In this topology, the set {a} is πg-closed but not δ(δg)^-closed. 
 
Example: Let X = {a, b, c}, τ = {X, φ, {a, b}, {b, c}, {b}}. In this topology, the set {b} is πgp-closed but not                
δ(δg)^closed. 
 
Example: Let X = {a, b, c}, τ = {X, φ, {a, c}}. In this topology, the set {a} is πgb-closed but not δ(δg)^-closed. 
 
Theorem 3.12: Let (X, τ) be a topological space and A⊆X be a δ(δg)^-closed set. Then A is                       

(i) πgα-closed.   (ii)  πgs-closed   (iii)   πgsp-closed. 
The converse need not be true. 

 
Proof: 

i. Let A be δ(δg)^-closed set and U be any π-open set containing A in (X, τ). By Remark 2.5 and 2.7(ii), every π-
open is ĝδ -open and A is δ(δg)^-closed, δcl(A)⊆U. For every subset A of X, αcl(A)⊆ δcl(A). And so we 
have, αcl(A)⊆U. Hence A is πgα -closed. 

ii. Let A be δ(δg)^-closed set and U be any π-open set containing A in (X, τ). By Remark 2.5 and 2.7(ii), every π-
open is ĝδ -open and A is δ(δg)^-closed, δcl(A)⊆U. By Remark 2.6(ii), scl(A)⊆ δcl(A). And so we have,  
scl(A)⊆U. Hence A is πgs -closed. 

iii. Let A be δ(δg)^-closed set and U be any π-open set containing A in (X, τ). By Remark 2.5 and 2.7(ii), every π-
open is ĝδ -open and A is δ(δg)^-closed, δcl(A)⊆U. By Remark 2.6(i), spcl(A) ⊆ δcl(A). And so we have,  
spcl(A)⊆U. Hence A is πgsp -closed. 

 
Example: X = {a, b, c}, τ = {X, φ, {a, b}, {b, c},{b}}. In this topology, the set {b} is πgα-closed but not δ(δg)^-closed. 
 
Example: Let X = {a, b, c}, τ = {X, φ, {a, b}, {b, c}, {b}}. In this topology, the set {b} is πgs-closed but not δ(δg)-
losed 
 
Example: Let X = {a, b, c}, τ = {X, φ,{a, b}, {a},{b}}. In (X, τ) the set {a, b} is πgsp-closed but not δ(δg)^-closed. 
 
Remark 3.13: The results of Theorem 3.7 to Theorem 3.12 are illustrated in the following diagram.  

 
 
In the above diagram, A               B means, A implies B, but B does not imply A. 
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Remark 3.14: The following examples show that, the class δ(δg)^-closed sets are independent from the classes of g-
closed sets, δg-closed sets, sg-closed sets, gs-closed sets, αg-closed sets, * g-closed sets, ĝα -closed sets, #gs-closed 
sets, g*p –closed sets, ĝδ -closed sets, gp-closed sets, gsp-closed sets, ψ-closed sets, ψg-closed sets, gb-closed sets, 

*gψ -closedness and g*s-closed sets. 
 
Example: Let X = {a, b, c}, τ = {X, φ, {a}}. In this topology the set {c} is g-closed, δg-closed, sg-closed, gs-closed, 
αg-closed, * g-closed, ĝα -closed, #gs-closed, g*p -closed, ĝδ -closed, gp-closed, gsp-closed, ψ-closed, ψg-closed, 

gb-closed and *gψ -closed but not δ(δg)^-closed. 
 
Example: Let X = {a, b, c}, τ = {X, φ, {a, b}, {b, c}, {b}}. In this topology the set {a, b} is δ(δg)^-closed but not g-
closed, δg-closed, sg-closed, gs-closed, αg-closed, * g-closed, ĝα -closed, g*p -closed, ĝδ -closed, gp-closed, gsp-
closed, ψ-closed, ψg-closed, gb-closed and  but not δ(δg)^-closed. 
 
Example: Let X = {X, φ, {a}}, τ = {X, φ, {a}}. In this topology the set {b} is g*s-closed but not δ(δg)^-closed. 
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