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ABSTRACT 
The study of ωαg -continuous function in topological spaces is continued in this paper, which is used to define and 
study strongly ωαg -continuous functions. Further, we obtain basic properties and preservation theorems of strongly 
ωαg -continuous functions and relationship with other similar functions. 
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1. INTRODUCTION 
  
Levine [10] introduced the concept of generalized closed sets in topological spaces and class of topological spaces 
called 

2
1T -spaces. Stronger forms of continuous functions have been introduced and investigated by several 

mathematicians. Strongly continuous functions, perfectly continuous functions, completely continuous functions and 
clopen continuous functions were introduced by Levine [9], Noiri [14], Munshi and Bassan [11] and Reilly and 
Vamanamurthy [16] respectively. Ganster and Reilly [5] introduced contra continuous functions and almost s-
continuous functions. Erdal Ekici [6] introduced and studied a new class of functions called almost contra-pre-
continuous functions which generalize classes of regular set-connected [5], contra-pre continuous [7], contra 
continuous [4], almost s-continuous [13], perfectly continuous functions [14] and prefectly g* pre-continuous functions 
[15]. In this paper, we define and study the strongly ωαg -continuous functions and strongly *ωαg -continuous 
functions in topological spaces. 

 
2. PRELIMINARIES 
 
Throughout this paper, (X, τ ), (Y, σ ) and (Z, η ) (or simply X , Y  and Z ) always mean topological spaces on 
which no separation axioms are assumed unless explicitly stated. 

 
Definition 2.1: A subset A  of a space X  is called 

(i) Semiopen set [8] if ))(( AintclA⊂ . 
(ii) α -open set [12] if )))((( AintclintA⊂ .  
(iii) Regular open set [17] if ))((= AclintA . 

 
The complements of the above mentioned sets are called their respective closed sets.  
 
Definition 2.2 [1]: A subset A  of X  is ωα -closed if UAcl ⊂)(α  whenever UA⊂  and U  is ω -open in X .  
 
Definition 2.3 [2]: A subset A  of X  is ωαg -closed if UAcl ⊂)(α  whenever UA⊂  and U  is ωα -open in 
X . The family of all ωαg -closed subsets of the space X  is denoted by )(XCGωα .  
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Definition 2.4 [2]: The intersection of all ωαg -closed sets containing a set A  is called ωαg -closure of A  and is 
denoted by ωαg - )(Acl .  
 
A set A  is ωαg -closed if and only if ωαg - AAcl =)( . 
 
Definition 2.5 [2]: The union of all ωαg -open sets contained in A  is called ωαg -interior of A  and is denoted by 
ωαg - )(Aint . 

 
A set A  is ωαg -open if and only if ωαg - AAint =)( .  
 
Definition 2.6 [3]: A function YXf →:  is called ωαg -continuous, if the inverse image of every closed set in Y  
is ωαg -closed in X .  
 
3. STRONGLY ωαg -CONTINUOUS FUNCTIONS 
 
In this section, the notion of a new class of function called strongly ωαg -continuous function is introduced and 
obtained some of their properties. Also, the relationships with existing functions are discussed. 
 
Definition 3.1: A function YXf →:  is called strongly ωαg -continuous, if )(1 Vf −  is closed in X for every 
ωαg -closed set V in Y. 

 
Theorem 3.2: A function YXf →:  is strongly ωαg -continuous if and only if the inverse image of each ωαg -
open set in Y is an open set in X. 
 
Proof: Let YXf →:  is strongly ωαg -continuous and V be ωαg -open set in Y. Then Y - V is ωαg -closed set 

in Y. Since f is strongly ωαg -continuous, )(=)( 11 VfXVYf −− −−  is closed in X. Therefore )(1 Vf −  is an 
open in X. 
 
Conversely: Assume )(1 Vf −  is an open set in X for every ωαg -open set V in Y. Let F be a ωαg -closed set in Y, 

then Y - F is a ωαg -open set in Y. By assumption )(=)( 11 FfXFYf −− −−  is an open set in X, which implies 

that )(1 Ff −  is closed set in X. Therefore f is strongly ωαg -continuous.  
 
Remark 3.3: Every strongly ωαg -continuous function is continuous but converse need not be true in general.  
 
Example 3.4: Let X = Y = {  a, b, c }  and τ  = {  X, φ , {  a } , {  a, c }}  and µ  = {  Y, φ , {  a }} . Define a 
function YXf →:  by aaf =)( , bbf =)(  and ccf =)( . Then f is continuous but not strongly ωαg -

continuous, since for ωαg -closed set }{c  in Y, })({1 cf −  = }{c  is not closed in X.  
 

Theorem 3.5: For a function YXf →:  the followings are equivalent:  
(i) f  is strongly ωαg -continuous.  
(ii) For each Xx∈  and each ωαg -open set V in Y with Vxf ∈)( , there exists an open set U in X such that 

Ux∈  and VUf ⊂)( . 

(iii) )(()( 11 VfintVf −− ⊂  for each ωαg -open set V of Y. 

(iv) )(1 Ff −  is closed in X for every ωαg -closed set F of Y. 
 
Proof: 
(i)⇒ (ii): Let Xx∈  and V be a ωαg -open set in Y containing f(x). By hypothesis, )(1 Vf −  is an open set in X 

such that )(1 Vfx −∈ . Put )(= 1 VfU − , then Ux∈  and VVffUf ⊂− ))((=)( 1 . Thus (ii) holds 
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(ii)⇒ (iii): Let V  be any ωαg -open set in Y  and )(1 Vfx −∈ . by (ii), there exists an open set U in X such that 

Xx∈  and VUf ⊂)( . This implies ))(()( 1 VfintUintUx −⊂⊂∈ , which implies )(( 1 Vfintx −∈ . 

Therefore, ))(()( 11 VfintVf −− ⊂ . 
 
(iii)⇒ (iv): Let F be any ωαg -closed set of Y. Set FYV −= , then V is ωαg -open in Y. By (iii) 

))(()( 11 VfintVf −− ⊂ . That is ))(()( 11 FYfintFYf −⊂− −− . This implies ))(()( 11 FfclXFfX −− −⊂− . 

This implies )())(( 11 FfFfcl −− ⊂ . But ))(()( 11 FfclFf −− ⊂  is always true. Therefore, 

))((=)( 11 FfclFf −− . This shows that, )(1 Ff −  is closed in X. 
 
(vi)⇒ (i): Let V be any ωαg -open set of Y. Set VYF −= . Then F is ωαg -closed set of Y. By (iv), )(1 Ff −  is 

closed in X. But )(=)(=)( 111 VfXVYfFf −−− −− . This implies )(1 Vf −  is an open set in X. Therefore f is 
strongly ωαg -continuous.  
 
Theorem 3.6: Let YXf →:  be a function and }:{ IiAi ∈  be an open cover of X. Then f is strongly ωαg -

continuous, if the restricted function YAf
iA →:|  is strongly ωαg -continuous for each Ii∈ . 

 
Proof: Let V be a ωαg -open set of Y. Since 

iAf |  is strongly ωαg -continuous, )()|( 1 Vf
iA

−  is an open in iA . 

Since iA  is an open set in X, )()|( 1 Vf
iA

−  is open in X for each Ii∈ . Therefore 

}:)()|{(=}:)({=)(=)( 1111 IiVfIiVfAVfXVf
iAi ∈∈∩∩ −−−−



 is open in X. Hence f  is strongly 

ωαg -continuous.  
 
Theorem 3.7: If YXf →:  is strongly ωαg -continuous, then the restriction function YAf A →:|  is strongly 
ωαg -continuous. 

 
Proof: Let V be ωαg -open set of Y. Since f is strongly ωαg -continuous, )(1 Vf −  is an open set in X. Since A is 

open in X, implies )(=)()|( 11 VfAVf A
−− ∩  is open in A and hence Af |  is strongly ωαg -continuous.  

 
Theorem 3.8: Let Y be ωαgT -space and YXf →:  be any function. Then followings are equivalent 

(i) f is strongly ωαg -continuous function. 
(ii) f is continuous. 

 
Proof: 
( ) ( ) :i ii⇒  Obvious because every open set is ωαg -open set. 
 
( ) ( ) :ii i⇒  Suppose F is ωαg -closed set in Y and Y is ωαgT -space. This implies F is closed in Y. Since f is 

continuous, )(1 Ff −  is closed in X. Hence f is strongly ωαg -continuous function.  
 
