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ABSTRACT 
We have defined color Laplacian energy of graphs and proved many results about color Laplacian energy and 
established relationships between color eigenvalues, color Laplacian eigenvalues of a graphs in [5]. In this paper we 
obtained new lower bonds for color energy and color Laplacian energy of graphs and obtained various bounds for 
color eigenvalues and color Laplacian eigenvalues of 𝐺𝐺. We also obtained a bound for i.e., �𝐿𝐿𝐿𝐿𝜒𝜒(𝐺𝐺 − 𝑒𝑒) − 𝐿𝐿𝐿𝐿𝜒𝜒(𝐺𝐺)� < 4 
and 4 is the best possible bound.  
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1.0 INTRODUCTION 
 
Recently C. Adiga and et.al., have introduced and investigated many properties and also found many results on color 
energy and color eigenvalues of a graph in [1]. A coloring of graph 𝐺𝐺 is a coloring of its vertices such that no two 
adjacent vertices receive the same color. The minimum number of colors needed for coloring of a graph 𝐺𝐺 is called 
chromatic number and is denoted by 𝜒𝜒(𝐺𝐺). They noticed that, in general optimal coloring with 𝜒𝜒(𝐺𝐺) colors is not 
unique so the color energy 𝐸𝐸 𝜒𝜒(𝐺𝐺) may be different for different optimal colorings. On the other hand, there do exist 
some uniquely colorable graphs, for example, the unitary Cayley graph 𝑋𝑋𝑛𝑛  has a unique optimal coloring, thus its color 
energy with respect to minimum color is unique. They also established explicit formulae for color energy of unitary 
Cayley graph 𝑋𝑋𝑛𝑛  and its complements. 
 
Motivated by [1], we have defined color Laplacian energy in [5] and studied some results and bounds for the color 
Laplacian eigenvalues and color Laplacian energy of graphs. P.G Bhat and Sabitha D’Souza are also defined the same 
concept of color Laplacian energy of graphs independently see [4]. In this paper we will find further bounds for color 
energy and color Laplacian energy of graphs, in terms of color eigenvalues and color Laplacian eigenvalues. We used 
Polya-Szego Inequality and Ozekis Inequality to obtain some new lower bonds for color energy and color Laplacian 
energy of graphs and obtained various bounds for color eigenvalues and color Laplacian eigenvalues. We also obtained 
a bound for i.e., �𝐿𝐿𝐿𝐿𝜒𝜒(𝐺𝐺 − 𝑒𝑒) − 𝐿𝐿𝐿𝐿𝜒𝜒 (𝐺𝐺)� < 4 and 4 is the best possible bound.  
 
This paper is organized as follows, in 1.0 we present short introduction of necessary definitions and basic results and in 
1.1 we prove some theorems regarding color Laplacian eigenvalues. In 1.2, we present new bounds for color energy 
and color Laplacian energy in terms of color eigenvalues and color Laplacian eigenvalues of graphs.  
 
Definition 1 [1]: (Color Matrix): The color matrix 𝐴𝐴𝑐𝑐(𝐺𝐺) = [𝑎𝑎𝑖𝑖𝑖𝑖 ] of 𝐺𝐺 is a square matrix of order whose (𝑖𝑖, 𝑗𝑗)-entries 
are as follows 

[𝑎𝑎𝑖𝑖𝑖𝑖 ] = �

     
1,        𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐(𝑣𝑣𝑖𝑖) ≠ 𝑐𝑐�𝑣𝑣𝑗𝑗 �     

−1,        𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐(𝑣𝑣𝑖𝑖) = 𝑐𝑐�𝑣𝑣𝑗𝑗 �
0,        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                                      

� 
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In the case that, 𝐺𝐺 is simple graph of order 𝑛𝑛 and 𝑚𝑚, the color matrix 𝐴𝐴𝑐𝑐(𝐺𝐺) will be (−1, 0, 1) matrix with respect to a 
given coloring. Suppose that 

𝑃𝑃𝑐𝑐(𝐺𝐺, 𝜆𝜆) = det�𝜆𝜆𝜆𝜆 − 𝐴𝐴𝑐𝑐(𝐺𝐺)� = 𝑎𝑎0𝜆𝜆𝑛𝑛 + 𝑎𝑎1𝜆𝜆𝑛𝑛−1 + 𝑎𝑎2𝜆𝜆𝑛𝑛−2 + 𝑎𝑎3𝜆𝜆𝑛𝑛−3 + ⋯… . +𝑎𝑎0 
 

is the characteristic polynomial of 𝐴𝐴𝑐𝑐(𝐺𝐺) . Let 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑛𝑛  be the color eigenvalues of 𝐺𝐺 , i.e., the roots of 
𝑃𝑃𝑐𝑐(𝐺𝐺, 𝜆𝜆). The color spectrum of 𝐺𝐺 is defined as the set of color eigenvalues of 𝐴𝐴𝑐𝑐(𝐺𝐺) together with their multiplicities. 
If the graph 𝐺𝐺  is colored with 𝜒𝜒(𝐺𝐺) colors, then the color energy of a graph with respect 𝜒𝜒(𝐺𝐺) is denoted by 𝐸𝐸 𝜒𝜒(𝐺𝐺). 
This is called chromatic energy of 𝐺𝐺. The color energy of 𝐺𝐺 is the sum of the absolute values of its color eigenvalues.  
 
Definition 2 [5]: (Color Laplacian Matrix): Let 𝐺𝐺 be a simple colored graph. We denote the diagonal matrix with the 
degrees as diagonal elements by𝐷𝐷(𝐺𝐺), 𝐴𝐴𝑐𝑐(𝐺𝐺) is color matrix of graph 𝐺𝐺. The color Laplacian matrix is 𝐿𝐿𝑐𝑐(𝐺𝐺) = 𝐷𝐷(𝐺𝐺) −
𝐴𝐴𝑐𝑐(𝐺𝐺), we can also write Color Laplacian Matrix as 

𝐿𝐿𝑐𝑐(𝐺𝐺) = [𝑙𝑙𝑖𝑖𝑖𝑖 ] =

⎩
⎪
⎨

⎪
⎧

     
𝑑𝑑(𝑣𝑣𝑖𝑖),        𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖 =  𝑣𝑣𝑗𝑗                                                                                                 
−1,         𝑖𝑖𝑓𝑓 𝑣𝑣𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐(𝑣𝑣𝑖𝑖) ≠ 𝑐𝑐�𝑣𝑣𝑗𝑗 �                                
1  ,            𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐(𝑣𝑣𝑖𝑖) = 𝑐𝑐�𝑣𝑣𝑗𝑗 �                    
0,            𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                                                               

� 

Suppose that 
𝑃𝑃𝑐𝑐(𝐺𝐺, 𝜇𝜇 ) = det�𝜇𝜇𝜇𝜇 − 𝐿𝐿𝑐𝑐(𝐺𝐺)� = 𝑎𝑎0𝜇𝜇𝑛𝑛 + 𝑎𝑎1𝜇𝜇𝑛𝑛−1 + 𝑎𝑎2𝜇𝜇𝑛𝑛−2 + 𝑎𝑎3𝜇𝜇𝑛𝑛−3 + ⋯… . +𝑎𝑎0 

is the characteristic polynomial of 𝐿𝐿𝑐𝑐(𝐺𝐺). Let 𝜇𝜇1, 𝜇𝜇2, … , 𝜇𝜇𝑛𝑛  be the color eigenvalues of 𝐺𝐺, i.e., the roots of 𝑃𝑃𝑐𝑐(𝐺𝐺, 𝜇𝜇). The 
color Laplacian spectrum of 𝐺𝐺  is defined as the set of color Laplacian eigenvalues of 𝐿𝐿𝑐𝑐(𝐺𝐺)  together with their 
multiplicities. If the graph 𝐺𝐺  is colored with 𝜒𝜒(𝐺𝐺) colors, then the color Laplacian matrix of a graph with respect 𝜒𝜒(𝐺𝐺) is 
denoted by 𝐿𝐿 𝜒𝜒(𝐺𝐺) . This is called chromatic energy of 𝐺𝐺 . We noticed an important property of color Laplacian 
matrix 𝐿𝐿𝜒𝜒(𝐺𝐺) is not positive semi-definite matrix in general, but some special class of graphs whose color Laplacian 
matrix 𝐿𝐿𝜒𝜒(𝐺𝐺) is positive semi-definite matrix, viz., 𝐾𝐾𝑛𝑛 ,𝐾𝐾𝑛𝑛 ,𝑚𝑚 , 𝑆𝑆𝑛𝑛 , 𝑊𝑊𝑛𝑛  𝑎𝑎𝑛𝑛𝑛𝑛 𝐶𝐶𝑛𝑛 .   
 
Now we define color Laplacian energy of 𝐺𝐺. 
 
Definition 3 [5]: (Color Laplacian Energy): If  𝐺𝐺 is an (𝑛𝑛,𝑚𝑚)–  graph and its color Laplacian eigenvalues are 
 𝜇𝜇1, 𝜇𝜇2, …   . . ,  𝜇𝜇𝑛𝑛 , then the color Laplacian energy of 𝐺𝐺 denoted by  𝐿𝐿𝐿𝐿𝑐𝑐(𝐺𝐺) = ∑ |𝛾𝛾𝑖𝑖|𝑛𝑛

𝑖𝑖=1 , where   𝛾𝛾𝑖𝑖 = 𝜇𝜇𝑖𝑖 −
2𝑚𝑚
𝑛𝑛

 . 

i.e.,         𝐿𝐿𝐿𝐿𝑐𝑐(𝐺𝐺) = ∑ �𝜇𝜇𝑖𝑖 −
2𝑚𝑚
𝑛𝑛
�𝑛𝑛

𝑖𝑖=1  
If 𝐺𝐺 colored with 𝜒𝜒(𝐺𝐺) colors, then chromatic Laplacian matrix of 𝐺𝐺, is denoted by 𝐿𝐿 𝜒𝜒(𝐺𝐺) and the energy of graph with 
respect 𝜒𝜒(𝐺𝐺) is called chromatic Laplacian energy and is denoted by 𝐿𝐿𝐿𝐿 𝜒𝜒(𝐺𝐺).  
 
We have established some properties of color Laplacian eigenvalues and color Laplacian energy in [5]. The color 
eigenvalues and color Laplacian eigenvalues obey the following well-known relations respectively. 

∑ 𝜆𝜆𝑖𝑖 = 0;       ∑ 𝜆𝜆𝑖𝑖2𝑛𝑛
𝑖𝑖=1 = 2(𝑚𝑚 + 𝑚𝑚𝑐𝑐

′ )𝑛𝑛
𝑖𝑖=1 , ∑ 𝜇𝜇𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 2𝑚𝑚; 
∑ 𝜇𝜇𝑖𝑖2𝑛𝑛
𝑖𝑖=1 = 2𝑀𝑀1 ∑ 𝛾𝛾𝑖𝑖 = 0𝑛𝑛

𝑖𝑖=1 ;          ∑ 𝛾𝛾𝑖𝑖2𝑛𝑛
𝑖𝑖=1 = 2𝑀𝑀2 

Where 𝑀𝑀1 = [(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) + 1

2
∑ 𝑑𝑑𝑖𝑖2]𝑛𝑛
𝑖𝑖=1 ,  𝑀𝑀2 = [(𝑚𝑚 + 𝑚𝑚𝑐𝑐

′ ) + 1
2
�∑ 𝑑𝑑𝑖𝑖2𝑛𝑛

𝑖𝑖=1 − 4𝑚𝑚2

𝑛𝑛
�] and 𝑚𝑚𝑐𝑐

′  is the number of pairs of non 
adjacent vertices receiving the same color in 𝐺𝐺. 
 
Further if 𝐺𝐺 is regular of degree 𝑘𝑘 then we have proved the theorem in [5]. 
 
Theorem 4 [1]: If the graph is 𝑘𝑘 − color regular graph, then 𝐿𝐿𝐿𝐿𝜒𝜒(𝐺𝐺) = 𝐸𝐸𝜒𝜒(𝐺𝐺). 
 
1.1 MAIN RESULTS 
 
In this section we prove some new theorems, before proving Theorem 5 we note that the interlacing theorem for the 
color Laplacian matrix cannot be true. This fact is similar to the case of Laplacian eigenvalues and normalized 
Laplacian eigenvalues of graphs, i.e., when we delete a colored vertex in 𝐺𝐺, it affects its neighbor colored vertices in 𝐺𝐺.  
Nevertheless, we can state another interlacing theorem for the color Laplacian eigenvalues. 
 
Theorem 5: Let 𝐺𝐺 be a graph and 𝑒𝑒 ∈ 𝐸𝐸(𝐺𝐺). Let (𝐺𝐺 − 𝑒𝑒) be the graph obtained by deleting 𝑒𝑒 with 𝜒𝜒(𝐺𝐺) = 𝜒𝜒(𝐺𝐺 − 𝑒𝑒). If  
𝜇𝜇1 ≤ 𝜇𝜇2 ≤ 𝜇𝜇3 ≤ ⋯   ≤ 𝜇𝜇𝑛𝑛  be the color Laplacian eigenvalues 𝐺𝐺. Then  

𝜇𝜇1(𝐺𝐺) ≤ 𝜇𝜇1(𝐺𝐺 − 𝑒𝑒) ≤ 𝜇𝜇2(𝐺𝐺) ≤ 𝜇𝜇2(𝐺𝐺 − 𝑒𝑒) ≤ ⋯   𝜇𝜇𝑛𝑛−1(𝐺𝐺 − 𝑒𝑒) ≤ 𝜇𝜇𝑛𝑛(𝐺𝐺) 
 
Theorem 6: Let 𝐺𝐺 be a colored graph of order 𝑛𝑛 and (𝐺𝐺 − 𝑒𝑒)  is graph obtained by deleting an edge. Then 𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖 ′ ≥ 0 
and ∑ [𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖 ′] = 2𝑛𝑛

𝑖𝑖=1 . Where 𝜇𝜇𝑖𝑖  are the color Laplacian eigenvalues of 𝐺𝐺 and  𝜇𝜇𝑖𝑖 ′ are the color Laplacian eigenvalues 
of (𝐺𝐺 − 𝑒𝑒). 
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Proof: First part of the proof is straightforward by interlacing property of color Laplacian eigenvalues or by Theorem 
5. Second part of the proof is follows from the fact that, ∑ 𝜇𝜇𝑖𝑖 = 2𝑛𝑛

𝑖𝑖=1 𝑚𝑚 and  ∑ 𝜇𝜇𝑖𝑖 ′ = 2(𝑚𝑚− 1)𝑛𝑛
𝑖𝑖=1 . Therefore, ∑ [𝜇𝜇𝑖𝑖 −𝑛𝑛

𝑖𝑖=1
𝜇𝜇𝑖𝑖′=2. 
 
Now we have an immediate theorem, which gives the best bound for the difference of color Laplacian energy of 𝐺𝐺 and 
color Laplacian energy of 𝐺𝐺 (𝐺𝐺 − 𝑒𝑒) follows from Theorem 6 above. 
 
Theorem 7: Suppose  𝐺𝐺 is a colored graph with  𝜒𝜒(𝐺𝐺). Then �𝐿𝐿𝐿𝐿𝜒𝜒(𝐺𝐺 − 𝑒𝑒) − 𝐿𝐿𝐿𝐿𝜒𝜒(𝐺𝐺)� < 4 and 4 is the best possible 
bound. 
 
Proof: Define 𝜇𝜇𝑖𝑖 ′ = 𝜇𝜇𝑖𝑖(𝐺𝐺 − 𝑒𝑒) with 𝜒𝜒(𝐺𝐺 − 𝑒𝑒) = 𝜒𝜒(𝐺𝐺). We noticed that  𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖 ′ ≥ 0 and ∑ [𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖 ′] = 2𝑛𝑛

𝑖𝑖=1 . So, there 
exist 𝑖𝑖,1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, such that 𝜇𝜇𝑖𝑖 > 𝜇𝜇𝑖𝑖 ′. This implies that  

��𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖 ′ −
2
𝑛𝑛
� <

𝑛𝑛

𝑖𝑖=1

��𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖 ′� +
2
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

 

and we have 

�𝐿𝐿𝐿𝐿𝜒𝜒 (𝐺𝐺 − 𝑒𝑒) − 𝐿𝐿𝐿𝐿𝜒𝜒(𝐺𝐺)� = ���𝜇𝜇𝑖𝑖 − 2
𝑚𝑚
𝑛𝑛
�

𝑛𝑛

𝑖𝑖=1

− �𝜇𝜇𝑖𝑖 ′ − 2
𝑚𝑚 − 1
𝑛𝑛

�� 

                                             = ����𝜇𝜇𝑖𝑖 − 2
𝑚𝑚
𝑛𝑛
� − �𝜇𝜇𝑖𝑖 ′ − 2

𝑚𝑚 − 1
𝑛𝑛

��
𝑛𝑛

𝑖𝑖=1

� 

                                             ≤���𝜇𝜇𝑖𝑖 − 2
𝑚𝑚
𝑛𝑛
� − �𝜇𝜇𝑖𝑖 ′ − 2

𝑚𝑚 − 1
𝑛𝑛

��
𝑛𝑛

𝑖𝑖=1

 

                                             ≤��𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖 ′ −
2
𝑛𝑛
�

𝑛𝑛

𝑖𝑖=1

 

                                            < ��𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖 ′� +
2
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

 

                                       = ∑ �𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖 ′ + 2
𝑛𝑛
�𝑛𝑛

𝑖𝑖=1 = 4. 
 
To complete the argument we construct a sequence of {𝐺𝐺𝑛𝑛 }𝑛𝑛≥2 of colored graphs such that  �𝐿𝐿𝐿𝐿𝜒𝜒(𝐺𝐺 − 𝑒𝑒) − 𝐿𝐿𝐿𝐿𝜒𝜒(𝐺𝐺)� →
4 . Define 𝐺𝐺𝑛𝑛 = 𝐾𝐾𝑛𝑛���� + 𝑒𝑒  with 𝜒𝜒(𝐺𝐺) = 𝑛𝑛 . Then 𝐿𝐿𝐿𝐿𝜒𝜒(𝐺𝐺𝑛𝑛) = 4 − 4

𝑛𝑛
 and 𝐿𝐿𝐿𝐿𝜒𝜒 (𝐺𝐺𝑛𝑛 − 𝑒𝑒) = 0  and so �𝐿𝐿𝐿𝐿𝜒𝜒 (𝐺𝐺 − 𝑒𝑒) −

𝐿𝐿𝐸𝐸𝜒𝜒𝐺𝐺=4−4𝑛𝑛→4. This completes the argument.  

 
1.1 BONDS FOR COLOR ENERGY AND COLOR LAPLACIAN ENERGY OF GRAPHS  
 
In this section we obtain some bounds for the color energy and color Laplacian energy in terms of color eigenvalues 
and color Laplacian eigenvalues of graphs. In order to obtain these bounds we require the smallest color eigenvalue and 
smallest color Laplacian eigenvalue are both must be non zeros. So we assume that |𝜆𝜆𝑛𝑛 | and |𝜇𝜇𝑛𝑛 | are smallest color 
eigenvalue and smallest color Laplacian eigenvalue of 𝐺𝐺. 
 
For the sake of completeness we mention below two preparatory results which are help us to prove following bounds. 
 
Theorem 8 [2]: (Polya-Szego Inequality): Suppose 𝑎𝑎𝑖𝑖  and  𝑏𝑏𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 are positive real numbers, then 

�  ai
2

𝑛𝑛

𝑖𝑖=1

�  bi
2

𝑛𝑛

𝑖𝑖=1

≤
1
4
��

𝑃𝑃1𝑃𝑃2

𝑝𝑝1𝑝𝑝2
+ �

𝑝𝑝1𝑝𝑝2

𝑃𝑃1𝑃𝑃2
�

2

��  ai

𝑛𝑛

𝑖𝑖=1

 bi�
2

 

Where 𝑃𝑃1 = max1≤𝑖𝑖≤𝑛𝑛 𝑎𝑎𝑖𝑖 ; 𝑃𝑃2 = max1≤𝑖𝑖≤𝑛𝑛 𝑏𝑏𝑖𝑖   and 𝑝𝑝1 = min1≤𝑖𝑖≤𝑛𝑛 𝑎𝑎𝑖𝑖 ; 𝑝𝑝2 = min1≤𝑖𝑖≤𝑛𝑛 𝑏𝑏𝑖𝑖  
 
Theorem 9 [3]: (Ozekis Inequality): If 𝑎𝑎𝑖𝑖  and  𝑏𝑏𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 are non negative real numbers, then 

�  ai
2

𝑛𝑛

𝑖𝑖=1

�  bi
2

𝑛𝑛

𝑖𝑖=1

− ��  ai

𝑛𝑛

𝑖𝑖=1

 bi�
2

≤
𝑛𝑛2

4
(𝑃𝑃1𝑃𝑃2 − 𝑝𝑝1𝑝𝑝2)2 

Where 𝑃𝑃𝑖𝑖  and 𝑝𝑝𝑖𝑖  are defined similar to theorem (8). 
 
At first we apply Polya-Szego Inequality to obtain a simple inequality on the color eigenvalues and color energy of 
graphs. By theorem (8) we have the following theorem. 
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Theorem 10: Let 𝐺𝐺 be a colored graph with 𝜆𝜆𝑛𝑛  and 𝜆𝜆1 are the smallest and largest color eigenvalues of 𝐺𝐺 respectively. 
Then  

𝐿𝐿𝐿𝐿(𝐺𝐺) = 𝐸𝐸𝜒𝜒(𝐺𝐺) ≥
2

|𝜆𝜆1| + |𝜆𝜆𝑛𝑛 |
�2𝑛𝑛(𝑚𝑚 + 𝑚𝑚𝑐𝑐

′ )�(|𝜆𝜆1||𝜆𝜆𝑛𝑛 |) 

 
Proof: Suppose 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑛𝑛   are the color eigenvalues of 𝐴𝐴𝜒𝜒(𝐺𝐺). We also assume that 𝑎𝑎𝑖𝑖 = |𝜆𝜆𝑖𝑖|  and 𝑏𝑏𝑖𝑖 = 1 
for 𝑖𝑖 = 1,2, … 𝑛𝑛. Then by applying theorem (8), we have 

�  |𝜆𝜆𝑖𝑖|2
𝑛𝑛

𝑖𝑖=1

�  12
𝑛𝑛

𝑖𝑖=1

≤
1
4
��

|𝜆𝜆1|
|𝜆𝜆𝑛𝑛 | + �

|𝜆𝜆𝑛𝑛 |
|𝜆𝜆1|�

2

��|𝜆𝜆𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

�
2

 

𝑛𝑛�  |𝜆𝜆𝑖𝑖|2
𝑛𝑛

𝑖𝑖=1

≤
1
4
��

|𝜆𝜆1|
|𝜆𝜆𝑛𝑛 | + �

|𝜆𝜆𝑛𝑛 |
|𝜆𝜆1|�

2

��|𝜆𝜆𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

�
2

 

 
Since                    ∑  |𝜆𝜆𝑖𝑖|2𝑛𝑛

𝑖𝑖=1 = ∑ 𝜆𝜆𝑖𝑖
2 𝑛𝑛

𝑖𝑖=1 = 2(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ )  and  ∑ |𝜆𝜆𝑖𝑖|𝑛𝑛

𝑖𝑖=1 = 𝐸𝐸𝜒𝜒(𝐺𝐺) therefore we have, 

2𝑛𝑛(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) ≤

1
4
�

|𝜆𝜆1|
|𝜆𝜆𝑛𝑛 | +

|𝜆𝜆𝑛𝑛 |
|𝜆𝜆1| + 2�

|𝜆𝜆1|
|𝜆𝜆𝑛𝑛 | × �

|𝜆𝜆𝑛𝑛 |
|𝜆𝜆1|� �𝐸𝐸𝜒𝜒(𝐺𝐺)�2

 

