DIRECT PRODUCT OF (Q, L)-FUZZY SUBGROUPS AND THEIR PROPERTIES

A. SOLAIRAJU*1, S. THIRUVENI2

1Associate Professor of Mathematics, Jamal Mohamed College, Trichy, India.
2Assistant Professor in Mathematics, K. S. R. College of Engineering, Tiruchengode, Namakkal Dist. Tamil Nadu, India.

(Received On: 14-10-16; Revised & Accepted On: 16-11-16)

ABSTRACT

In this paper, some properties of (Q, L)-fuzzy subgroups of a group are discussed, and obtained some algebraic properties on the direct product of (Q, L)-fuzzy subgroups by means of Q-level sets.

Keywords: (Q, L)-fuzzy subset, (Q, L)-fuzzy subgroups, (Q, L) – fuzzy normal subgroup, Q-level subsets.

SECTION 1 – INTRODUCTION

The concept of fuzzy set was introduced by Zadeh [7]. Rosenfield [6] gave the idea of subgroups. Solairaju and Nagarajan [4, 5] introduced and defined a new algebraic structure of Q-fuzzy groups. Asokkumer Ray [1] defined a product of fuzzy groups. Goguen [2] studied the fuzzy set theory by studying L-fuzzy sets. In this paper, we discuss some equivalent characterizations of direct product of (Q, L)-fuzzy groups by means of Q-level subsets.

SECTION 2 – BASIC DEFINITIONS

Definition 2.1: Let X and Q be any two non-empty sets. A mapping $\mu : X \times Q \rightarrow [0, 1]$ is called a Q-fuzzy set in X.

Definition 2.2: Let X be a non-empty set and L = (L, \leq) be a lattice with least element 0 and greatest element 1 and Q be a non-empty set . A (Q, L)-fuzzy subset A of X is a function $A : X \times Q \rightarrow L$.

Definition 2.3: A (Q, L) - fuzzy subset λ of G is said to be a (Q, L)-fuzzy subgroup of G if for all $x, y \in G$ and $q \in Q$

(i) $(xy, q) \geq \lambda(x, q) \land \lambda(y, q)$

(ii) $\lambda(x^{-1}, q) = \lambda(x, q)$

SECTION 3 – PROPERTIES ON (Q, L) – FUZZY SUBGROUP

Theorem 3.1: A (Q, L)-fuzzy subset λ of G is a (Q, L)-fuzzy subgroup of G if and only if

$(xy^{-1}, q) \geq \lambda(x, q) \land \lambda(y, q), \forall x, y \in G$ and $q \in Q$.

Proof: λ is a (Q, L)-fuzzy subgroup of G.

$\Leftrightarrow \lambda(xy, q) \geq \lambda(x, q) \land \lambda(y, q)$ and $\lambda(x^{-1}, q) = \lambda(x, q)$

$\Leftrightarrow \lambda(xy^{-1}, q) \geq \lambda(x, q) \land \lambda(y, q), \forall x, y \in G$ and $q \in Q$

Definition 3.2: Let A be a (Q, L)-fuzzy subgroup of G. For $\alpha \in L$, a Q-level subset of A corresponding to α is the set $A_\alpha = \{x \in G, qeQ : A(x, q) \geq \alpha \}$

Corresponding Author: A. Solairaju*1

*1Associate Professor of Mathematics, Jamal Mohamed College, Trichy, India.
Theorem 3.3: If A is a (Q, L)-fuzzy subset of a group G. Then A is a (Q, L)-fuzzy subgroup of G if and only if \(A_{\alpha} \) is a subgroup of a group G for all \(\alpha \in L \).

Proof: Let \(x, y \in G, q \in Q \):

\[
A(xy^{-1}, q) \geq A(x, q) \wedge A(y, q)
\]

\[
A(xy^{-1}, q) \geq \alpha
\]

\[
\Rightarrow xy^{-1} \in A_{\alpha} \Rightarrow A_{\alpha} \text{ is a subgroup of } G \text{ for all } \alpha \in L.
\]

Definition 3.4: A (Q, L)-fuzzy subgroup A of group G is a (Q, L)-fuzzy normal subgroup of G if for some \(\alpha \in L \), \(A_{\alpha} = A \).

Theorem 4.1: If A and B are two (Q, L)-fuzzy normal subgroups of group G. Then A and B are said to be (Q, L)-fuzzy conjugate subgroup of G if for some \(\alpha \in L \), \(A_{\alpha} = B_{\alpha} \).

Definition 3.6: Let A and B be two (Q, L)-fuzzy subgroups of G. Then A and B are said to be (Q, L)-fuzzy conjugate subgroup of G if for some \(\alpha \in L \), \(A_{\alpha} = B_{\alpha} \).

Theorem 4.2: Let A be a (Q, L)-fuzzy normal subgroup of a group G. Then A is a (Q, L)-fuzzy normal subgroup of G if and only if \(A_{\alpha} \) is a normal subgroup of a group G for all \(\alpha \in L \).

Proof: Let A be a (Q, L)-fuzzy normal subgroup of a group G. Then A is a (Q, L)-fuzzy normal subgroup of G if and only if \(A_{\alpha} \) is a normal subgroup of a group G for all \(\alpha \in L \).

Definition 3.7: Let A be a (Q, L)-fuzzy subgroup in a set S, the strongest (Q, L) fuzzy relation on S, that is (Q, L)-fuzzy relation on A is V given by \(\mu_V((x, y), q) = \mu_A(x, q) \wedge \mu_B(y, q) \forall x, y \in S \).

SECTION 4: DIRECT PRODUCT OF (Q, L)-FUZZY SUBGROUPS

Definition 4.1: Let A and B be two (Q, L)-fuzzy subgroups of X and Y respectively. Then the Cartesian product of A and B is denoted by \(A \times B \) and is defined as

\[
A \times B = \{ (x, y), (x, y) \mid \mu_A((x, y), q) \wedge \mu_B((x, y), q) > 0 \} \forall x \in X, y \in Y, q \in Q
\]

where \(\mu_{A \times B}((x, y), q) = \mu_A(x, q) \wedge \mu_B(y, q) \).

Theorem 4.2: If A and B be two (Q, L)-fuzzy subgroups of X and Y respectively, then \((A \times B)_\alpha = A_\alpha \times B_\alpha\) for \(\alpha \in L \).

Proof: Let \((x, y) \in (A \times B)_\alpha \) and \(q \in Q \).

Then \(\mu_{A \times B}((x, y), q) \geq \alpha \)

\[
\Leftrightarrow \mu_A(x, q) \wedge \mu_B(y, q) \geq \alpha
\]

\[
\Leftrightarrow \mu_A(x, q) \geq \alpha, \mu_B(y, q) \geq \alpha
\]

\[
\Leftrightarrow x \in A_{\alpha}, y \in B_{\alpha}
\]

\[
\Leftrightarrow (x, y) \in A_{\alpha} \times B_{\alpha} \text{ for } \alpha \in L
\]

Hence, \((A \times B)_\alpha = A_\alpha \times B_\alpha\) for \(\alpha \in L \).

Theorem 4.3: Let A and B be two (Q, L)-fuzzy subgroups of group \(G_1 \) and \(G_2 \) respectively. Then \(A \times B \) is a (Q, L)-fuzzy subgroup of group \(G_1 \times G_2 \).

Proof: Since A and B are \((Q, L)-fuzzy \) subgroups of group \(G_1 \) and \(G_2 \) respectively. Then \(A_\alpha \) and \(B_\alpha \) are subgroups of group \(G_1 \) and \(G_2 \) respectively.

\[
\Rightarrow A_\alpha \times B_\alpha \text{ is a subgroup of } G_1 \times G_2, \text{ for } \alpha \in L.
\]

\[
\Rightarrow (A \times B)_\alpha \text{ is a subgroup of } G_1 \times G_2, \text{ for } \alpha \in L. \text{ (By thm 2.6)}
\]

\[
\Rightarrow A \times B \text{ is a } (Q, L)-fuzzy \text{ subgroup of group } G_1 \times G_2.
\]

Theorem 4.4: Let A and B be two \((Q, L)-fuzzy \) normal subgroups of group \(G_1 \) and \(G_2 \) respectively. Then \(A \times B \) is a \((Q, L)-fuzzy \) normal subgroup of group \(G_1 \times G_2 \).

Proof: Since A and B are \((Q, L)-fuzzy \) normal subgroups of group \(G_1 \) and \(G_2 \) respectively. Then \(A_\alpha \) and \(B_\alpha \) are normal subgroups of group \(G_1 \) and \(G_2 \) respectively.
\[\Rightarrow A_x \times B_y \text{ is a normal subgroup of } G_1 \times G_2, \text{ for } \alpha \in L. \]

\[\Rightarrow (A \times B)_x \text{ is a normal subgroup of } G_1 \times G_2, \text{ for } \alpha \in L. \text{ (By thm 2.6)} \]

\[\Rightarrow A \times B \text{ is a (Q, L)–fuzzy normal subgroup of group } G_1 \times G_2. \]

Remark 4.5: Let A and B be (Q, L)–fuzzy subgroups of group G_1 and G_2 respectively. If \(A \times B \) is a (Q, L)–fuzzy subgroup of group \(G_1 \times G_2 \), then it is not necessary that both A and B should be (Q, L)–fuzzy subgroups of group \(G_1 \times G_2 \).

Example 4.6: Let \(G_1 = \{e_1, x\} \) where \(x^2 = e_1, G_2 = \{e_2, a, b, ab\} \) where \(a^2 = b^2 = e_2 \) and \(ab = ba \).

Then \(G_1 \times G_2 = \{(e_1, e_2), (e_1, a), (e_1, b), (x, e_2), (x, a), (x, b), (x, ab)\} \).

Let \(A = \{(e_1, q), (0.5, q) >, (x, q), (0.8, q) >\} \) and \(B = \{(e_2, q), (0.7, q) >, (a, q), (1, q) >, (b, q), (0.8, q) >\} \) be (Q, L)-fuzzy subsets of \(G_1 \) and \(G_2 \) respectively.

Then \(A \times B = \{(e_1, e_2, q), (0.5, q) >, (e_1, a, q), (0.5, q) >, (e_1, b, q), (0.5, q) >, (e_1, ab, q), (0.7, q) >\} \).

Here \(A \times B \) is a (Q, L)-fuzzy subgroup of \(G_1 \times G_2 \) where A is a (Q, L)-fuzzy subgroup of \(G_1 \) but B is not a (Q, L)-fuzzy subgroup of \(G_2 \).

Theorem 4.7: Let A and B be (Q, L)–fuzzy subgroups of \(G_1 \) and \(G_2 \) respectively. Suppose that \(e_1 \) and \(e_2 \) are the identity element of \(G_1 \) and \(G_2 \) respectively. If \(A \times B \) is a (Q,L)-Fuzzy subgroup of \(G_1 \times G_2 \), then at least one of the two statements must hold.

(i) \(\mu_A(e_2, q) \geq \mu_A(x, q) \) for all \(x \in G_1 \) (ii) \(\mu_A(e_1, q) \geq \mu_B(y, q) \) for all \(y \in G_2 \).

Proof: Let \(A \times B \) be a (Q, L)-Fuzzy subgroup of \(G_1 \times G_2 \).

Suppose that (i) and (ii) does not hold.

Then we can find some \(x \in G_1 \) and \(y \in G_2 \) such that \(\mu_A(x, q) > \mu_A(e_2, q) \) and \(\mu_A(e_1, q) < \mu_B(y, q) \).

Now \(\mu_{A \times B}(x, y, q) = \mu_A(x, q) \wedge \mu_B(y, q) > \mu_A(e_2, q) \wedge \mu_A(e_1, q) = \mu_{A \times B}(e_1, e_2, q) \).

which implies that \(A \times B \) is not a (Q, L)-Fuzzy subgroup of \(G_1 \times G_2 \), which is a contradiction.

Hence either \(\mu_B(e_2, q) \geq \mu_A(x, q) \) for all \(x \in G_1, q \in Q \) or \(\mu_A(e_1, q) \geq \mu_B(y, q) \) for all \(y \in G_2, q \in Q \).

Theorem 4.8: Let A and B be (Q, L)-fuzzy subsets of \(G_1 \) and \(G_2 \) respectively such that \(\mu_A(x, q) \leq \mu_B(e_2, q), x \in G_1, e_2 \) be the identity element of \(G_2 \), \(q \in Q \). If \(A \times B \) is a (Q, L)-fuzzy subgroup of \(G_1 \times G_2 \), then A is a (Q, L)-fuzzy subgroup of \(G_1 \).

Proof: Let \(x, y \in G_1 \). Then \((x, e_2), (y, e_2) \in G_1 \times G_2 \).

Since \(\mu_A(x, q) \leq \mu_B(e_2, q) \), for all \(x \in G_1, e_2 \in G_2, q \in Q \).

\[
\begin{align*}
\mu_A(xy^{-1}, q) &= \mu_A(xy^{-1}, q) \wedge \mu_B(e_2, q) \\
&= \mu_{A \times B}(xy^{-1}, e_2, q) = \mu_{A \times B}((x, e_2)(y^{-1}, e_2), q) \\
&\geq \mu_{A \times B}(e_2, q) \wedge \mu_{A \times B}((y^{-1}, e_2), q) \quad (\text{since } A \times B \text{ is a (Q, L)-Fuzzy subgroup of } G_1 \times G_2) \\
&= (\mu_A(x, q) \wedge \mu_B(e_2, q)) \wedge ((\mu_A(y^{-1}, q) \wedge \mu_B(e_2, q))) \\
&= \mu_A(x, q) \wedge \mu_A(y^{-1}, q) \\
&\geq \mu_A(x, q) \wedge \mu_A(y, q)
\end{align*}
\]

Hence A is an (Q, L)-fuzzy subgroup of \(G_1 \).

Corollary 4.9: Let A and B be (Q, L)-fuzzy subsets of \(G_1 \) and \(G_2 \) respectively such that \(\mu_B(y, q) \leq \mu_A(e_1, q) \) holds for all \(y \in G_2, q \in Q, e_1 \) being the identity element of \(G_1 \). If \(A \times B \) is a (Q, L)-fuzzy subgroup of \(G_1 \times G_2 \), then B is a (Q, L)-fuzzy subgroup of \(G_2 \).
SECTION 5: OTHER PROPERTIES ON (Q, L) – FUZZY SUBGROUPS

Theorem 5.1: Let A, C be (Q, L)-fuzzy subgroups of G1 and B, D be (Q, L)-fuzzy subgroups of G2 respectively such that A, C be (Q, L)-fuzzy conjugate subgroups of G1 and B, D be (Q, L)-fuzzy conjugate subgroups of G2. Then A × B of G1 × G2 is conjugate to the (Q, L)-fuzzy conjugate subgroup C × D of G1 × G2.

Proof: Since A and C are (Q, L)-fuzzy conjugate subgroups of G1, ∃g1 ∈ G1 such that μA(x, q) = μC(g1−1xg1, q), ∀x ∈ G1.

Since B and D are (Q, L)-fuzzy conjugate subgroups of G2, ∃g2 ∈ G2 such that μB(y, q) = μD(g2−1yg2, q), ∀y ∈ G2.

Now μA×B((x,y), q) = μA(x,q)∧μD(y,q) = μC(g1−1xg1, q)∧μD(g2−1yg2, q)

= μC×D((g1−1xg1, g2−1yg2), q) = μC×D((g1−1, g2−1)(x,y)(g1g2), q)

Hence the (Q, L)–fuzzy subgroup A X B is conjugate to the (Q, L)–fuzzy subgroup C × D.

Theorem 5.2: Let A be a(Q, L)-fuzzy subset of a group G and V be the strongest fuzzy (Q, L)-fuzzy relation on G. Then A is a(Q, L)-fuzzy subgroup of G iff V is (Q, L)-fuzzy subgroup of G × G.

Proof: Let A be a (Q, L)-fuzzy subgroup of G.

Let x = (x1, x2), y = (y1, y2) ∈ G × G. We have

μV(x,y,q) = μV((x1,y1)x2y2,q) = μV((x1y1,x2y2),q) = μA(x1y1,q)∧μA(x2y2,q)

≥ (μA(x1,q)∧μA(y1,q))∧(μA(x2,q)∧μA(y2,q))

= (μA(x1,q)∧μA(x2,q))∧(μA(y1,q)∧μA(y2,q))

= μV((x1,x2),q)∧μV((y1,y2),q).

Hence V is a (Q, L)-fuzzy subgroup of G × G.

Lemma 5.3: For a, b ∈ L, m is positive integer (i) If a < b, then am < bm (ii) (a ∧ b)m = am ∧ bm

Proof: It is obvious.

Theorem 5.4: Let A be a (Q, L)-fuzzy subgroup of G. Then A = {< (x,q), (μA(x,q))m >: x ∈ G, q ∈ Q} is a (Q, L)-fuzzy subgroup of Gm, where m is a positive integer.

Proof: Let G be a group. Then (G, .) is a group. Hence (Gm, .) is also a group.

Let A be a (Q, L)-fuzzy subgroup of G. Let x, y ∈ G and q ∈ Q

μA+m(xy,q) = (μA(xy,q)m) ≥ (μA(x,q)∧μA(y,q))m

= (μA(x,q)m)∧(μA(y,q)m)

= μA+m(x,q)∧μA+m(y,q)

μA+m(x−1,q) = (μA(x−1,q))m

= (μA(x,q))m

= μA+m(x,q)

Hence Am is a (Q, L)-fuzzy subgroup of Gm.

Theorem 5.5: If A and A′ are (Q, L)-fuzzy subgroups of G, A is a constant (Q, L)-fuzzy subset of G.

Proof: Since A and A′ are (Q, L)-fuzzy subgroups of G, it follows that

μA(xx−1,q) ≥ μA(x,q)∧μA(x−1,q), ∀x, x−1 ∈ G, q ∈ Q

μA′(xx−1,q) ≥ μA′(x,q)∧μA′(x−1,q), ∀x, x−1 ∈ G, q ∈ Q

(1)
Proof: Since $n < m$, then it follows that $A^n \subset A^m$ and $\mu_{A^n}(x, q) \leq \mu_{A^m}(x, q)$.

Now

$$\mu_{A^n \lor A^m}(xy, q) = (\mu_{A^n}(xy, q))^{\lor} \mu_{A^m}(xy, q) = (\mu_{A^n}(xy, q))^n \lor (\mu_{A^m}(xy, q))^m$$

$$= (\mu_{A^n}(xy, q))^n \lor (\mu_{A^m}(xy, q))^m$$

$$= (\mu_{A^n}(x, q))^n \lor (\mu_{A^m}(x, q))^m$$

$$= (\mu_{A^n}(x, q))^n \lor (\mu_{A^m}(x, q))^m$$

Therefore $A^n \lor A^m$ is also a (Q, L)-fuzzy subgroup of G^m.

Theorem 5.6: If A^n and A^m are (Q, L)-fuzzy subgroups of G^m, then $A^n \lor A^m$ is also an (Q, L)-fuzzy subgroup of G^m if $n < m$.

Proof: Since $n < m$, then it follows that $A^n \subset A^m$ and $\mu_{A^n}(x, q) \leq \mu_{A^m}(x, q)$.

Now

$$\mu_{A^n \lor A^m}(x, q) = \mu_{A^n}(x, q) \lor \mu_{A^m}(x, q) = (\mu_{A^n}(x, q))^n \lor (\mu_{A^m}(x, q))^m$$

$\therefore A^n \lor A^m$ is also a (Q, L)-fuzzy subgroup of G^m.

Theorem 5.7: If $A^n(n = 1, 2, \ldots), A^i \subset A^j$ for $i \leq j$ is a (Q, L)-fuzzy subgroup, then $A = A \lor A^2 \lor A^3 \lor \ldots$ is also a (Q, L)-fuzzy subgroup.

Proof: Since $A^i \lor A^j$ is also a (Q, L)-fuzzy subgroup for $i \leq j$, also $A^i \subset A^j$ for $i \leq j$.

Hence, $A = A \lor A^2 \lor A^3 \lor \ldots$ is a (Q, L)-fuzzy subgroup.

CONCLUSION

In this paper, we have discussed the direct product of (Q, L)-fuzzy groups, (Q, L)-fuzzy conjugate groups, and direct product of (Q, L)-fuzzy conjugate groups. Also we have conclude that positive integral powers of a (Q, L)-fuzzy group is a (Q, L)-fuzzy group. This concept can be extended for new results.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]