Remark 3.9: Every strongly ωαg -continuous function is ωαg -irresolute. But converse need not be true in general.  
 
Example 3.10: Let X = Y = {  a, b, c }  and τ  = {  X, φ , {  a } , {  b, c }}  and µ  = {  Y, φ , {  a }} . Let function 

YXf →:  be an identity function, then f  is ωαg -irresolute but not strongly ωαg -continuous. Since for 

ωαg -closed set }{c  in Y, })({1 cf −  = }{c  is not closed in X.  
 
Remark 3.11: Every strongly continuous function is strongly ωαg -continuous but not conversely.  
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Example 3.12: Let X = Y = {  a, b, c }  and τ  = {  X, φ , {  a, b } , {  b, c } , {  b }}  and µ  = {  Y, φ , {  a } ,       
{  a, c }} . Define a function YXf →:  by baf =)( , abf =)(  and ccf =)(  then f  is strongly ωαg -

continuous but not strongly continuous. Because for ωαg -open set }{a  in Y, })({1 af −  = }{b  is open but not 
closed in X.  
 
Theorem 3.13: Let YXf →:  and ZYg →:  be two functions. Then 

(i) If f  and g  are strongly ωαg -continuous functions, then )( fg   is strongly ωαg -continuous. 
(ii) If f  is continuous and g  is strongly ωαg -continuous, then )( fg   is strongly ωαg -continuous. 
(iii) If f  is ωαg -continuous and g  is strongly ωαg -continuous, then )( fg   is ωαg -irresolute. 
(iv) If f  is strongly ωαg -continuous and g  is ωαg -continuous, then )( fg   is continuous. 
(v) If f  is strongly ωαg -continuous and g  is continuous then )( fg   is continuous function. 

 
4.  STRONGL ωαg -CONTINUOUS FUNCTIONS 
  
Definition 4.1: A function YXf →:  is said to be strongly *ωαg -continuous, if )(1 Vf −  is α -closed in X for 
every ωαg -closed set V in Y.  
 
Theorem 4.2: A function YXf →:  is strongly *ωαg -continuous, if and only if the inverse image of each ωαg -
open set in Y is an α -open set in X. 
 
Remark 4.3: Every strongly *ωαg -continuous function is α -continuous, but converse need not be true in general.  
 
Example 4.4: Let X = Y = {  a, b, c }  and τ  = {  X, φ , {  a } , {  b, c }}  and µ  = {  Y, φ , {  a }} . Then an 

identity function YXf →:  is α -continuous, but not strongly *ωαg -continuous. Because for ωαg -open set {  

a, c }  in Y, ({1−f  a, c })  = {  a, c }  is not α -open in X.  
 
Theorem 4.5: Let X be a topological space, Y is ωαgT -space and YXf →:  is any function, then followings are 
equivalent: 

(i) f  is strongly *ωαg -continuous function. 
(ii) f  is α -continuous. 

 
Proof: 
( ) ( ) :i ii⇒  Obvious because every open set is ωαg -open set. 
 
( ) ( ) :ii i⇒  Suppose F is ωαg -closed in Y and Y is ωαgT -space.This implies F is closed in Y. Since f  is α -

continuous )(1 Ff −  is α -closed in X. Hence f  is strongly *ωαg -continuous function.  
 
Remark 4.6: Every strongly *ωαg -continuous function is ωαg -irresolute, but converse need not be true in 
general.  
 
Example 4.7: Let X = Y = {  a, b, c }  and τ  = {  X, φ , {  a } , {  b, c }}  and µ  = {  Y, φ , {  a } , {  a, c }} . 

Then an identity function YXf →:  is ωαg -irresolute but not strongly *ωαg -continuous, since {  a, b }  is 

ωαg -open set in Y, but },{=}),({1 babaf −  is not α -open in X.  
 
Theorem 4.8: The followings are equivalent for the function YXf →: : 

(i) f  is strongly *ωαg -continuous. 
(ii) For each Xx∈  and each ωαg -open set V in Y with Vxf ∈)( , there exist an α -open set U in X such 

that Ux∈  and VUf ⊂)( . 
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(iii) )(()( 11 VfintVf −− −⊂α  for each ωαg -open set V of Y. 

(iv) )(1 Ff −  is α -closed in X for every ωαg -closed set F of Y. 
 
