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ABSTRACT   
In this paper we make a detailed study on the concepts of Almost Boolean algebras and Almost Boolean rings. Mainly, 
we prove that the class of Almost Boolean algebras and the class of Almost Boolean rings form categories and we 
establish an equivalence between them. 
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1. INTRODUCTION  
 
The concept of an Almost Boolean Algebra (ABA) was introduced by U.M. Swamy and G.C Rao  [6], while studying a 
common abstraction of several lattice theoretic generalizations  of  Boolean  algebra and other extensions of Boolean 
lattice Theory (N.V Subramanyamn [2], [3] and [4]). Also Swamy and Rao [6] have introduced a ring theoretic 
generalization of Boolean ring and called it an Almost Boolean ring (ABR). 
 
It is well known that there is a duality between Boolean algebras and Boolean rings. In this paper we discuss in detail, a 
categorical equivalence between ABA's and ABR's. In section 3, we give equivalent conditions for an Almost 
distributive lattice  𝐴𝐴 with a maximal element to be an Almost Boolean algebra and define a binary operation ∗ on an 
ABA(𝐴𝐴, ∧, ∨, 0) and discuss properties of it interrelation to ∧ and ∨. In section 4, we make a detailed study on ABR's. 
In section 5, we extend the notions of morphism and congruence on ABA's and ABR's and prove that these coincide 
whether we view it as an ABA as well as an ABR. In section 6, we observe that the class of ABA's is equationally 
definable and hence a variety (that is, it is closed under the formation of products, subalgebras and homomorphic 
images); on the other hand, it is a category in which the objects are ABA's and the morphisms are the homomorphisms. 
Similarly, the class of ABR's is also a variety as well as a category. Finally, we establish an equivalence between the 
categories of ABA's and ABR's.  
 
2. PRELIMINARIES 
 
Definition: 2.1 An algebra 𝐴𝐴 = (𝐴𝐴, ∧, ∨, 0) of type (2, 2, 0) is called an Almost Distributive Lattice (ADL) if it 
satisfies the following conditions for all 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 in 𝐴𝐴. 

(1) 0 ∧ a = 0 
(2) 𝑎𝑎 ∨ 0 = 𝑎𝑎 
(3) a ∧ (b ∨ c) = (a  ∧ b) ∨ (a ∧ c) 
(4) (a ∨ b) ∧c  = (a ∧ c) ∨ (b ∧ c) 
(5) a ∨ (b ∧ c)  = (a ∨ b) ∧ (a ∨ c) 
(6) (a ∨ b) ∧ b = b 
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An ADL 𝐴𝐴 is called an associative ADL if the operation ∨ is associative. Throughout this paper, by an ADL we always 
mean an associative ADL only. Most of the preliminaries presented in this section are taken from [6 ]. 
 
Example: 2.2 Any distributive lattice bounded below is an ADL.  
 
Example: 2.3 Let  𝑋𝑋 be a nonempty set and fix an arbitrarily chosen element 0 ∈ 𝑋𝑋.  For any  𝑎𝑎 and b ∈ 𝑋𝑋,  define 

𝑎𝑎 ∧ 𝑏𝑏 = � 0  if  𝑎𝑎 =  0
  𝑏𝑏   if  𝑎𝑎  ≠  0

�   and   𝑎𝑎 ∨ 𝑏𝑏 = � 𝑏𝑏  if  𝑎𝑎 =   0
  𝑎𝑎  if  𝑎𝑎 ≠   0

� 
Then (X, ∧, ∨, 0) is an ADL and is called a discrete ADL. 
 
Definition: 2.4 Let  𝐴𝐴 = (𝐴𝐴, ∧, ∨, 0)  be an ADL. For any  𝑎𝑎 and b ∈ A, define  

a ≤  b   if   a = a ∧ b (⟺ a ∨ b = b). 
Then ≤  is a partial order on A with respect to which 0 is the smallest element in 𝐴𝐴.    
 
Theorem: 2.5 The following hold good for any elements 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐  in an ADL  𝐴𝐴.  

(1)  a ∧ 0  = 0 = 0 ∧ a  and  a ∨ 0  =  a  = 0 ∨ a 
(2)  a ∧ a  = a = a  ∨ a 
(3)  a ∧ b  ≤  b  ≤  b ∨ a 
(4)  𝑎𝑎 ∧ b = a ⟺ a ∨ b = b  and  𝑎𝑎 ∧ b = b ⟺  a ∨ b = a 
(5)  (a ∧ b)  ∧ c = a  ∧ (b  ∧  c)  (i. e., ∧  is  associative) 
(6)  a ∨ (b ∨ a) = a ∨b   
(7)  a  ≤  b  ⟹  a ∧ b = a = b  ∧ a  and  a ∨ b = b  = b  ∨  a 
(8)  a  ∧  b  ∧  c = b  ∧  a  ∧  c  
(9)  (a ∨ b) ∧ c  = ( b  ∨  a )  ∧ c 
(10)  a  ∨  b  = b  ∨ 𝑎𝑎 and  a  ∧  b  = b  ∧  a  whenever  a ∧ b  =  0 
(11)  a ∧ b =  b  ∧ a  ⟺ a ∨ b = b  ∨  a 
(12)  𝑎𝑎 ∧ 𝑏𝑏 = inf {𝑎𝑎, 𝑏𝑏} ⟺ 𝑎𝑎 ∨ 𝑏𝑏 = Sup {𝑎𝑎, 𝑏𝑏}   
 

Theorem: 2.6 Let (A, ∧, ∨, 0)  be an ADL and ≤ be the  induced  partial  order. The following are equivalent to each 
other for any element m  ∈  𝐴𝐴. 

(1) m  is  a  maximal  element  in (𝐴𝐴, ≤) 
(2) m ∧ a = a  for all a ∈ 𝐴𝐴 
(3) m ∨ a = m  for all a ∈ 𝐴𝐴 
(4) a ∨ m is maximal for all  a ∈ A.  

 
3. ALMOST BOOLEAN ALGEBRA 
 
Any bounded complemented distributive lattice (𝐿𝐿, ∧, ∨, ′, 0, 1) is known as a Boolean algebra. In this section, we 
discuss a special class of ADL's. First, we begin with the following.  
 
Theorem: 3.1 Let A  be an ADL. Then the following are equivalent to each other.   
(1) For  any  𝑎𝑎, b ∈ 𝐴𝐴, there  exists  𝑥𝑥 ∈ 𝐴𝐴  such  that  a ∧ x = 0 and  a ∨ x = a ∨ b. 
(2) For any a ≤ b in 𝐴𝐴, [𝑎𝑎, 𝑏𝑏] is a complemented lattice.  
(3) For any 𝑎𝑎 ∈ 𝐴𝐴,  [0, a] is complemented lattice.  
 
Proof:  
(1) ⟹ (2): Let a ≤ b  in 𝐴𝐴 and let y ∈ [a, b]. It is known that [a, b] is a lattice. By (1), there exists x ∈ 𝐴𝐴  such  that         
y ∧ x = 0  and  y ∨ x  = y ∨ b = b.  
 
Now  y ∧ (a ∨ x) = (y ∧ a) ∨ (y ∧ x) = a ∨ 0 = a  and  y ∨ (a ∨ x)  = (y ∨ a) ∨ x = y ∨ x = b.   
 
Also,  a ≤  a ∨ x ≤  b  (by  2.5 (10),  x ∨ y = y ∨ x = b  and hence  x ≤ b).   
 
Therefore, a ∨ x is a complement of y in [a, b]. Thus [a, b] is a complemented lattice. 
 
(2) ⟹ (3): is clear.  
 
(3) ⟹ (1): follows from the fact that a ≤ a ∨ b and hence 𝑎𝑎 ∈ [0, a ∨ b]  and by (2) a  will  have a complement in         
[0,  a ∨ b]. 
 
Definition: 3.2 A non trivial ADL A is called an Almost Boolean algebra (ABA) if it has a maximal element and 
satisfies one, and hence all of the equivalent conditions given in the above theorem.  
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Examples: 3.3   
(1) Any nontrivial discrete ADL (as given in 2.3) is an Almost Boolean algebra in which each nonzero element is a 

maximal element. Note that any discrete ADL with more than two elements is not a Boolean algebra, since            
x ∧ y = y  and y ∧ x = x  for any nonzero elements x and y. 

(2) Let  (𝑅𝑅, +, .  , 0, 1) be a commutative regular ring with unity 1. For any 𝑎𝑎 and b ∈ R, define 
a ∧ b = a0b   and  a ∨ b = a + b −a0b, 

where a0 is the unique idempotent in R such that  𝑎𝑎𝑅𝑅 = 𝑎𝑎0𝑅𝑅. 
 

Then (𝑅𝑅, ∧, ∨, 0) is an ABA in which the maximal elements in (𝑅𝑅,≤) are precisely the units.   
 
The following examples show that the existence of maximal elements and the relative complements are independent 
from each other. 
(1) Let  𝑋𝑋 be an infinite  set  and  𝐴𝐴 be  the  set  of  all  finite  subsets  of 𝑋𝑋. Then A  is a distributive  lattice with 

empty set as zero element under the usual set theoretic operations (and  hence  an  ADL)  satisfying  the  conditions  
in the  Theorem 3.1. However, A   has no maximal element. 

(2) Let  ℕ  be the set of all non-negative integers.  Define  ∧  and  ∨  as follows: 
a ∧ b = gcd{a, b}  and  a ∨b = lcm {a, b}. 

Then (ℕ, ∧, ∨, 1) is a bounded distributive lattice in which 1 is the smallest element and 0 is the largest element. 
However, this does not satisfy the conditions given in Theorem 3.1. 
 
Theorem: 3.4 Let 𝐴𝐴 be an ADL with a maximal element. Then the following are equivalent to each other. 

(1) 𝐴𝐴 is an Almost  Boolean  algebra 
(2) For any 𝑎𝑎 ∈ 𝐴𝐴, there exists 𝑏𝑏 ∈ 𝐴𝐴 such that 𝑎𝑎 ∧ 𝑏𝑏 = 0 and 𝑎𝑎 ∨ 𝑏𝑏 is maximal 
(3) [0,𝑚𝑚]  is a  Boolean  algebra  for  all  maximal  elements  𝑚𝑚 
(4) There exist a maximal element  𝑚𝑚 such that [0,𝑚𝑚]  is a Boolean algebra 

 
Proof:  
(1) ⟹ (2):  Let 𝑎𝑎 ∈ 𝐴𝐴 and 𝑚𝑚 be a maximal element in 𝐴𝐴. Since A is an ABA, and by the theorem 3.1 (1), there exists 
𝑏𝑏 ∈ 𝐴𝐴 such that 𝑎𝑎 ∧ 𝑏𝑏 = 0 and 𝑎𝑎 ∨ 𝑏𝑏 = 𝑎𝑎 ∨ 𝑚𝑚 and hence 𝑎𝑎 ∨ 𝑏𝑏 is maximal. 
  
(2) ⟹ (3): Assume (2). Let m be a maximal element in A and 𝑎𝑎 ∈ [0,𝑚𝑚].  By (2), there exists 𝑏𝑏 ∈ 𝐴𝐴 such that            
𝑎𝑎 ∧ 𝑏𝑏 = 0 and 𝑎𝑎 ∨ 𝑏𝑏 is maximal. Let 𝑥𝑥 = 𝑏𝑏 ∧ 𝑚𝑚. Then 𝑥𝑥 ∈ [0,𝑚𝑚] and  

𝑎𝑎 ∧ 𝑥𝑥 = 𝑎𝑎 ∧ 𝑏𝑏 ∧ 𝑚𝑚 = 0 and 𝑎𝑎 ∨ 𝑥𝑥 = 𝑎𝑎 ∨ (𝑏𝑏 ∧ 𝑚𝑚) = (𝑎𝑎 ∨ 𝑏𝑏) ∧ (𝑎𝑎 ∨ 𝑚𝑚) = 𝑎𝑎 ∨ 𝑚𝑚 = 𝑚𝑚 
(Since 𝑎𝑎 ∨ 𝑏𝑏 is maximal and 𝑎𝑎 ≤ 𝑚𝑚).  
 
Therefore, 𝑥𝑥 is the complement of 𝑎𝑎 in [0,𝑚𝑚]. Thus [0,𝑚𝑚] is a Boolean algebra. 
 
(3) ⟹ (4): is clear. To prove (4)⟹ (1), let m be a maximal element in A such that [0, m] is a Boolean algebra.   
 
Let a  ∈ A and x ∈ [0, a]. Then x ∧ m ≤ m and hence there exits  y ≤  m such that (x ∧ m) ∧ y = 0 and ( x ∧ m) ∨ y =  m. 
 
Now,  x ∧ (y ∧ a)  =  (x ∧ y) ∧ a  =  (x ∧ (m ∧ y)) ∧ a  =  0 ∧ a  =  0  since  m  is  maximal           

and    x ∨ (y ∧ a)  =  (x ∧ a)  ∨ (y ∧ a)  (since x  ≤  a) 
= (x ∨ y) ∧ a = (y ∨ x) ∧ a (by 2.5 (9)) 
= (y ∨ x) ∧ (y ∨ m) ∧ a  (since y ∨ m is maximal 
= (y ∨ (x ∧ m)) ∧  a = ((x ∧ m) ∨ y) ∧ a   ((by 2.5 (9)) 
= m ∧ a = a (since m is maximal). 

 
Therefore  𝑦𝑦 ∧ 𝑎𝑎  is the complement of x in [0, 𝑎𝑎].  Thus [0,𝑎𝑎]  is  a  complemented  lattice for  all 𝑎𝑎 ∈ 𝐴𝐴  and  hence  𝐴𝐴  
is  an  Almost  Boolean  algebra.   
 
The following is a more general one, it establishes that the Boolean algebra [0,𝑚𝑚] is independent (up to isomorphism) 
of the maximal element 𝑚𝑚 in Almost Boolean algebra 𝐴𝐴. 
 
Theorem: 3.5 Let 𝐴𝐴  be an ADL and m and n be maximal elements in 𝐴𝐴. Then the lattices [0, m] and [0, n] are 
isomorphic to each other. Moreover, the Boolean algebras [0, m] and [0, n] are isomorphic when 𝐴𝐴an Almost Boolean 
algebra is. 
 
Theorem: 3.6 Let  (𝐴𝐴, ∧, ∨ ,0) be an ABA. Then for any 𝑎𝑎 and b in A, there exists unique 𝑥𝑥 ∈ 𝐴𝐴 such that  𝑎𝑎 ∧ 𝑥𝑥 = 0  
and 𝑎𝑎 ∨ 𝑥𝑥 = 𝑎𝑎 ∨ 𝑏𝑏. 
 
Proof: Let 𝑎𝑎 and 𝑏𝑏 ∈ 𝐴𝐴.  By theorem 3.1(1), there exists 𝑥𝑥 ∈ 𝐴𝐴 such that 𝑎𝑎 ∧ 𝑥𝑥 = 0 and 𝑎𝑎 ∨ 𝑥𝑥 = 𝑎𝑎 ∨ 𝑏𝑏. It can be easily 
verified that 𝑥𝑥 is the complement of  𝑎𝑎 in the Boolean algebra [0, 𝑎𝑎 ∨ 𝑏𝑏] and hence  𝑥𝑥 is unique.   
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Let us define a binary operation * on an ABA  𝐴𝐴  and observe certain properties of this, which will be useful in proving 
that 𝐴𝐴 has a structure almost like a Boolean ring. 
 
Definition: 3.7 The  unique  element x in the above theorem will be denoted by 𝑎𝑎 ∗ 𝑏𝑏. That  is, for  any  elements  a and 
b  in an Almost Boolean algebra 𝐴𝐴, 𝑎𝑎 ∗ 𝑏𝑏 is  the  unique element in 𝐴𝐴  satisfying  the  equations 

𝑎𝑎 ∧  (𝑎𝑎 ∗ 𝑏𝑏) = 0  and   𝑎𝑎 ∨ (𝑎𝑎 ∗ 𝑏𝑏) = 𝑎𝑎 ∨ 𝑏𝑏. 
 

Theorem: 3.8 Let  (𝐴𝐴, ∧, ∨, 0)  be an ABA. The  following  hold  good  for  any  elements a and  b  in  𝐴𝐴. 
(1) 0 ∗ a = a and a ∗ 0 = 0 
(2) a ∗ a = 0 
(3) (a ∗ b)  ∧  a = 0 
(4) (a ∗ b) ∨ a = a ∨ b 
(5) a ∗ b  is  the  complement of a in [0,  a ∨ b] 
(6) (a ∗ b) ∗ a  = a 
(7) a ∗ (a ∗ b) = a ