EDGE-ODD GRACEFULNESS OF $C_5 \Theta P_n$ AND $C_5 \Theta 2P_n$

A. SOLAIRAJU*1, G. BALASUBRAMANIAN2, B. AMBIKA3

1Associate Professor of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamil Nadu, India.

2Associate Professor of Mathematics, Govt. Arts College for men, Krishnagiri, Tamil Nadu, India.

3Guest Lecturer in Mathematics, Govt. Arts College for Women, Krishnagiri – 635 002, Tamil Nadu, India.

(Received On: 17-10-16; Revised & Accepted On: 16-11-16)

ABSTRACT

A (p, q) connected graph is edge-odd graceful graph if there exists an injective map $E(G) \rightarrow \{1, 3, ..., 2q-1\}$ so that induced map $f^+: V(G) \rightarrow \{0, 1, 2, 3, ..., (2k -1)\}$ defined by $f^+(x) \equiv \sum f(x, y) \pmod{2k}$, where the vertex x is incident with other vertex y and $k = \max \{p, q\}$ makes distinct labeling. In this article, the edge-odd graceful labelings of $C_5 \Theta P_n$ and $C_5 \Theta 2P_n$ are obtained.

Keywords: Graceful graph, edge-odd graceful labeling, edge-odd graceful.

INTRODUCTION

Solairaju and Chitra [2009] obtained edge-odd graceful labeling of some graphs related to paths. They proved that the graph $C_3 \Theta P_n$ and $C_3 \Theta 2P_n$ are edge-odd graceful. Solairaju, and Sasikala [2008] got gracefulness of a spanning tree of the graph of product of P_n and C_m.

Solairaju, and Vimala [2008] gracefulness of a spanning tree of the graph of Cartesian product of S_m and S_n. Solairaju and Muruganantham [2009] proved that ladder $P_2 \times P_n$ is even-edge graceful (even vertex graceful). They found [2009] the connected graphs $P_n \circ nC_3$ and $P_n \circ nC_7$ are both even vertex graceful, where n is any positive integer. They also obtained that the connected graph $P_n \Delta nC_4$ is even vertex graceful, where n is any even positive integer.

Corresponding Author: A. Solairaju*1, 1Associate Professor of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamil Nadu, India.
SECTION-2: EDGE-ODD GRACEFUL LABELING OF ARMED CROWN GRAPH C₅ ⊕ Pₙ

The following definitions are given now.

Definition 2.1: **Graceful Graph:** A function f of a graph G is called a graceful labeling with m edges, if f is an injection from the vertex set of G to the set \{0, 1, 2, ..., m\} such that when each edge uv is assigned the label \(|f(u) - f(v)| \) and the resulting edge labels are distinct. Then the graph G is graceful.

Definition 2.2: **Edge-odd graceful graph:** A (p, q) connected graph has edge-odd graceful labeling if there exists an injective map \(f: E(G) \rightarrow \{1, 3, ..., 2q-1\} \) so that induced map \(f+: V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\} \) defined by \(f+(x) \equiv \sum f(x, y) \pmod {2k} \), where the vertex x is incident with other vertex y and \(k = \max\{p, q\} \) makes distinct labelings. Then the graph G is edge-odd graceful.

Definition 2.3: **Armed crown** \(C₅ ⊕ Pₙ \) is a connected graph such that each vertex of a circuit \(C₅ \) is identified with any pendant vertex of the paths \(Pₙ \). It has \(5n \) vertices and \(5n \) edges. Its vertex set is \{\(V₁, V₂, ..., V₅n \)\} and edge is \{\(VᵢVi₊₁: i = 1 \) to \(n; i = (n+1) \) to \(2n; i = (2n+1) \) to \(3n; i = (3n+1) \) to \(4n \); \(i = (4n+1) \) to \(5n \)\} \cup \{\(VₙVₙ₊₁, Vₙ₊₁V₂ₙ₊₁, V₂ₙ₊₁V₃ₙ₊₁, V₃ₙ₊₁V₄ₙ₊₁, V₄ₙ₊₁V₅ₙ \}. This graph is given in figure 1.

![Figure-1: Armed crown graph C₅ ⊕ Pₙ](image)

Theorem 2.4: The connected graph \(C₅ ⊕ Pₙ \) is edge-odd graceful for \(n \geq 2 \).

Proof: The figure 2 is the armed crown \(C₅ ⊕ Pₙ \) with \(5n \) vertices and \(5n \) edges, with some labelings to its edges.

![Figure-2: One of arbitrary labelings for edges of the graph C₅ ⊕ Pₙ](image)
Define \(f: E(G) \to \{1, 3, \ldots, 2q-1\} \) by
\[
f(e_i) = 2i - 1, \quad i = 1, 2, 3, \ldots, 5n
\] (1)

Define \(f+: V(G) \to \{0, 1, 2, \ldots, (2k-1)\} \) by
\[
f+(v) = \sum f(uv) \mod (2k), \text{ where this sum run over all edges through } v
\] (2)

Hence the map \(f \) and the induced map \(f_+ \) provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in \(\{1, 2, \ldots, (2k-1)\} \). Hence the graph \(C_5 \Theta P_n \) is edge-odd graceful.

Example 2.5: The connected graph \(C_5 \Theta P_6 \) is edge – odd graceful.

The edge – odd graceful labeling of the graph of \(C_5 \Theta P_6 \) with 30 vertices and 30 edges is as follows:

![Figure-3: Edge-odd labelings of the graph C5 \(\Theta \) P6](image)

Example 2.6: The connected graph \(C_5 \Theta P_5 \) is edge – odd graceful.

The figure 4 is the graph of \(C_5 \Theta P_5 \) with (25) vertices and (25) edges, with some edge-odd graceful labeling in vertices and edges as follows:

![Figure-4: Edge-odd labelings of the graph C5 \(\Theta \) P5](image)

SECTION 3: BI-ARMED CROWN \(C_5 \Theta 2P_n \) IS EDGE-ODD GRACEFUL

Definition 3.1: Bi-armed crown \(C_5 \Theta 2P_n \) is a connected graph such that each vertex of a circuit \(C_5 \) is identified with any pendant vertex of two paths \(P_n \). It has \((10n - 5) \) vertices and \((10n - 5) \) edges. Its vertex set is \(\{V_1, V_2, \ldots, V_{(10n-5)}\} \) and edge set is \(\{V_iV_{i+1} : i = 1 \text{ to } (2n-1); i = (2n) \text{ to } (4n-2); i = (4n - 1) \text{ to } (6n -3); i = (6n - 2) \text{ to } (8n -4) ; i = (8n - 3) \text{ to } (10n - 5)\} \cup \{V_nV_{2n}, V_{2n}V_{4n-2}, V_{4n-2}V_{6n-3}, V_{6n-3}V_{8n-4}, V_{8n-4}V_n\}. \)
Theorem 3.2: The connected graph (bi-armed crown graph) $C_5 \Theta 2P_n$ is edge – odd graceful.

Proof: The figure 6 is the armed crown $C_5 \Theta 2P_n$ with $(10n - 5)$ vertices and $(10n - 5)$ edges, with some arbitrary labeling to edges as follows.

Define $f: E(G) \rightarrow \{1, 3, \ldots, 2q-1\}$ by
$$f(e_i) = 2i - 1, \quad i = 1, 2, 3, \ldots, (10n-5) \quad (1)$$

Define $f+: V(G) \rightarrow \{0, 1, 2, \ldots, (2k-1)\}$ by
$$f+(v) = \Sigma f(uv) \mod (2k), \text{ where this sum run over all edges through } v \quad (2)$$

Hence the map f and the induced map f_+ provide labels as odd numbers for edges with all distinct and also the labelings for vertex set has distinct values in $\{1, 2, \ldots, (2k-1)\}$. Hence the graph $C_5 \Theta 2P_n$ is edge-odd graceful.
Example 3.3: The connected graph $C_5 \Theta 2P_4$ is edge – odd graceful.

The figure 7 is the armed crown $C_5 \Theta 2P_4$ with 35 vertices and 35 edges, with edge-odd graceful labeling to vertices and edges.

Example 3.4: The connected graph $C_5 \Theta 2P_5$ is edge – odd graceful.

The figure 8 is the armed crown $C_5 \Theta 2P_5$ with 45 vertices and 45 edges, with edge-odd graceful labeling to vertices and edges.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

(Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.)