8𝑛𝑛(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) ≤ �

|𝜆𝜆1|
|𝜆𝜆𝑛𝑛 | +

|𝜆𝜆𝑛𝑛 |
|𝜆𝜆1| + 2� �𝐸𝐸𝜒𝜒(𝐺𝐺)�2

 

8𝑛𝑛(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) ≤ �

|𝜆𝜆1|2 + |𝜆𝜆𝑛𝑛 |2 + 2|𝜆𝜆1||𝜆𝜆𝑛𝑛 |
|𝜆𝜆1||𝜆𝜆𝑛𝑛 | � �𝐸𝐸𝜒𝜒(𝐺𝐺)�2

 

8𝑛𝑛(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ )(|𝜆𝜆1||𝜆𝜆𝑛𝑛 |) ≤ (|𝜆𝜆1| + |𝜆𝜆𝑛𝑛 |)2�𝐸𝐸𝜒𝜒(𝐺𝐺)�2

 
8𝑛𝑛(𝑚𝑚 + 𝑚𝑚𝑐𝑐

′ )(|𝜆𝜆1||𝜆𝜆𝑛𝑛 |)
(|𝜆𝜆1| + |𝜆𝜆𝑛𝑛 |)2 ≤ �𝐸𝐸𝜒𝜒(𝐺𝐺)�2

 
2

|𝜆𝜆1|+|𝜆𝜆𝑛𝑛 |
�2𝑛𝑛(𝑚𝑚 + 𝑚𝑚𝑐𝑐

′ )�(|𝜆𝜆1||𝜆𝜆𝑛𝑛 |) ≤ 𝐸𝐸𝜒𝜒(𝐺𝐺). 
 
To obtain next inequality, we need to apply theorem (9) we get 
 
Theorem 11: Let 𝐺𝐺 be a colored graph with 𝜆𝜆𝑛𝑛  and 𝜆𝜆1 are the smallest and largest color eigenvalues of 𝐺𝐺 respectively. 
Then 

𝐿𝐿𝐿𝐿(𝐺𝐺) = 𝐸𝐸𝜒𝜒(𝐺𝐺) ≥ �2𝑛𝑛(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) −

𝑛𝑛2(|𝜆𝜆1| − |𝜆𝜆𝑛𝑛 |)2

4
 

 
Proof: Suppose 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑛𝑛   are the color eigenvalues of 𝐴𝐴𝜒𝜒(𝐺𝐺). We also assume that 𝑎𝑎𝑖𝑖 = |𝜆𝜆𝑖𝑖|  and 𝑏𝑏𝑖𝑖 = 1 
for 𝑖𝑖 = 1,2, … 𝑛𝑛. Then by applying Theorem 9, we have 

�  |𝜆𝜆𝑖𝑖|2
𝑛𝑛  

𝑖𝑖=1

�  12
𝑛𝑛

𝑖𝑖=1

− ��|𝜆𝜆𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

�
2

≤
𝑛𝑛2

4
(|𝜆𝜆1| − |𝜆𝜆𝑛𝑛 |)2 

𝑛𝑛�  |𝜆𝜆𝑖𝑖|2
𝑛𝑛

𝑖𝑖=1

− �𝐸𝐸𝜒𝜒(𝐺𝐺)�2 ≤
𝑛𝑛2

4
(|𝜆𝜆1| − |𝜆𝜆𝑛𝑛 |)2 

 
Since                     |𝜆𝜆𝑖𝑖|2 = 𝜆𝜆𝑖𝑖

2 = 2(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ )  and ∑ |𝜆𝜆𝑖𝑖|𝑛𝑛

𝑖𝑖=1 = 𝐸𝐸𝜒𝜒(𝐺𝐺) therefore we have, 

2𝑛𝑛(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) −

𝑛𝑛2

4
(|𝜆𝜆1| − |𝜆𝜆𝑛𝑛 |)2 ≤ �𝐸𝐸𝜒𝜒(𝐺𝐺)�2

 

�2𝑛𝑛(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) − 𝑛𝑛2

4
(|𝜆𝜆1| − |𝜆𝜆𝑛𝑛 |)2 ≤ 𝐸𝐸𝜒𝜒(𝐺𝐺). 

 
Further to prove second part in theorem 10 and theorem 11, by theorem 4,  𝐸𝐸𝜒𝜒(𝐺𝐺) = 𝐿𝐿𝐿𝐿𝜒𝜒(𝐺𝐺) for 𝑘𝑘 −regular colored 
graphs. 
 
Next we discuss same bounds for some non regular colored graphs using theorems (8) and (9). 
 
