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ABSTRACT
The study of gwa -continuous function in topological spaces is continued in this paper, which is used to define and
study strongly g@a -continuous functions. Further, we obtain basic properties and preservation theorems of strongly
gwa -continuous functions and relationship with other similar functions.
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1. INTRODUCTION

Levine [10] introduced the concept of generalized closed sets in topological spaces and class of topological spaces

called T, -spaces. Stronger forms of continuous functions have been introduced and investigated by several
2
mathematicians. Strongly continuous functions, perfectly continuous functions, completely continuous functions and
clopen continuous functions were introduced by Levine [9], Noiri [14], Munshi and Bassan [11] and Reilly and
Vamanamurthy [16] respectively. Ganster and Reilly [5] introduced contra continuous functions and almost s-
continuous functions. Erdal Ekici [6] introduced and studied a new class of functions called almost contra-pre-
continuous functions which generalize classes of regular set-connected [5], contra-pre continuous [7], contra
continuous [4], almost s-continuous [13], perfectly continuous functions [14] and prefectly g* pre-continuous functions

[15]. In this paper, we define and study the strongly Q@a -continuous functions and strongly ga)a*-continuous
functions in topological spaces.

2. PRELIMINARIES

Throughout this paper, (X, 7), (Y, o) and (Z, 77) (or simply X, Y and Z) always mean topological spaces on
which no separation axioms are assumed unless explicitly stated.

Definition 2.1: A subset A of aspace X is called
(i) Semiopen set [8] if A c cl(int(A)).
(i) «-openset[12]if Acint(cl(int(A))).
(iii) Regular open set [17] if A=int(cl(A)).

The complements of the above mentioned sets are called their respective closed sets.

Definition 2.2 [1]: A subset A of X is wa -closed if aCl(A) U whenever AcU and U is @-openin X .

Definition 2.3 [2]: A subset A of X is gwa -closed if acl(A) U whenever AcU and U is @« -open in
X . The family of all gwa -closed subsets of the space X is denoted by GwaC(X).
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Definition 2.4 [2]: The intersection of all J@« -closed sets containing a set A is called gwa -closure of A and is
denoted by gwa -Cl(A).

Aset A is gwa -closed if and only if gwa -cl(A) = A.

Definition 2.5 [2]: The union of all g@a -open sets contained in A is called gwa -interior of A and is denoted by
goa -int(A).

Aset A is gwa -open if and only if oo -int(A) = A.

Definition 2.6 [3]: A function f : X — Y iscalled gwa -continuous, if the inverse image of every closed set in Y
is goa -closed in X .

3. STRONGLY gwa -CONTINUOUS FUNCTIONS

In this section, the notion of a new class of function called strongly g@a -continuous function is introduced and
obtained some of their properties. Also, the relationships with existing functions are discussed.

Definition 3.1: A function f : X —Y is called strongly gwer -continuous, if f (V) is closed in X for every
Jwo -closed set Vin Y.

Theorem 3.2: A function f : X —Y s strongly gwa -continuous if and only if the inverse image of each g« -
open set in Y is an open set in X.

Proof: Let f: X — Y isstrongly gwa -continuous and V be gwa -opensetin Y. ThenY -V is gwa -closed set

in Y. Since f is strongly ga -continuous, f (Y —=V)= X — f (V) is closed in X. Therefore f (V) is an
open in X.

Conversely: Assume f ’1(\/) is an open set in X for every gwa -openset Vin Y. Let F be a Jwa -closed set in Y,
then Y - Fisa gma -open set in Y. By assumption f (Y —F) = X — f (F) is an open set in X, which implies

that f (F) is closed set in X. Therefore f is strongly gaer -continuous.

Remark 3.3: Every strongly g@a -continuous function is continuous but converse need not be true in general.

Example 3.4: LetX=Y={abc}and 7 ={ X, ¢, {a}, {ac}}ad u={V ¢, {a}} Definea
function f:X Y by f(a)=a, f(b)=Db and f(c)=c. Then f is continuous but not strongly gwc -
continuous, since for gawar -closed set {c} in Y, f *({c}) = {c} is not closed in X.

Theorem 3.5: For a function f : X — Y the followings are equivalent:
(i) f isstrongly gwa -continuous.
(i) Foreach X e X and each gwa -openset VinY with f(X) €V , there exists an open set U in X such that
xeU and f(U)cV.

(i) (V) cint(f (V) foreach gma -open set V of Y.

(iv) f'(F) is closed in X for every gwar -closed set F of Y.

