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ABSTRACT 
In this paper we introduce a new class of sets, namely semi*δ-closed sets, as the complement of semi*δ-open sets. We 
find characterizations of semi*δ-closed sets. We also define the semi*δ-closure of a subset. Further we investigate 
fundamental properties of the semi*δ-closure.  
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I. INTRODUCTION 
 
In 1963 Levine [3] introduced the concepts of semi-open sets and semi-continuity in topological spaces. Levine [4] also 
defined and studied generalized closed sets as a generalization of closed sets. Dunham [2] introduced the concept of 
generalized closure using Levine's generalized closed sets .N.V.Velico [15] introduced the concept of δ-open sets in 
1968. In 1997, Park, Lee and Son [17] introduced the concept of δ-semi-open sets in topological spaces. Pasunkili 
Pandian [9] defined and studied semi*-pre closed sets and investigated its properties.A.Robert [13] defined and studied 
semi*α-closed sets. The authors [18] have recently introduced the concept of semi*δ-open sets and investigated its 
properties. The semi*δ-interior of a subset has also been defined and its properties studied. 
 
In this paper, we define a new class of sets, namely semi*δ-closed sets, as the complement of semi*δ-open sets. We 
further show that the class of semi*δ-closed sets is placed between the class of δ-closed sets and the class of δ-semi-
closed sets. We find characterizations of semi*δ-closed sets. We investigate fundamental properties of semi*δ-closed 
sets. We also define the semi*δ-closure of a subset. We also study some basic properties of semi*δ-closure.  
 
II. PRELIMINARIES 
 
Throughout this paper (X, τ) will always denote a topological space on which no separation axioms are assumed, unless 
explicitly stated. If A is a subset of the space (X, τ), Cl(A) and Int(A) denote the closure and the interior of A 
respectively. Also 𝓕𝓕 denotes the class of all closed sets in the space (X, τ).  
 
Definition 2.1: A subset A of a space X is 

(i) generalized closed (briefly g-closed) [2] if Cl(A)⊆U whenever A⊆U and U is open in X.  
(ii) generalized open (briefly g-open) [2] if X\A is g-closed in X. 

 
Definition 2.2: If A is a subset of X,  

(i) the generalized closure [3] of A is defined as the intersection of all g-closed sets in X containing A and is 
denoted by Cl*(A).  

(ii) the generalized interior of A is defined as the union of all g-open subsets of A and is denoted by Int*(A). 
 
Definition 2.3: A subset A of a topological space (X, τ) is semi-open [3]( respectively semi*-open [12]) if there is an 
open set U in X such that U⊆A⊆Cl(U) ( respectively U⊆A⊆Cl*(U) ) or equivalently if A⊆Cl(Int(A)) (respectively 
A⊆Cl*(Int(A)) ). 
 
Definition 2.4: Definition 2.4. A subset A of a topological space (X, τ) is pre-open [5]( respectively pre*-open [14]) if   
A⊆Int(Cl(A)) (respectively A⊆Int*(Cl(A)). 
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Definition 2.5: A subset A of a topological space (X, τ) is α-open [7] (respectively α*-open [10]) if A⊆Int(Cl(Int(A))), 
(respectively A⊆Int*(Cl(Int*(A))). 
 
Definition 2.6: A subset A of a topological space (X, τ) is  semi-preopen [1]= β - open (respectively semi*-preopen 
[9]) if A⊆Cl(Int(Cl(A))) (respectively  A⊆Cl*(pInt(A)) ). 
 
Definition 2.7: A subset A of a topological space (X, τ) is regular-open [6] if A=Int(Cl(A)). 
 
Definition 2.8: The δ-interior [15] of A is defined as the union of all regular-open sets of X contained in A. It is 
denoted by δInt(A). 
 
Definition 2.9: A subset A of a topological space (X, τ) is δ-open [11] if A=δInt(A). 
 