Theorem 12: Let 𝐺𝐺 be a colored graph with  𝜇𝜇1 and  𝜇𝜇𝑛𝑛  are the smallest and largest color Laplacian eigenvalues 
respectively. Then 
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��
|𝜇𝜇𝑛𝑛 |
|𝜇𝜇1| + �

|𝜇𝜇1|
|𝜇𝜇𝑛𝑛 |� ≥ 2�

𝑛𝑛𝑀𝑀1

𝑀𝑀1 + (𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) 

 
Proof: Suppose  𝜇𝜇1 , 𝜇𝜇2, …   . . ,  𝜇𝜇𝑛𝑛  are the color Laplacian eigenvalues of 𝐿𝐿𝜒𝜒(𝐺𝐺). We also assume that 𝑎𝑎𝑖𝑖 = 1  and 
𝑏𝑏𝑖𝑖 = |𝜇𝜇𝑖𝑖|  for 𝑖𝑖 = 1,2, … ,𝑛𝑛. Then by applying theorem (8), we have 

�  12
𝑛𝑛

𝑖𝑖=1

�  |𝜇𝜇𝑖𝑖| 2
𝑛𝑛

𝑖𝑖=1

≤
1
4
��

|𝜇𝜇𝑛𝑛 |
|𝜇𝜇1| + �

|𝜇𝜇1|
|𝜇𝜇𝑛𝑛 |�

2

��|𝜇𝜇𝑖𝑖| 
𝑛𝑛

𝑖𝑖=1

�
2

 

𝑛𝑛�  𝜇𝜇𝑖𝑖  2
𝑛𝑛

𝑖𝑖=1

≤
1
4
��

|𝜇𝜇𝑛𝑛 |
|𝜇𝜇1| + �

|𝜇𝜇1|
|𝜇𝜇𝑛𝑛 |�

2

��|𝜇𝜇𝑖𝑖| 
𝑛𝑛

𝑖𝑖=1

�
2

 

2𝑛𝑛(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) + �𝑑𝑑𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

≤
1
4
��

|𝜇𝜇𝑛𝑛 |
|𝜇𝜇1| + �

|𝜇𝜇1|
|𝜇𝜇𝑛𝑛 |�

2

��|𝜇𝜇𝑖𝑖| 
𝑛𝑛

𝑖𝑖=1

�
2

… …    (∗) 

From (*) we have  

��|𝜇𝜇𝑖𝑖| 
𝑛𝑛

𝑖𝑖=1

�
2

= ��|𝜇𝜇𝑖𝑖| 
𝑛𝑛

𝑖𝑖=1

����𝜇𝜇𝑗𝑗 � 
𝑛𝑛

𝑗𝑗=1

� 

                      = �|𝜇𝜇𝑖𝑖|2 + 2 � |𝜇𝜇𝑖𝑖|�𝜇𝜇𝑗𝑗 � 
𝑛𝑛

𝑖𝑖<𝑗𝑗=1

 
𝑛𝑛

𝑖𝑖=1

 

                      ≥�𝜇𝜇𝑖𝑖2 + 2 
𝑛𝑛

𝑖𝑖=1

� � 𝜇𝜇𝑖𝑖𝜇𝜇𝑗𝑗

𝑛𝑛

𝑖𝑖≠𝑗𝑗=1

� 

                      ≥ 2(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) + �𝑑𝑑𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

+ 2(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) 

Therefore (*) becomes  

2𝑛𝑛(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) + �𝑑𝑑𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

≤
1
4
��

|𝜇𝜇𝑛𝑛 |
|𝜇𝜇1| + �

|𝜇𝜇1|
|𝜇𝜇𝑛𝑛 |�

2

2�𝑀𝑀1 + (𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ )� 

2𝑛𝑛(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) + ∑ 𝑑𝑑𝑖𝑖2𝑛𝑛

𝑖𝑖=1

2�𝑀𝑀1 + (𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ )�

≤
1
4
��

|𝜇𝜇𝑛𝑛 |
|𝜇𝜇1| + �

|𝜇𝜇1|
|𝜇𝜇𝑛𝑛 |�

2

 

2𝑛𝑛𝑀𝑀1

2�𝑀𝑀1 + (𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ )�

≤
1
4
��

|𝜇𝜇𝑛𝑛 |
|𝜇𝜇1| + �

|𝜇𝜇1|
|𝜇𝜇𝑛𝑛 |�

2

 

4�
𝑛𝑛𝑀𝑀1

�𝑀𝑀1 + (𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ )�

� ≤ ��
|𝜇𝜇𝑛𝑛 |
|𝜇𝜇1| + �

|𝜇𝜇1|
|𝜇𝜇𝑛𝑛 |�

2

 

2��
𝑛𝑛𝑀𝑀1

�𝑀𝑀1 + (𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ )�

� ≤ ��
|𝜇𝜇𝑛𝑛 |
|𝜇𝜇1| + �

|𝜇𝜇1|
|𝜇𝜇𝑛𝑛 |� 

This completes the proof. 
 
Theorem 13: Let 𝐺𝐺 be a colored graph with  𝜇𝜇1 and  𝜇𝜇𝑛𝑛  are the smallest and largest color Laplacian eigenvalues 
respectively. Then 

|𝜇𝜇𝑛𝑛 | − | 𝜇𝜇1,| ≥
2
𝑛𝑛
�2[(𝑛𝑛 − 1) 𝑀𝑀1 – (𝑚𝑚 + 𝑚𝑚𝑐𝑐

′ )] 
 
Proof: Let  𝜇𝜇1 , 𝜇𝜇2, …    𝜇𝜇𝑛𝑛  are the color Laplacian eigenvalues of 𝐺𝐺. Suppose 𝑎𝑎𝑖𝑖 = 1 and 𝑏𝑏𝑖𝑖 = |𝜇𝜇𝑖𝑖|  for 𝑖𝑖 = 1,2, … ,𝑛𝑛. 
Then by applying theorem (9), we have 

𝑛𝑛�  |𝜇𝜇𝑖𝑖| 2
𝑛𝑛

𝑖𝑖=1

− ��|𝜇𝜇𝑖𝑖| 
𝑛𝑛

𝑖𝑖=1

�
2

≤
𝑛𝑛2

4
(|𝜇𝜇𝑛𝑛 | − |𝜇𝜇1|)2 
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𝑛𝑛�  𝜇𝜇𝑖𝑖  2
𝑛𝑛

𝑖𝑖=1

−�  𝜇𝜇𝑖𝑖  2
𝑛𝑛

𝑖𝑖=1

− 2 � |𝜇𝜇𝑖𝑖|�𝜇𝜇𝑗𝑗 � 
𝑛𝑛

𝑖𝑖<𝑗𝑗=1

≤
𝑛𝑛2

4
(|𝜇𝜇𝑛𝑛 | − |𝜇𝜇1|)2 

(𝑛𝑛 − 1)�  𝜇𝜇𝑖𝑖  2
𝑛𝑛

𝑖𝑖=1

− 2 � � 𝜇𝜇𝑖𝑖𝜇𝜇𝑗𝑗

𝑛𝑛

𝑖𝑖≠𝑗𝑗=1

� ≤
𝑛𝑛2

4
(|𝜇𝜇𝑛𝑛 | − |𝜇𝜇1|)2 

(𝑛𝑛 − 1)[2(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) + �𝑑𝑑𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

] − 2(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) ≤

𝑛𝑛2

4
(|𝜇𝜇𝑛𝑛 | − |𝜇𝜇1|)2 

2(𝑛𝑛 − 1)𝑀𝑀1 − 2(𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ ) ≤

𝑛𝑛2

4
(|𝜇𝜇𝑛𝑛 | − |𝜇𝜇1|)2 

2[(𝑛𝑛 − 1)𝑀𝑀1 − (𝑚𝑚 + 𝑚𝑚𝑐𝑐
′ )] ≤

𝑛𝑛2

4
(|𝜇𝜇𝑛𝑛 | − |𝜇𝜇1|)2 

2
𝑛𝑛
�2[(𝑛𝑛 − 1)𝑀𝑀1 − (𝑚𝑚 + 𝑚𝑚𝑐𝑐

′ )] ≤ |𝜇𝜇𝑛𝑛 | − |𝜇𝜇1|. 
 
This completes the proof. 
 
CONCLUSION  
 
In this paper we obtained some new lower bonds for color energy and color Laplacian energy of graphs and obtained 
various bounds for color eigenvalues and color Laplacian eigenvalues. We also obtained a bound for  
i.e., �𝐿𝐿𝐿𝐿𝜒𝜒(𝐺𝐺 − 𝑒𝑒) − 𝐿𝐿𝐿𝐿𝜒𝜒 (𝐺𝐺)� < 4 and 4 is the best possible bound.  
 
REFERENCES 
 

1. C. Adiga, E. Sampathkumar, M. A. Sriraj, Shrikanth A.S., Color Energy of Graphs, Proc. Jangjeon Math. Soc., 
16 (2013), 335-351. 

2. G. Polya, G. Szego, Problems and Theorems in analysis, Series, Integral Calculus, Theory of Functions, 
Springer, Berlin, (1972). 

3. N. Ozeki, On the estimation of inequalities by maximum and minimum values, J. College Arts Sci. Chiba 
Univ. 5 (1968), 199-203, in Japanese. 

4. P.G.Bhat and S.D’souza., Color Laplacian Energy of Graphs, Proc. Jangjeon Math. Soc., 18 (2015), No.3.     
pp 321-330. 

5. V.S. Shigehalli and Kenchappa. S Betageri, “Color Laplacian Energy”, Journal of Computer and 
Mathematical Sciences, Vol.6 (9), (2015), 485-494. 

 
Source of support: Nil, Conflict of interest: None Declared 

 
[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal 
of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited.]

  