Proof:
(i)=> (ii): Let X X and V be a g« -open set in Y containing f(x). By hypothesis, f (V) is an open set in X
suchthat xe f (V). Put U = f *(V), then xeU and f(U)= f(f*(V))cV . Thus (i) holds
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(i) = (iii): Let V be any gwa -opensetin Y and X € f’l(\/) . by (ii), there exists an open set U in X such that
xeX and f(U)cV. This implies xeU cintU) cint(f(V)), which implies X eint(f (V).
Therefore, f (V) cint(f(V)).

(iii)=(iv): Let F be any gwa -closed set of Y. Set V =Y —F, then V is gwa -open in Y. By (iii)
f (V) cint(f (V). Thatis f (Y —F)cint(f ‘(Y —F)). This implies X — f *(F) < X —cl(f *(F)).
This implies cl(f *(F)c f*(F). But f*(F)ccl(f*(F)) is always true. Therefore,
f *(F) =cl(f *(F)). This shows that, f *(F) is closed in X.

(vi)=> (i) Let VV be any g@e -openset of Y. Set F =Y —V . Then Fis g« -closed set of Y. By (iv), f *(F) is
g g

closed in X. But f *(F)=f (Y =V)=X—f (V). This implies f (V) is an open set in X. Therefore f is
strongly gwa -continuous.

Theorem 3.6: Let f: X —Y be a function and {A :i€ 1} be an open cover of X. Then f is strongly gwo -

continuous, if the restricted function f |Ai: A —Y isstrongly gwa -continuous for each i € I .

Proof: Let V be a gwa -open set of Y. Since f |Ai is strongly gwa -continuous, ( f |,3ﬁ )™ (V) isan openin A.
Since A is an open set in X, (f llﬁ Y'(V) is open in X for each iel. Therefore

f\V)= me’l(\/):U{Aimf’l(V):ieI}:U{(f |,*)71(V):ie|}isopeninx. Hence f is strongly

gwa -continuous.

Theorem 3.7: If f: X —Y isstrongly gwa -continuous, then the restriction function f |,: A—Y is strongly
gwa -continuous.

Proof: Let V be gwa -open set of Y. Since f is strongly g« -continuous, f "1(V) is an open set in X. Since A is

open in X, implies (f |,)™"(V)=An f (V) isopenin Aand hence f |, is strongly gwa -continuous.

Theorem 3.8: Let Ybe T, -spaceand f : X — Y be any function. Then followings are equivalent

goa
(i) fisstrongly gwa -continuous function.
(if) fis continuous.

Proof:
(i) = (ii) : Obvious because every open set is g@a -open set.

(i) = (i) : Suppose F is g@a -closed set in Y and Y is T, -space. This implies F is closed in Y. Since f is

continuous, f ’l(F) is closed in X. Hence f is strongly gwa -continuous function.

Remark 3.9: Every strongly g@a -continuous function is g@a -irresolute. But converse need not be true in general.

Example 3.10: LetX=Y={abc}and 7 ={ X, ¢, {a} {bc}}and g ={Y, ¢, {a}} Letfunction
f: X —Y be an identity function, then f is Qwa -irresolute but not strongly ga -continuous. Since for
gowa -closed set {c} inY, f *({c}) = {c} is not closed in X.

Remark 3.11: Every strongly continuous function is strongly g@a -continuous but not conversely.

© 2016, IJMA. All Rights Reserved 136



S. S. Benchalli, P. G. Patil* and Pushpa M. Nalwad /
Strongly @ -Continuous Functions in Topological Spaces / IJMA- 7(10), Oct.-2016.

Example 3.12: LetX=Y={abc}and 7 ={ X, ¢, {ab}, {bc}, {b}}and g ={Y ¢,{a}
{ a c }}. Define a function f:X —>Y by f(a)=b, f(b)=a and f(c)=c then f is strongly g« -

continuous but not strongly continuous. Because for g -open set {a} in Y, f '({a}) = {b} is open but not
closed in X.

Theorem 3.13: Let f: X —>Y and g:Y — Z be two functions. Then
(i) If f and g arestrongly gwa -continuous functions, then (g o f) is strongly gwe -continuous.
(i) If f iscontinuousand g is strongly gwa -continuous, then (g o ) is strongly g -continuous.
(iii) If f is gwa -continuous and g is strongly gwa -continuous, then (g o f) is gwa -irresolute.
(iv) If T isstrongly gwa -continuous and g is g@a -continuous, then (g o f) is continuous.
(v) If f isstrongly gma -continuous and g is continuous then (g o f) is continuous function.