Definition 2.10: A subset A of a topological space (X, τ) is semi α-open [6] (respectively semi* α-open [13]) if there is 
a α-open set U in X such that U⊆A⊆Cl(U) ( respectively U⊆A⊆Cl*(U) ) or equivalently if A⊆Cl(αInt(A)). 
(respectively A⊆Cl*(αInt(A)) ). 
 
Definition 2.11: A subset A is δ-semi-open [17] if A⊆Cl(δInt(A)). 
 
Definition 2.12: A subset A of a topological space (X, τ) is called a semi*δ-open [18] if there exists a δ-open set U in X 
such that U⊆A⊆Cl*(U) or equivalently if  A⊆Cl*(δInt(A)).  
 
Definition 2.13:A  subset A of a topological space (X, τ) is semi-closed (respectively semi*-closed, pre-closed[5], 
pre*-closed [14], α-closed [7], α*-closed [10], semi-pre closed [ 1], semi*-preclosed [9], regular-closed[6], δ-closed 
[11], semi α-closed[6], semi* α-closed[13] and δ-semi-closed [17]) if Int(Cl(A))⊆A(respectively Int*(Cl(A))⊆A, 
Cl(Int(A)⊆A, Cl*(Int(A)⊆A,Cl(Int(Cl(A)))⊆A ,Cl*(Int(Cl*(A)))⊆A, Int(Cl(Int(A))) ⊆A ,Int*(pCl(A))⊆A, Cl(Int(A) 
=A,δCl(A)=A, Int(Cl(Int(Cl(A)))) ⊆A, Int*(αCl(A))⊆A and  Int(δCl(A))⊆A). 
 
The class of all semi*δ-open sets in (X, τ) is denoted by S*δO(X, τ) or simply S*δO(X). 
 
The class of all semi-closed (respectively semi*-closed, pre-closed, pre*-closed, α-closed, α*-closed, semi-preclosed, 
semi*-preclosed, semi α-closed, semi* α-closed, regular-closed, δ-closed and δ-semi-closed) sets in (X, τ) is denoted by 
SC(X) (respectively S*C(X), PC(X). P*C(X),αC(X) , α*C(X)  SPC(X), S*PC(X) ,SαC(X), S*αC(X), RC(X), δC(X)  and 
δSC(X). 
 
Definition 2.14: A topological space X is 𝑇𝑇1

2�
[4] if every g-closed set in X is closed.  

 
Theorem 2.15: [2] Cl* is a Kuratowski closure operator in X.  
 
Definition 2.16: [2] If τ* is the topology on X defined by the Kuratowski closure operator Cl*, then (X, τ*) is 𝑇𝑇1

2�
. 

 
Definition 2.17: [16] A space X is locally indiscrete if every open set in X is closed.  
 
Theorem 2.18: [18] For a subset A of a topological space (X, τ) the following statements are equivalent:  

(i) A is semi*δ-open.  
(ii) A⊆Cl*(δInt(A)).  
(iii) Cl*(δInt(A))=Cl*(A). 

 
Theorem 2.19: [18] Every δ-open set is semi*δ-open. 
 
Theorem 2.20: [18] In any topological space,  

(i) Every semi*δ-open set is δ-semi-open.  
(ii) Every semi*δ-open set is semi - open.  
(iii) Every semi*δ-open set issemi* - open.  
(iv) Every semi*δ-open set is semi*-preopen.  
(v) Every semi*δ-open set is semi-preopen.  
(vi) Every semi*δ-open set is semi*α-open 
(i) Every semi*δ-open set is semiα-open. 

 
Theorem 2.21: [18] In any topological space, arbitrary union semi*δ-open sets is semi*δ-open.  
 
Theorem 2.22: [18] If A is semi*δ-open in X and B is open in X, then A∩B is semi*δ-open in X.  
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Theorem 2.23: [18] If A is semi*δ-open in X and B⊆X is such that δInt(A)⊆B⊆Cl*(A). Then B is semi*δ-open. 
 