Proof. Proof is obvious.  
 
Definition 4.9: A function YXf →:  is said to be perfectly ωαg -continuous, if )(1 Vf −  is clopen in X for every 
ωαg -open set V in Y.  

 
Theorem 4.10: A function YXf →:  is perfectly ωαg -continuous, if and only if the inverse image of every 
ωαg -closed set in Y is clopen in X. 

 
Proof: Similar to the proof of theorem 3.2.  
 
Remark 4.11: Every perfectly ωαg -continuous function is continuous function. But converse need not be true in 
general.  
 
Example 4.12: Let X = Y = {  a, b, c }  and τ  = {  X, φ , {  a } , {  b, c }}  and µ  = {  Y, φ , {  a }} . Then an 
identity function YXf →:  is continuous, but not perfectly ωαg -continuous. Because for ωαg -open set },{ ca  

in Y, },{=}),({1 cacaf −  is not clopen in X.  
 
Remark 4.13: Every perfectly ωαg -continuous function is strongly ωαg -continuous function. But converse need 
not be true in general.  
 
Example 4.14: Let X = Y = {  a, b, c }  and τ  = {  X, φ , {  a } , {  a, b } , {  a, c }}  and µ  = {  Y, φ , {  a }} . 
Then an identity function YXf →:  is strongly ωαg -continuous, but not perfectly ωαg -continuous. Because for 

ωαg -open set },{ ba  in Y, },{=}),({1 babaf −  is not clopen in X.  
 
Remark 4.15: Every perfectly ωαg -continuous function is perfectly continuous function, But not conversely.  
 
Example 4.16: Let X = Y = {  a, b, c }  and τ  = {  X, φ , {  a } , {  b } , {  a, b } , {  a, c }}  and µ  = {  Y, φ ,{  a 
}} . Define a function YXf →:  by baf =)( , abf =)(  and ccf =)(  Then f  is perfectly continuous, but 

not perfectly ωαg -continuous, because for ωαg -open set {  a, c }  in Y, },{=}),({1 cbcaf −  is closed but not 
open in X.  
 
Remark 4.17: The converse of the above remark 4.15 is true if Y is ωαgT -space. 
 
Proof: Let G be a ωαg -open in Y. Since Y is ωαgT -space, G is an open set in Y. Since f is perfectly continuous, 

)(1 Gf −  is clopen in X. Therefore f  is perfectly ωαg -continuous.  
 
Theorem 4.18: Every perfectly ωαg -continuous function in finite 1T -space is strongly continuous. 
 
Proof: Obvious, because every finite 1T -space is discrete space. Therefore every subset of X is open and hence 

ωαg -open. Since f  is perfectly ωαg -continuous function, )(1 Af −  is clopen for every subset of Y. Therefore f  
is strongly continuous.  
 
Theorem 4.19: Let X be a discrete topological space, Y be any topological space and YXf →:  be a function. Then 
the followings are equivalent: 

(i) f  is perfectly ωαg -continuous. 
(ii) f  is strongly ωαg -continuous. 
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Proof: 
( ) ( ) :i ii⇒  Follows from every clopen set is open. 
 
( ) ( ) :ii i⇒  Let V be ωαg -open in Y. By hypothesis, )(1 Vf −  is open in X. Since X is discrete space, )(1 Vf −  is 
also closed set in X. Therefore f is perfectly ωαg -continuous.  
 
Theorem 4.20: A function YXf →:  is perfectly ωαg -continuous if the graph function YXXg →×: , 
defined by ))(,(=)( xfxxg  for each Xx∈ , is perfectly ωαg -continuous. 
 
Proof. Let V be any ωαg -open set of Y. Then VX ×  is ωαg -open set of YX × . Since g  is perfectly ωαg -

continuous, )(=)( 11 VXgVf ×−−  is clopen in X. Therefore f is perfectly ωαg -continuous.  
 
Theorem 4.21: If YXf →:  is perfectly ωαg -continuous, then the restricted function YAf A →:|  is perfectly 
ωαg -continuous for any subset A of X. 

 
Proof: Let V be a ωαg -open set of Y. Since f  is perfectly ωαg -continuous, )(1 Vf −  is clopen set in X. Then 

)(=)()|( 11 VfAVf A
−− ∩  is clopen in A and hence Af |  is perfectly ωαg -continuous.  

 
Theorem 4.22: Let YXf →:  and ZYg →:  be two functions. 

(i) If f  and g  are perfectly ωαg -continuous functions, then ( )g f  is perfectly ωαg -continuous 
function. 

(ii) If f  is perfectly ωαg -continuous function and g  is ωαg -irresolute, then ( )g f  is perfectly ωαg -
continuous function. 

(iii) If f  is perfectly continuous function and g  is strongly continuous, then ( )g f  is perfectly ωαg -
continuous function. 

(iv) If f  is perfectly ωαg -continuous function and g  is ωαg -continuous, then ( )g f  is perfectly ωαg -
continuous function. 

(v) If f  is perfectly ωαg -continuous function and g  is *ωαg -continuous, then ( )g f  is totally α -
continuous function. 

(vi) If f  is ωαg -continuous function and g  is strongly continuous, then ( )g f  is ωαg -continuous 
function. 

(vii) If f  is ωαg -irresolute function and g  is perfectly ωαg -continuous, then ( )g f  is ωαg -irresolute 
function. 

 
Proof:  

(i) Suppose F is a ωαg -closed set in Z. Since g  is perfectly ωαg -continuous function )(1 Fg −  is clopen in 
Y. Now f  is perfectly ωαg -continuous function and every closed set is ωαg -closed set, implies 

)(1 Fg −  is ωαg -closed set in Y and )()(=))(( 111 FfgFgf −−−
  is clopen in X. Therefore )( fg   is 

perfectly ωαg -continuous. 

(ii) Suppose F is a ωαg -closed set in Z. Since g  is ωαg -irresolute, )(1 Fg −  is ωαg -closed set in Y. Now 

f  is perfectly ωαg -continuous function, )()(=))(( 111 FfgFgf −−−
  is clopen in X. Therefore 

)( fg   is perfectly ωαg -continuous. 

(iii) Suppose F is a ωαg -closed set in Z. Since g  is strongly continuous, )(1 Fg −  is clopen and hence ωαg -

open set in Y. Now f  is perfectly ωαg -continuous function, )()(=))(( 111 FfgFgf −−−
  is clopen in 

X. Therefore )( fg   is perfectly ωαg -continuous. 

(iv) Suppose F is an open set in Z. Since g  is ωαg -continuous, )(1 Fg −  is ωαg -open set in Y. Now f  is 

perfectly ωαg -continuous function, )()(=))(( 111 FfgFgf −−−
  is clopen in X. Therefore )( fg   is 

perfectly ωαg -continuous. 
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(v) Suppose F is an α -open set in Z. Since g  is *ωαg -continuous, )(1 Fg −  is ωαg -open set in Y. Now f  

is perfectly ωαg -continuous function, )()(=))(( 111 FfgFgf −−−
  is clopen in X. Therefore )( fg   

is totally α -continuous. 
(vi) Let G be an open set in Z. Since g  is strongly continuous, )(1 Gg −  is clopen in Y and hence open in Y.  

(vii) Since f  is ωαg -continuous function, )()(=))(( 111 GfgGgf −−−
  is ωαg -open in X. Hence 

)( fg   is ωαg -continuous. 

(viii) Let G be a ωαg -open set in Z. Since g  is perfectly ωαg -continuous, )(1 Gg −  is clopen and hence it is 

ωαg -open in Y. Again since f  is ωαg -irresolute, )()(=))(( 111 GfgGgf −−−
  is ωαg -open in X. 

Therefore )( fg   is ωαg -irresolute.  
 

Definition 4.23: A function YXf →:  is called completely ωαg -continuous, if the inverse image of every ωαg -
open set in Y is regular open in X.  
 
Theorem 4.24: A function YXf →:  is completely ωαg -continuous, if and only if the inverse image of every 
ωαg -closed set in Y is regular closed in X. 

 
Proof: Similar to the proof of theorem 3.2.  
 
Remark 4.25: Every completely ωαg -continuous function is continuous, but converse need not be true in general  
 
Example 4.26: Let X = Y = {  a, b, c }  and τ  = {  X, φ , {  a, b } , {  b, c } , {  b }}  and µ  = {  Y, φ , {  a }} . 
Define a function YXf →:  by baf =)( , abf =)(  and ccf =)( . Then f  is continuous but not completely 

ωαg -continuous, since for the ωαg -open set },{ ca  in Y, },{=}),({1 cbcaf −  is not regular open in X.  
 
Remark 4.27: Every completely ωαg -continuous function is completely continuous. But converse need not be true in 
general.  
 
Example 4.28: Let X = Y = {  a, b, c }  and τ  = {  X, φ , {  a } , {  b, c }}  and µ  = {  Y, φ , {  a }} . Then an 
identity function YXf →:  is completely continuous, but not completely ωαg -continuous, since for the ωαg -

open set {  a, c }  in Y, },{=}),({1 cacaf −  is not regular open in X.  
 
Remark 4.29: Every completely ωαg -continuous function is strongly ωαg -continuous. But converse need not be 
true in general.  
 
Example 4.30: Let X = Y = {  a, b, c }  and τ  = {  X, φ , {  a, b } , {  b, c } , {  b }}  and µ  = {  Y, φ , {  a } , {  a, 
c }} . Define a function YXf →:  by baf =)( , abf =)(  and ccf =)( . Then f  is strongly ωαg -

continuous, but not completely ωαg -continuous, since for the ωαg -open set },{ ba  in Y, },{=}),({1 babaf −  is 
not regular open in X.  
 
Theorem 4.31: If a function YXf →:  is completely continuous and Y is ωαgT -space, then f is completely ωαg -
continuous. 
 
Proof: Let G be a completely ωαg -open set in Y. Since Y is ωαgT -space, G is an open in Y. Since f  is completely 

continuous, )(1 Gf −  is regular open in X. Therefore, f  is completely ωαg -continuous function.  
 
Theorem 4.32: If a function YXf →:  is completely ωαg -continuous if the graph function YXXg →×: , 
defined by ))(,(=)( xfxxg  for each Xx∈ , is completely ωαg -continuous. 
 
Proof: Let V be any ωαg -open set in Y. Then VX ×  is a ωαg -open set of YX × . Since g  is completely 

ωαg -continuous, )(=)( 11 VXgVf ×−−  is regular open in X. Thus f  is completely ωαg -continuous.  
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Lemma 4.33 [18]: Let Y be preopen subset of X. Then UY ∩  is regular open in Y for each regular open set U of X.  
 
Theorem 4.34: Let A be preopen of X. If YXf →:  is completely ωαg -continuous, then the restricted function 

YAf A →:|  is perfectly ωαg -continuous. 
 
Proof: Let A be a ωαg -open set of Y. Then, )(=)()|( 11 VfAVf A

−− ∩ . Since )(1 Vf −  is regular open and A is 

preopen, by lemma 4.33, )()|( 1 Vf A
−  is regular open in the relative topology of A. Hence Af |  is completely ωαg -

continuous.  
 
Theorem 4.14: Let YXf →:  and ZYg →:  be two functions. Then 

(i) If f  is completely continuous and g  is completely ωαg -continuous, then )( fg   is completely ωαg -
continuous. 

(ii) If f  is completely ωαg -continuous and g  is ωαg -irresolute, then )( fg   is completely ωαg -
continuous. 

(iii) If f  is completely ωαg -continuous and g  is strongly ωαg -continuous, then )( fg   is completely 
ωαg -continuous. 

 
Proof.  

(i) Let G be a ωαg -open set in Z. Then )(1 Gg −  is regular open in Y as g  is completely ωαg -continuous. 

So, )(1 Gg −  is open in Y. Since f  is completely continuous, )()(=))(( 111 GfgGgf −−−
  is regular 

open in X. Hence )( fg   is completely ωαg -continuous. 

(ii) Let G be a ωαg -open set in Z. Since g  is ωαg -irresolute, )(1 Gg −  is ωαg -open in Y. Since f  is 

completely ωαg -continuous, )()(=))(( 111 GfgGgf −−−
  is regular open in X. Hence )( fg   is 

completely ωαg -continuous. 

(iii) Let G be a ωαg -open set in Z. As g  is strongly ωαg -continuous, )(1 Gg −  is open and hence ωαg -

open in Y. Again Since f  is completely ωαg -continuous, )()(=))(( 111 GfgGgf −−−
  is regular open 

in X. Hence )( fg   is completely ωαg -continuous.  
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