4. STRONGL gwo -CONTINUOUS FUNCTIONS

Definition 4.1: A function f : X —Y s said to be strongly geea -continuous, if f (V) is « -closed in X for
every gwa -closed setVin'Y.

Theorem 4.2: A function f : X —Y is strongly ga)a* -continuous, if and only if the inverse image of each g« -
opensetinYisan « -open setin X.

Remark 4.3: Every strongly ga)a*-continuous function is & -continuous, but converse need not be true in general.

Example 4.4: LetX=Y={abc}and 7 ={ X, ¢, {a},{bc}}ad g ={Y ¢, {al}} Thenan
identity function f : X —Y is «a -continuous, but not strongly ga)a* -continuous. Because for gwa -open set {
actiny, f*{ac} ={ac}isnot a-openinX.

Theorem 4.5: Let X be a topological space, Y is Tgwa -space and f : X — Y s any function, then followings are
equivalent:

(i) f isstrongly ga)a* -continuous function.

(i) f is o -continuous.

Proof:
(i) = (i) : Obvious because every open set is g@a -open set.

(i) = (i) : Suppose F is g -closed in Y and Y is T _-space.This implies F is closed in Y. Since f is « -

goa

continuous f (F) is e -closed in X. Hence f is strongly gwa” -continuous function.

Remark 4.6: Every strongly ga)a*-continuous function is gwa -irresolute, but converse need not be true in
general.

Example 47: LetX=Y={abc}and 7 ={ X, ¢, {a}, {bc}}adpu={Y ¢, {a} {ac}}
Then an identity function f:X —Y is goa -irresolute but not strongly ga)a*-continuous, since { a, b } is

goa -opensetin Y, but f ({a,b}) ={a,b} is not & -open in X.

Theorem 4.8: The followings are equivalent for the function f : X —Y :

(i) f isstrongly ga)a* -continuous.
(i) For each X € X and each gwa -open set V in Y with f (X) €V, there exist an « -open set U in X such
that XxeU and f(U)cV .

© 2016, IJMA. All Rights Reserved 137



S. S. Benchalli, P. G. Patil* and Pushpa M. Nalwad /
Strongly @ -Continuous Functions in Topological Spaces / IJMA- 7(10), Oct.-2016.
(i) f(V)ca—int(f (V) foreach gwa -opensetV of Y.
(iv) f'(F) is a -closed in X for every gma -closed set F of Y.

Proof. Proof is obvious.

Definition 4.9: A function f : X —Y is said to be perfectly gae -continuous, if f (V) is clopen in X for every
gwa -opensetVinY.

Theorem 4.10: A function f : X —Y s perfectly gwa -continuous, if and only if the inverse image of every
Jwo -closed set in Y is clopen in X.

Proof: Similar to the proof of theorem 3.2.

Remark 4.11: Every perfectly g@a -continuous function is continuous function. But converse need not be true in
general.

Example 4.12: LetX=Y={abc}and 7 ={ X, ¢, {a} {bc}}tand g ={V, ¢, {a}} Thenan
identity function f : X —'Y s continuous, but not perfectly gwa -continuous. Because for gma -open set {a, C}
inY, f*({a,c}) ={a,c} isnotclopen in X.

Remark 4.13: Every perfectly gaa -continuous function is strongly gaa -continuous function. But converse need
not be true in general.

Example 4.14: LetX=Y={abc}and 7 ={ X, ¢, {a}, {ab}, {ac}}and u={Y ¢, {a}}
Then an identity function f : X —Y isstrongly gwa -continuous, but not perfectly g@a -continuous. Because for

gowa -open set {a,b} iny, f *({a,b}) ={a,b} is not clopen in X.

Remark 4.15: Every perfectly gwa -continuous function is perfectly continuous function, But not conversely.

Example 4.16: LetX=Y={abc}andz ={ X, ¢, {a}, {b}. {ab}, {ac}}adu={Y, ¢{a
}}. Define a function f: X —»Y by f(a)=b, f(b)=a and f(c)=c Then f is perfectly continuous, but

not perfectly gma -continuous, because for gwer -open set { a, ¢ } inY, f*({a,c}) ={b,c} is closed but not
open in X.

Remark 4.17: The converse of the above remark 4.15 is true if Y is T, -space.

Proof: Let G be a gwa -open in Y. Since Y is Tgw -space, G is an open set in Y. Since f is perfectly continuous,

f (G) is clopen in X. Therefore f is perfectly goa -continuous.
Theorem 4.18: Every perfectly gaa -continuous function in finite T, -space is strongly continuous.