III. SEMI*δ-CLOSED SETS 
 
Definition 3.1: The complement of a semi*δ-open set is called semi*δ-closed. The class of all semi*δ-closed sets in 
(X, τ) is denoted by S*δC(X, τ) or simply S*δC(X)  
 
Definition 3.2: A subset A of X is called semi*δ-regular if it is both semi*δ-open and semi*δ-closed.  
 
Theorem 3.3: For a subset A of a topological space (X, τ), the following statements are equivalent: 

(i) A is semi*δ-closed. 
(ii) Int*(δCl(A))⊆A. 
(iii) Int*(δCl(A))=Int*(A). 

 
Proof: (i)⟹(ii): Suppose A is semi*δ-closed.Then X\A is semi*δ-open.Then by Theorem 2.18  X\A ⊆ Cl*(δInt(X\A)).  
Taking the complements we   get, A⊇ X\Cl*(δInt(X\A) ⟹ A ⊇Int*(δCl(A)).  
 
(ii)⟹(iii): By assumption, Int*(δCl(A))⊆A. This implies that Int*(δCl(A))⊆Int*(A). Since it is true that A⊆δCl(A), we 
have Int*(A)⊆Int*(δCl(A)). Therefore Int*(δCl(A))=Int*(A).  
 
(iii)⟹(i): If Int*(δCl(A))=Int*(A), then taking the complements, we get X\Int*(δCl(A))=X\Int*(A). Hence 
Cl*(δInt(X\A))=Cl*(X\A). Therefore by Theorem 2.18, X\A is semi*δ-open and hence A is semi*δ-closed. 
 
Theorem 3.4: A subset A of a space (X, τ) is semi*δ-closed iff there is a δ-closed set F in (X, τ) such that 
Int*(F)⊆A⊆F. 
 
Proof: Necessity: Suppose A is semi*δ-closed. Then X\A is semi*δ-open. Then by definition 2.12 there exists a           
δ- open set U in X such that U⊆X\A⊆Cl*(U) which implies X\U⊇A⊇X\Cl*(U). Note that in any space, 
X\Cl*(U)=Int*(X\U). Therefore  F⊇A⊇Int*(F) where F=X\U is δ-closed in X. 
 
Sufficiency: Suppose there is a δ-closed set F in (X, τ) such that Int*(F)⊆A⊆F which implies X\Int*(F)⊇X\A⊇ X\F. 
Since X\Int*(F)=Cl*(X\F), we have Cl*(X\F)⊇X\A⊇X\F where X\F is a δ-open set. Hence by Definition 2.12, X\A is 
semi*δ-open. Therefore A is semi*δ-closed. 
 
Remark 3.5:  

(i) In any topological space (X, τ), ϕ and X are semi*δ-closed sets.  
(ii) In a 𝑇𝑇1

2�
 space, the semi*δ-closed sets and the δ-semi-closed sets coincide. In particular, in the real line with 

usual topology the semi*δ-closed sets and the δ-semi-closed sets coincide. 
 
Theorem 3.6: Arbitrary intersection of semi*δ-closed sets is also semi*δ-closed.  
 
Proof: Let {Ai} be a collection of semi*δ-closed sets in X. Since each Ai is semi*δ-closed, X\Ai is semi*δ-open. By 
Theorem 2.21, X\(∩Ai)= ∪(X\Ai) is semi*δ-open. Hence ∩Ai is semi*δ-closed.  
 
Corollary 3.7: If A is semi*δ-closed and U is semi*δ-open in X, then A\U is semi*δ-closed. 
 
Proof: Since U is semi*δ-open, X\U is semi*δ-closed. Also since A\U=A∩ (X\U), and hence by Theorem 3.6, A\U is 
semi*δ-closed. 
 
Remark 3.8: Union of two semi*δ-closed sets need not be semi*δ-closed as seen from the following examples. 
 
Example 3.9: Let X = {a, b, c} and τ = {ϕ, {a}, {b}, {a, b}, X}. In the space (X, τ), the subsets {a} and {b} are semi*δ-
closed but their union {a, b} is not semi*δ-closed.  
 
Example 3.10: Let X = {a, b, c, d} and τ = {ϕ, {a},{b},{c},{a, b},{a, c}, {b, c}, {a, b, c }, X}. In the space (X, τ), the 
subsets {a, c} and {b, c} are semi*δ-closed but their union {a, b, c} is not semi*δ-closed. 
 
Theorem 3.11: If A is semi*δ-closed in X and B is closed in X, then A∪B is semi*δ-closed.  
 
Proof: Since A is semi*δ-closed, X\A is semi*δ-open in X. Also X\B is open. By Theorem 2.22, (X\A) ∩ (X\B)=X\(A∪B) 
is semi*δ-open in X. Hence A∪B is semi*δ-closed in X. 
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Theorem 3.12: Every δ-closed set is semi*δ-closed. 
 
Let U be δ-closed in X. Then X\U is δ-open. By theorem 2.19, X\U is semi*δ-open, Hence U is semi*δ-closed. 
 
Remark 3.13: The converse of the above theorem is not true as shown in the following examples. 
 
Example 3.14: In the space (X, τ) where X={a, b, c} and τ={ϕ, {a}, {b}, {a, b}, X}, the subsets {a} and{b}  are 
semi*δ-closed but not δ-closed. 
 
Example 3.15: In the space (X, τ) where X={a, b, c, d} and τ={ϕ, {a}, {b}, {a, b},{a, b, c}, X}, the subsets {c}, {a, 
c}and  {b, c} are semi*δ-closed but not δ-closed. 
 
Theorem 3.16: In any topological space,  

(i) Every semi*δ-closed set is δ-semi-closed.  
(ii) Every semi*δ-closed set is semi-closed.  
(iii) Every semi*δ-closed set is semi*-closed.  
(iv) Every semi*δ-closed set is semi*-preclosed.  
(v) Every semi*δ-closed set is semi-preclosed.  
(vi) Every semi*δ-closed set is semi*α-closed. 
(vii) Every semi*δ-closed set is semi-α-closed.  

 
Proof:  

(i) Let A be a semi*δ-closed set. Then X\A is semi*δ-open. By Theorem 2.20(i), X\A is δ-semi-open. Hence A is 
δ-semi-closed. 

(ii) Suppose A is a semi*δ-closed set. Then X\A is semi*δ-open. By Theorem2.20 (ii), X\A is semi-open. Hence, A 
is semi-closed. 

(iii) Suppose A is a semi*δ-closed set. Then X\A is semi*δ-open. By Theorem 2.20(iii), X\A is semi*-open. Hence, 
A is semi*-closed.  

(iv) Let A be a semi*δ-closed set. Then X\A is semi*δ-open in X. By Theorem 2.20(iv), X\A is semi*-preopen 
Hence A is semi*-preclosed in X.  

(v) his statement follows from (iv) and the fact that every semi*-preclosed set is semi-pre closed.  
(vi) Let A be a semi*δ-closed set. Then X\A is semi*δ-open By Theorem 2.20(vi), X\A is semi*α-open. Hence, A is 

semi*α-closed.  
(vii) This statement follows from (vi) and the fact that every semi*α-closed set is semiα-closed. 

 
Remark 3.17: The converse of each of the statements in Theorem 3.16 is not true as shown in the following examples. 
 
Example 3.18: In the space (X, τ) where X={a, b, c, d} and τ={ϕ, {a}, {b}, {a, b},{a, b, c}, X}, the subsets {a}, 
{b},{d}, {a, d} and {b, d} are semiδ-closed but not semi*δ-closed. 
 
Example 3.19: In the space (X, τ) where X={a, b, c, d} and τ={ϕ, {a}, X}, the subsets{b},{c}, {d},{b, c},{b, d},{c, d} 
and  {b, c, d} are semi-closed but not semi*δ-closed. 
 
Example 3.20: In the space (X, τ) where X= {a, b, c, d} and τ={ϕ, {a, b, c}, X}, the subset {d} is semi*-closed but not 
semi*δ-closed. 
 
