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ABSTRACT 
A Roman dominating function on a graph G = (V; E) is a function : V → {0 , 1, 2} satisfying the condition that every 
vertex u for which (u) = 0 is adjacent to at least one vertex v for which f(v) = 2: The weight of a Roman dominating 
function is the value f(V ) =∑ 𝑓𝑓𝑢𝑢∈𝑉𝑉 (u): The minimum weight of a Roman dominating function on a graph G is called the 
Roman dominating number of G: In this paper we study the strong Roman domination number of certain classes of 
graphs. 
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1. INTRODUCTION  
 
Let G = (V; E) be a graph of order |V| = n: For any vertex v ∈ V; the open neighborhood of v is the set N(v) = {u ∈ V: 
uv ∈ E} and the closed neighborhood is the set N[v] = n(v)∪{v}: For a set S⊆V; the open neighborhood is               
N(S) =  ⋃ N𝑣𝑣∈𝑆𝑆 (v) and the closed neighborhood is N[S] = N(S) ∪ S: 
 
Let v∈ S⊆V: Vertex u is called a private neighbor of v with respect to S (denoted by u is an S pn of v) if u ∈ N[v] \ 
N[S\{v}]: An S pn of v is external if it is a vertex of V S: The set pn(v, S) = N[v] \N[S\{v}] of all S pn's of v is called 
the private neighborhood set of v with respect to S: The set S is said to be irredundant if every v ∈ S; pn(v; S) ≠⌀ 
 
A set S V is a dominating set if N[S] = V; or equivalently, every vertex in V\ S is adjacent to at least one vertex in S: 
The domination number 𝛾𝛾(G) is the minimum cardinality of a dominating set in G; and a dominating set S of minimum 
cardinality is called a  𝛾𝛾 -set of G: 
 
A set S of vertices is called a 2-packing if for every pair of vertices u; v ∈S; N[u] \ N[v] = ⌀ . The 2-packing number 
P2(G) of a graph G is the maximum cardinality of a 2-packing in G: A set S of vertices is called a vertex cover if for 
every edge uv ∈ E; either u ∈ S or v ∈ S: 
 
A Roman dominating function (RDF) on a graph G = (V, E) is defined in [8] as a function f: V → {0 , 1, 2} satisfying 
the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2: The weight of 
a RDF is the value f(V)= ∑ f𝑢𝑢∈𝑉𝑉 (u). The Roman domination number of a graph is denoted by 𝛾𝛾R(G) 
 
Stated in other words, a Roman dominating function is a colouring of the vertices of a graph with the colours {0, 1, 2} 
such that every vertex coloured 0 is adjacent to at least one vertex coloured 2: The idea is that colours 1 and 2 represent 
either one or two Roman legions stationed at a given location (vertex v). A nearby location (an adjacent vertex u) is 
considered to be unsecured if no legions are stationed there (ie f(u) = 0). An unsecured location (u) can be secured by 
sending a legion to u from an adjacent location (v): But Emperor Constantine the Great, in the fourth century A:D:, 
decreed that a legion cannot be sent from a location v if doing so leaves that location unsecured (ie if f(v) = 1). Thus, 
two legions must be stationed at a location (f(v) = 2) before one of the legions can be sent to an adjacent location. 
 
In 2004, Cockayne et al. [2] studied the graph theoretic properties of Roman dominating sets. In recent years many 
authors studied the concept of Roman dominating functions and Roman domination numbers [2]-[9]. 
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Recently [1] we introduced the concept of Strong Roman domination which is the generalization of Roman domination. 
A Strong Roman dominating function (SRDF) is a function f: V→ {0, 1, 2, 3} satisfying the condition that every vertex 
u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 3 and every vertex u for which f(u) = 1 is 
adjacent to at least one vertex v for which f(v) = 2: The weight of a SRDF is the value f(V) =∑ f𝑢𝑢∈𝑉𝑉 (u). The minimum 
weight of a SRDF on a graph G is called the Strong Roman domination number of G: Then we study the graph 
theoretic properties of this variant of the domination number of a graph. In this paper we are presenting the value of 
𝛾𝛾SR(G) for several classes of graphs. 

 
2. EXACT VALUES OF STRONG ROMAN DOMINATION NUMBERS  
 
In this section, we illustrate the Strong Roman domination number by presenting the value of 𝛾𝛾SR(G) for several 
classes of graphs. 
 
The following table shows that the Strong Roman dominating function and Strong Roman domination number of 
some graphs of smaller sizes. 

 

S. No. Graph Function SRDF Minimal SRDF SRDN 
(𝛾𝛾SR(G)) 

1 K1 0 No ---- ------ 
 

2 K1 1 No ---- ------ 
 

3 K1 2 Yes Yes 2 
 

4 K1 3 Yes No  
 

5 K2 
0_______3 

 Yes Yes 3 
 

6 K2 
1_______2 

 Yes Yes 3 

7. K2 
0_______2 

 No ---- ---- 

8 K2 
0_______1 

 No ---- ---- 

9 K3 

 
2 
 
 

    1             1 
 

Yes No ---- 

10 K3 

 
3 
 
 

  0                0 
 

Yes Yes 3 

11 K3 

 
0 
 
 

 1              2 
 

No --- --- 
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S. No. Graph Function SRDF Minimal 
SRDF 

SRDN 
(𝛾𝛾SR(G)) 

12 K3 

0 
 
 

3           2 
 

No   

13 

 
 
 
 
 
 

1            2 
 
 

2               1 
 
 

 
 

Yes 

 
 

No 
 

14 

 
 
 
 
 
 
 

 
0            3 

 
 

3               0 
 
 

 
 
 

Yes 

 
 
 

No 

 

15 

 
 
 
 
 
 
 

0            3 
 
 

2               0 
 
 
 

 
 
 

Yes 

 
 
 

Yes 

 
 
 

5 

16 

 
 
 
 
 
 
 

0            3 
 
 

2               1 
 
 
 

 
 
 

Yes 

 
 
 

No 

 

17 P2 
0       3       0 

 
Yes Yes 3 

18 P2 
0       3       2 

 
Yes No  

19 P4 

1            0 
3 

2                0 
 

Yes Yes 6 

20 C5 

0            0 
3                          
3 

0            0 
 
 

Yes Yes 6 

 
Theorem 2.1: If G = P3; then 𝛾𝛾SR(G) = 3: 
 
Proof:  G can be drawn as 
 
Define f(v1) = 0, f(v2) = 3, f(v3) = 0: 
 
Then f is a Strong Roman dominating function with f(V ) = 3: We have to prove that f is minimal. Suppose there is a 
minimal SRDF g such that g < f: 
 
Case-(i): Let g(v1) = 0, then g(v2) must be equal to 3. If g(v3) 6= 0, then g is not minimal, a contradiction. 
 
Case-(ii):  Let g(v1) = 1, then g(v2) must be equal to 2. 
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If g(v3)   0, then g(V) =3 which implies g, f, a contradiction. 
 
Case-(iii): Let g(v1) = 2: 
 
If g(v2) = 0, then g(v3) must be equal to 3. Here g(V ) = 5 > f(V ), a contradiction. 
 
If g(v2) 6= 0, then g(V)=3 which implies g, f, a contradiction. 
 
Case-(iv): Let g(v1) = 3, then g(V ) 3 which implies g f, a contradiction. Hence f is minimal SRDF. Thus SR(P3) = 3:  
 
Definition 2.2: Let G be a graph and P3 be a path of order 3. Let v be any vertex in V (G): Then we de ne a graph         
Gv + P3 such that rst draw G and then draw P3 starting from the vertex v in V (G): 
 
Example 2.3: 
   v  

G : 

 

 

 

 

 

   
 

 

 

 

 

    

                               
 
Theorem 2.4: Let v ∈ V (G) and let f be a minimal SRDF of G and f(v) = 0: Now de ne g in Gv +P3 such that            
g(u) = f(u) if u ∈ V (G) and g(v1) = 0, g(v2) = 3, g(v3) = 0 if vi ∈ P3: Then g is minimal in Gv + P3: 
 
Proof: Suppose g is not minimal in Gv + P3: Let h be a SRDF such that h < g:  
 
Case-(i): Let h(v3) = 0, then h(v2) = 3: 
 
If h(v1) 6= 0, then h is not minimal, a contradiction. 
 
Case-(ii): Let h(v3) = 1, then h(v2) = 2 which implies any value of h(v1), h g, a contradiction. 
 
Case-(iii): Let h(v3) = 2: 
 
If h(v2) = 0, then h(v1) = 3, which implies h g, a contradiction. If h(v2) = 1, then h(v1) = 2, here also h g, a contradiction. 
 
Case-(iv): Let h(v3) = 3: For any value of h(v1) & h(v2), h g, a contradiction. Hence g is minimal in Gv + P3:  
 
Theorem 2.5: If n = 3m, then 𝛾𝛾SR(Pn) = n: 
 
Proof: We will prove this result by using mathematical induction on m: Let m = 1, then n = 3: 
 
By Theorem 2.1, 𝛾𝛾SR(P3) = 3: 
 
Assume the result is true for m: We have to prove that the results is true for m+ 1: 
 
Now, Pn = P3(m+1) = P3m+3 = P3m + P3: 
 
By our induction hypothesis, 𝛾𝛾 SR(P3m) = 3m: 
 
Then by Theorem 2.4, we have 

            SR(P3m + P3) = 3m + 3: 
(ie:)  SR(P3(m+1)) = 3(m + 1): 

 
Hence, the result is true for all the values of m: 
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Theorem 2.6: If G = P4, then 𝛾𝛾SR(G) = 5: 
 
Proof: G can be drawn as       v1          v2         v3       v4    
 
Define f(v1) = 0, f(v2) = 3, f(v3) = 0, f(v4) = 2: Then f is a SRDF with f(v) = 5: We have to prove that f is minimal 
SRDF. Suppose these is a minimal SRDF g such that g < f: 
 
Case-(i): Let g(v1) = 0, then g(v2) = 3: 
 
If g(v3) = 0, then g(v4) must be 2 or 3, which implies g f, a contradiction. If g(v3) = 1, then g(v4) = 2: Here g > f, a 
contradiction. 
 
If g(v3) = 2, then g(v4) 6= 0, now g is not minimal, a contradiction. If g(v3) = 3, then g > f, a contradiction. 
 
Case-(ii): Let g(v1) = 1, then g(v2) = 2: 
 
If g(v3) = 0, then g(v4) = 3, which implies g > f, a contradiction. If g(v3) = 1 or 2, then g(v4) 6= 0, here g f, a 
contradiction. 
 
If g(v3) = 3, then obviously g > f, a contradiction. 
 
Case-(iii): Let g(v1) = 2: 
 
If g(v2) = 0, then g(v3) = 3, which implies g > f, a contradiction. 
 
If g(v2) = 1, then for any value of g(v3) and g(v4), g f, a contradiction. If g(v2) = 2, then for any value of g(v3) and g(v4), 
g f, a contradiction. If g(v2) = 3, then clearly g > f, a contradiction. 
 
Case-(iv): Let g(v1) = 3: 
 
If g(v2) = 0 and g(v3) = 0, then g(v4) = 3, here g > f, a contradiction. 
 
If g(v2) = 0 and g(v3) = 1, then g(v4) = 2, which implies g > f, a contradiction. 
 
If g(v2) = 0 and g(v3) = 2, then f(v4) 6= 0, which implies g > f, a contradiction. 
 
If g(v2) = 0 and g(v3) = 3, then any value of g(v4), g > f, a contradiction. If g(v2) = 1, then g(v3) = 2, here g > f, a 
contradiction. 
 
If g(v2) = 2, then all the values of g(v3) & g(v4), g > f, a contradiction. If g(v3) = 3, clearly g > f, a contradiction. 
 
Thus all the above cases, we get a contradiction. Hence f is minimal SRDF. 
 
Theorem 2.7: If G = P5, then 𝛾𝛾SR(G) = 6: 
 
Proof:  G can be split into two graphs as P5 = P2 + P3. 
P2 can be drawn as   v1                                 v2 
 
Define f(v1)=3 and f(v2) = 0 
Then f is a SRDF with f(V) = 3: We have to prove that f is minimal SRDF. Suppose there is a minimal SRDF g such 
that g < f: 
 
Case-(i): Let g(v1) = 0, then g(v2) = 3, which implies g = f: 
 
Case-(ii): Let g(v1) = 1, then g(v2) = 2, which implies g = f: 
 
Case-(iii): Let g(v1) = 2, then g(v2) = 1, which implies g = f: 
 
Case-(iv): Let g(v1) = 3, then g(v2) = 0, which implies g = f: 
 
Thus all the above cases, we get a contradiction. Hence f is minimal SRDF in P2: Then by Theorem 2.4, the minimal 
SRDF of P2 + P3 is defined as f(v1) = 3, f(v2) = 0, f(v3) = 0, f(v4) = 3 and f(v5) = 0, which is the minimal SRDF of P5: 
Hence 𝛾𝛾SR(P5) = 6:  



K. Selvakumar, M. Kamaraj* / Strong Roman Domination Number of Certain Classes of Graphs / IJMA- 7(10), Oct.-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                       197  

 
Theorem 2.8: If n = 3m + 1, then 𝛾𝛾SR(Pn) = n + 1: 
 
Proof: We will prove this result by using induction on m: Let m = 1, then n = 4: By Theorem 2.6, we have SR(P4) = 5: 
 
Assume the result is true for m: We have to prove that the result is true for m + 1: 
 
Now, Pn = P3(m+1)+1 = P3m+4 = P3m+1 + P3: 
 
Then f is a SRDF with f(V ) = 3: We have to prove that f is minimal SRDF. Suppose there is a minimal SRDF g such 
that g < f: 
 
Case-(i): Let g(v1) = 0, then g(v2) = 3, which implies g = f: 
 
Case-(ii): Let g(v1) = 1, then g(v2) = 2, which implies g = f: 
 
Case-(iii): Let g(v1) = 2, then g(v2) = 1, which implies g = f: 
 
Case-(iv): Let g(v1) = 3, then g(v2) = 0, which implies g = f: 
 
Thus all the above cases, we get a contradiction. Hence f is minimal SRDF in P2: Then by Theorem 2.4, the minimal 
SRDF of P2 + P3 is de ned as f(v1) = 3, f(v2) = 0, f(v3) = 0, f(v4) = 3 and f(v5) = 0, which is the minimal SRDF of P5: 
Hence 𝛾𝛾SR(P5) = 6:  
 
Theorem 2.8: If n = 3m + 1, then 𝛾𝛾SR(Pn) = n + 1: 
 
Proof: We will prove this result by using induction on m: Let m = 1, then n = 4: By Theorem 2.6, we have SR(P4) = 5: 
 
Assume the result is true for m: We have to prove that the result is true for m + 1: 
 
Now, Pn = P3(m+1)+1 = P3m+4 = P3m+1 + P3: 
 
By our induction hypothesis, 𝛾𝛾SR(P3m+1) = 3m + 2: Then by Theorem 2.4, we have 
 

𝛾𝛾SR(P3m+1 + P3) = 3m + 2 + 3: 
 
      (ie:)  𝛾𝛾SR(P3(m+1)+1) = 3m + 5: 
 
Hence the result is true for all the values of m: 
 
Theorem 2.9: If n = 3m + 2, then  𝛾𝛾SR(Pn) = n + 1: 
 
Proof: We will prove this result by using induction on m: Let m = 1, then n = 5: By Theorem 2.7, we have 𝛾𝛾SR(P5) = 6: 
 
Assume the result is true for m: We have to prove that the result is true for m + 1: 
 
Now, Pn = P3(m+1)+2 = P3m+5 = P3m+2 + P3: 
 
By our induction hypothesis, 𝛾𝛾SR(P3m+2) = 3m + 3: Then by Theorem 2.4, we have 
 

         𝛾𝛾SR(P3m+2 + P3) = 3m + 3 + 3: 
 
(ie:)  𝛾𝛾SR(P3(m+1)+2) = 3m + 6: 
 
(ie:) 𝛾𝛾SR(P3m+5) = 3m + 6: 

 
Hence the result is true for all the values of m: 
 
The proof the following theorems are straight forward from the above results. 
 
Theorem 2.10: If n = 3m,  𝛾𝛾SR(Cn) = n: 
 
Theorem 2.11: If n = 3m + 1, 𝛾𝛾SR(Cn) = n + 1: 
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Theorem 2.12: If n = 3m + 2, 𝛾𝛾SR(Cn) = n + 1: 
 
Theorem 2.13: 𝛾𝛾SR(Sn) = n for all n: 
 
3. CONCLUSION AND SCOPE  
 
In this paper, we presented the values of Strong Roman domination number 𝛾𝛾SR(G) of some classes of graphs such as 
paths, cycles and stars. 
 
Among the many questions raised by this research and the particular interest of the authors, we propose the following 
open problems. 
 
Problem 3.1: Can you find other classes of Strong Roman graphs? 
 
Problem 3.2: Can you construct on algorithm for computing the value of 𝛾𝛾SR(G)? 
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