Proof: Obvious, because every finite T, -space is discrete space. Therefore every subset of X is open and hence

gwa -open. Since f is perfectly gae -continuous function, f ™ (A) is clopen for every subset of Y. Therefore f
is strongly continuous.

Theorem 4.19: Let X be a discrete topological space, Y be any topological space and f : X — Y be a function. Then
the followings are equivalent:
(i) f isperfectly gwa -continuous.

(i) f isstrongly gwa -continuous.
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Proof:
(i) = (ii) : Follows from every clopen set is open.

(ii)) = (i) : Let V be gwa -open in Y. By hypothesis, f (V) is open in X. Since X is discrete space, f (V) is
also closed set in X. Therefore f is perfectly gwca -continuous.

Theorem 4.20: A function f: X —Y s perfectly gwa -continuous if the graph function g: X x X =Y,
defined by g(x) = (X, f(x)) foreach x € X , is perfectly gwea -continuous.

Proof. Let V be any gwa -open set of Y. Then X XV is gwa -open set of X xY . Since g is perfectly goo -

continuous, f (V) =g (X xV) is clopen in X. Therefore fis perfectly gae -continuous.

Theorem 4.21: If f: X —Y s perfectly gwea -continuous, then the restricted function f |,: A—Y is perfectly
gwo -continuous for any subset A of X.

Proof: Let V be a gwar -open set of Y. Since f is perfectly gwer -continuous, f (V) is clopen set in X. Then

(f1,)7"(V)=An f (V) isclopenin Aand hence f |, is perfectly gwa -continuous.

Theorem 4.22: Let f: X —>Y and g:Y — Z be two functions.

(i) If f and g are perfectly Qwa -continuous functions, then (go f) is perfectly gma -continuous
function.

(i) If f is perfectly gwa -continuous function and g is gma -irresolute, then (g o f) is perfectly goo -
continuous function.

(iii) If f is perfectly continuous function and g is strongly continuous, then (go f) is perfectly goo -
continuous function.

(iv) If f is perfectly gwa -continuous function and g is g« -continuous, then (g o f) is perfectly goo -
continuous function.

(v) If f is perfectly gwaor -continuous function and @ is gwar -continuous, then (go f) is totally o -
continuous function.

(vi) If f is gwa -continuous function and g is strongly continuous, then (geo f) is gwa -continuous
function.

(vii)If f is gwa -irresolute function and g is perfectly gaa -continuous, then (g o f) is gwa -irresolute
function.

Proof:
(i) Suppose Fisa gwa -closed set in Z. Since ¢ is perfectly gwe -continuous function g"l(F) is clopen in
Y. Now f is perfectly gwa -continuous function and every closed set is Qo -closed set, implies

g '(F) is gwa -closed setin Y and f (g™ (F))=(go f)*(F) is clopen in X. Therefore (go f) is
perfectly gwa -continuous.

(if) Suppose F isa gwa -closed set in Z. Since g is g -irresolute, g’l(F) is Jowo -closed set in Y. Now

f is perfectly goa -continuous function, f (g™ (F))=(ge f)™(F) is clopen in X. Therefore
(go f) is perfectly gwa -continuous.

(iif) Suppose F is a gwa -closed set in Z. Since g is strongly continuous, g"l(F) is clopen and hence g« -
open setin Y. Now f is perfectly gma -continuous function, f (g ™*(F))=(go f)™(F) is clopen in
X. Therefore (g o f) is perfectly gwa -continuous.

(iv) Suppose F is an open set in Z. Since g is g@a -continuous, g’l(F) is gwa -open setin Y. Now f is
perfectly ga -continuous function, f (g™ (F))=(go f)™*(F) is clopen in X. Therefore (go f) is
perfectly gwa -continuous.
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(v) Suppose Fisan ¢ -open setin Z. Since g is ga)a* -continuous, g"l(F) is goa -opensetinY. Now f

is perfectly gaa -continuous function, f (g™ (F))=(go f)™(F) is clopen in X. Therefore (go f)
is totally ¢ -continuous.
(vi) Let G be anopensetinZ. Since @ is strongly continuous, ¢ - (G) is clopen in Y and hence open in Y.

(vii) Since f is gwa -continuous function, (g™ (G))=(go f)™(G) is gwa -open in X. Hence
(go f) is gwa -continuous.

(viii) Let G be a gwa -open set in Z. Since ( is perfectly gwa -continuous, g"l(G) is clopen and hence it is
gwa -openin Y. Againsince f is gwa -irresolute, (g7 (G))=(go f)(G) is gwa -open in X.
Therefore (g o f) is gwa -irresolute.

Definition 4.23: A function f : X —Y s called completely gma -continuous, if the inverse image of every o« -
open set in Y is regular open in X.

Theorem 4.24: A function f : X —Y is completely gwa -continuous, if and only if the inverse image of every
Jwo -closed set in Y is regular closed in X.

Proof: Similar to the proof of theorem 3.2.

Remark 4.25: Every completely g@a -continuous function is continuous, but converse need not be true in general

Example 4.26: LetX=Y={ab,c}and 7 ={ X, ¢, {ab}, {bc} {b}}and u={Y ¢, {a}}
Define a function f : X —Y by f(a)=b, f(b)=a and f(c)=c. Then f is continuous but not completely

gwa -continuous, since for the gwer -open set {a,c} inY, f *({a,c}) ={b,c} is not regular open in X.

Remark 4.27: Every completely gwe -continuous function is completely continuous. But converse need not be true in
general.

Example 4.28: LetX=Y={abc}and 7 ={ X, ¢, {a},{bc}}rand g ={V, ¢,{a}} Thenan
identity function f : X —'Y is completely continuous, but not completely g -continuous, since for the g« -
openset { a,c }inY, f*({a,c}) ={a,c} isnot regular open in X.

Remark 4.29: Every completely g -continuous function is strongly gwe -continuous. But converse need not be
true in general.

Example 4.30: LetX=Y={abc}and 7 ={ X, ¢, {ab}, {bc} {b}}and g ={V, ¢,{a} {a
¢ }}. Define a function f:X —>Y by f(a)=b, f(b)=a and f(c)=c. Then f is strongly goc -
continuous, but not completely gea -continuous, since for the gwer -open set {a,b} in v, f*({a,b}) ={a,b} is

not regular open in X.

Theorem 4.31: If a function f : X — Y is completely continuous and Y is Tgwa -space, then f is completely g« -
continuous.

Proof: Let G be a completely Jwco -open setin Y. Since Y is Tgm -space, G is an open in Y. Since f is completely

continuous, f *(G) is regular open in X. Therefore, f is completely gaa -continuous function.

Theorem 4.32: If a function f : X —Y is completely gaa -continuous if the graph function g: X x X =Y,
defined by g(x) = (X, f (X)) for each X € X , is completely gmc -continuous.

Proof: Let V be any gwa -open set in Y. Then X xV is a gwa -open set of X xY . Since g is completely

gwa -continuous, (V) =g (X xV) is regular open in X. Thus f is completely gae -continuous.
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Lemma 4.33 [18]: Let Y be preopen subset of X. Then Y NU is regular open in Y for each regular open set U of X.

Theorem 4.34: Let A be preopen of X. If f: X —Y is completely gwa -continuous, then the restricted function
f | A—>Y isperfectly gwa -continuous.

Proof: Let Abea ga -open setof Y. Then, (f )" (V) =An f(V).Since f (V) is regular open and A is

preopen, by lemma 4.33, (f |,)™'(V) is regular open in the relative topology of A. Hence f |, is completely gwe -
continuous.

Theorem 4.14: Let T : X —>Y and g:Y — Z be two functions. Then

(i) If f iscompletely continuous and ¢ is completely gwa -continuous, then (g o f) is completely gwa -
continuous.

(i) If f is completely gwa -continuous and g is g« -irresolute, then (go f) is completely goa -
continuous.

(iii) If f is completely gwa -continuous and @ is strongly gwa -continuous, then (g o f) is completely
gwa -continuous.

Proof.
(i) Let G bea gwa -open setin Z. Then g"l(G) is regular open in Y as g is completely gwa -continuous.

So, g *(G) is open in Y. Since f is completely continuous, f (g (G))=(geo f)™(G) is regular
open in X. Hence (g o f) is completely gwa -continuous.
(i) Let G be a Qo -open set in Z. Since ¢ is gwa -irresolute, g '(G) is gwa -open in Y. Since f is

completely gwa -continuous, (g™ (G))=(go f)™(G) is regular open in X. Hence (go f) is
completely gwa -continuous.

(iii) Let G be a gwa -open set in Z. As @ is strongly g -continuous, g’l(G) is open and hence oo -
open in Y. Again Since f is completely gwar -continuous, f (g™ (G)) = (g o f)™(G) is regular open
in X. Hence (g o f) iscompletely gwa -continuous.
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