Example 3.21: In the space (X, τ) where X={a, b, c, d} and τ={ϕ, {a, b},{a, b, c}, X}, the subsets {a}, {b}, {c}, 
{d},{a, c},{a, d}, { b, c}, {b, d},{c, d},{a, c, d}  and  {b, c, d} are semi*-preclosed but not semi*δ-closed. 
 
Example 3.22: In the space (X, τ) where X={a, b, c, d} and τ={ϕ, {a},{ b, c, d}, X}, the subsets {b}, {c},{d},{a, b}, 
{a, c},{a, d},{b, c}, { b, d},{c, d},{a, b, c},{a, b, d} and {a, c, d}  are semi-preclosed but not semi*δ-closed. 
 
Example 3.23: In the space (X, τ) where X={a, b, c, d} and τ={ϕ, {a},{a, b, c}, X}, the subsets{b}, {c}, {d},{b, c},{b, 
d},{c, d} and {b, c, d}  are semi*α-closed but not semi*δ-closed. 
 
Example 3.24: In the space (X, τ) where X={a, b, c, d} and τ={ϕ, {a},{a, b},{a, b, c}, X}, the subsets{b}, {c}, {d}, {b, 
c},{ b, d},{c, d} and {b, c, d}  are semiα-closed but not semi*δ-closed. 
 
Corollary 3.25: If A is semi*δ-closed and F is δ-closed in X, then A∩F is semi*δ-closed in X. 
 
Proof: Since F is δ-closed, by Theorem 3.12 F is semi*δ-closed. Then by Theorem 3.6, A∩F is semi*δ-closed 
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Theorem 3.26: In any topological space (X,τ),  δC(X, τ)⊆ S*δC(X, τ)⊆δSC(X, τ) .That is the class of  semi*δ-closed 
set is placed between the class of  δ-closed sets and the class of δ-semi-closed sets. 
 
Proof: Follows from Theorem 3.12 and Theorem 3.16. 
 
Remark 3.27: 

(i) If (X, τ) is a locally indiscrete space, 
         𝓕𝓕=δC(X,τ)=S*δC(X,τ)=δSC(X,τ)=S*C(X,τ)=SC(X,τ)=αC(X,τ)=S*CO(X,τ)=SαC(X,τ)=RC(X, τ). 
(ii) The inclusions in Theorem 3.26  may be strict and equality  may also hold. This can be seen from the 

following examples. 
 
Example 3.28: In the topological space (X, τ) where X={a, b, c, d} and τ ={ϕ, {a}, {b, c, d}, X} ,δC(X, τ)=S*δC(X, 
τ)=δSC(X, τ). 
 
Example 3.29: In the topological space (X, τ) where X={a, b, c, d} and τ ={ϕ,{a},{b},{c},{a, b},{a, c},{b, c},           
{a, b, c }, X}, δC(X, τ) ⊊ S*δC(X, τ) = δSC(X, τ). 
 
Example 3.30: In the topological space (X, τ) where X={a, b, c, d} and τ={ϕ, {a}, {b}, {a, b},{a, b, c}, X}, δC(X, τ) ⊊ 
S*δC(X, τ) ⊊ δSC(X, τ). 
 
Theorem 3.31: If A is semi*δ-closed in X and B be a subset of X such that Int*(A)⊆B⊆δCl(A), then B is semi*δ-closed 
in X.  
 
Proof: Since A is semi*δ-closed, X\A is semi*δ-open. Now Int*(A)⊆B⊆δCl(A) which implies 
X\Int*(A)⊇X\B⊇X\δCl(A). That is, Cl*(X\A)⊇X\B⊇δInt(X\A). Therefore by Theorem 2.23, X\B is semi*δ-open. Hence 
B is semi*δ-closed. 
 
Remark 3.32: The concept of semi*δ-closed sets and closed  sets are independent as seen from the following example: 
 
Example 3.33: In the topological space (X, τ) where X={a, b, c, d} and τ={ϕ, {a}, {b}, {a, b}, {a, b, c}, X}, the subsets 
{c},{a, c}and {b, c}  are semi*δ-closed but not closed and {d} is closed but not semi*δ-closed. 
 
Remark 3.34: The concept of semi*δ-closed sets and g-closed sets are independent as seen from the following 
example: 
 
Example 3.35: In the topological space (X, τ) where X={a, b, c, d} and τ={ϕ, {a}, {b}, {a, b}, {a, b, c}, X}, the subsets 
{c},{a, c}and {b, c}  are semi*δ-closed  but not g-closed and {d},{a, d},{b, d}and{a, b, d} are g-closed but not 
semi*δ-closed. 
 
Remark 3.36: The concept of semi*δ-closed sets and α-closed sets are independent as seen from the following 
examples: 
 
Example 3.37: In the topological space (X, τ) where X={a, b, c, d} and τ={ϕ,{a, b}, {a, b, c}, X}, the subsets 
{c},{d}and {c, d}  are α-closed but not semi*δ-closed. 
 
Example 3.38: In the topological space (X, τ) where X={a, b, c, d} and τ ={ϕ, {a}, {b},{c},{a, b},{a, c}, {b, c},         
{a, b, c}, X},the subsets {a},{b}, {c},{a, b},{a, c} and {b, c} are semi*δ-closed but not α-closed. 
 
Remark 3.39: The concept of semi*δ-closed sets and pre-closed sets are independent as seen from the following 
examples: 
 
Example 3.40: In the topological space (X, τ) where X= {a, b, c} and τ={ϕ,{a},{b},{a, b}, X}, the subsets {a} and{b}  
are  semi*δ-closed but not pre-closed. 
 
Example 3.41: In the topological space (X, τ) where X= {a, b, c} and τ ={ϕ, {a, b}, X}, the subsets {a},{b}, {c},{ a, 
c}and{b, c}  are pre-closed but not semi*δ-closed. 
  
Remark 3.42: The concept of semi*δ-closed sets and α*-closed sets are independent as seen from the following 
examples: 
 
Example 3.43: In the topological space (X, τ) where X={a, b, c, d} and τ={ϕ, {a}, {b}, {a, b}, {a, b, c}, X}, the subsets 
{a, c} and {b, c} are semi*δ-closed but not α*-closed and {d},{ a, d},{b, d}and {a, b, d} are α*-closed but not semi*δ-
closed. 
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Remark 3.44: The concept of semi*δ-closed sets and pre*-closed sets are independent as seen from the following 
examples: 
 
Example 3.45: In the topological space (X, τ) where X={a, b, c, d} and τ={ϕ, {a}, {b}, {a, b}, {a, b, c}, X}, the subsets 
{a, c}and{b, c} are semi*δ-closed but not pre*-closed and {d},{ a, d},{b, d} and {a, b, d} are pre*-closed but not 
semi*δ-closed. 
 
From the above discussions we have the following diagram: 
 

 
 
IV. SEMI*δ-CLOSURE OF A SET 
 
Definition 4.1: If A is a subset of a topological space X, the semi*δ-closure of A is defined as the intersection of all 
semi*δ-closed sets in X containing A. It is denoted by s*δCl(A). 
 
Theorem 4.2: If A is any subset of a topological space (X, τ), then  

(i) s*δCl(A) is the smallest semi*δ-closed set in X containing  A.  
(ii) A is semi*δ-closed if and only if s*δCl(A)=A.  

 
Proof: 

(i) Since s*δCl(A) is the intersection of all semi*δ-closed supersets of A, by Theorem 3.6, it is semi*δ-closed and 
is contained in every semi*δ-closed set containing A and hence it is the smallest semi*δ-closed set in X 
containing  A. 

(ii) If A is semi*δ-closed, then s*δCl(A) = A is obvious from definition 4.1. Conversely, let s*δCl(A)=A. By (i) 
s*δCl(A) is semi*δ-closed and hence A is semi*δ-closed. 

 
Theorem 4.3: (Properties of Semi*δ-Closure)  
In any topological space (X, τ) the following statements hold:  

(i) s*δCl(ϕ)=ϕ.  
(ii) s*δCl(X)=X.  
 
        If A and B are subsets of X,  
(iii) A⊆s*δCl(A).  
(iv) A⊆B ⟹s*δCl(A)⊆s*δInt(B).  
(v) s*δCl(s*δCl(A))=s*δCl(A).  
(vi) A ⊆δsCl(A)⊆s*δCl(A) ⊆ δCl(A 
(vii) s*δCl(A∪B)⊇s*δCl(A)∪s*δCl(B).  
(viii) s*δCl(A∩B)⊆s*δCl(A) ∩ s*δCl(B).  

 
Proof: (i), (ii), (iii) and (iv) follow from Definition 4.1. By Theorem 4.2(i), s*δCl(A) is semi*δ-closed and by Theorem 
4.3(ii), s*δCl(s*δCl(A))=s*δCl(A). Thus (v) is proved. The statements (vi) follows from Theorem 3.12and Theorem 
3.16(i). Since A⊆A∪B, from statement (iv) we have s*δCl(A)⊆s*δCl(A∪B). Similarly, s*δCl(B)⊆s*δCl(A∪B). This 
proves (vii). The proof for (viii) is similar. 
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Remark 4.4: In (vi) of Theorem 4.3,each of the inclusions  may be strict and equality may also hold. This can be seen 
from the following examples: 
 
Example 4.5: In the space (X, τ) where X={a, b, c, d} and τ={ϕ,{a},{b},{a, b}, {a, b, c}, X}.  
𝓕𝓕={ϕ,{d},{c, d},{a, c, d}, {b, c, d}, X}. 
 
Let A= {a, c, d}. Then δsCl(A) =s*δCl(A)= δCl(A)={a, c, d}=A.  
 
Let B={a, c}.Then δsCl(B)= s*δCl(B)= {a, c}; δCl(B)={a, c, d};  
 
Here B=δsCl(B)= s*δCl(B) ⊊ δCl(B) 
 
Let C= { a, d}.Then δsCl(C)={ a, d}; s*δCl(C)= δCl(C)={a, c, d} 
 
Here C= δsCl(C) ⊊ s*δCl(C) = δCl(C).  
 
Let D= {a, b}.Then δsCl(D)= s*δCl(D)= δCl(D)= X.  
 
Here D⊊δsCl(D)=s*δCl(D)= δCl(D). 
 
Let E={b}.Then δsCl(E)={b}; s*δCl(E)={b, c}; δCl(E)={b, c, d};  
 
Here E = δsCl(E) ⊊ s*δCl(E) ⊊ δCl(E). 
 
Remark 4.6: The inclusions in (vii) and (viii) of Theorem 4.3 may be strict and equality may also hold. This can be 
seen from the following examples.  
 
Example 4.7: Consider the space (X, τ) in Example 4.5 
 
Let A= {a, c} and B={c, d} then A∪B={a, c, d}; s*δCl(A) ={a, c}; s*δCl(B)={c, d}; s*δCl(A∪B)={a, c, d};  
 
Here s*δCl(A∪B)= s*δCl(A) ∪s*δCl(B)  
 
Let C= {a, c} and D ={b, c} then  C∩D={c}; s*δCl(C)={a, c}; s*δCl(D)={b, c}; s*δCl(C∩D)={c}; 
 
Here s*δCl(C∩D)= s*δCl(C) ∩ s*δCl(D)  
 
Let E= {a, b} and F ={c, d} then E∩F = ϕ; s*δCl(E) = X; s*δCl(F)={c, d}; s*δCl(E∩F)=ϕ; s*δCl(E) ∩s*δCl(F)={c, d}  
 
Here s*δCl(E∩F)⊊s*δCl(E) ∩s*δCl(F)  
 
Let G={a} and H={ b} then G∪H={a, b};  
s*δCl(G)={a, c}; s*δCl(H)= { b, c}; s*δCl(G∪H)= X ; s*δCl(G) ∪s*δCl(H)={a, b, c}; 
 
Here s*δCl(G) ∪s*δCl(H)⊊s*δCl(G∪H). 
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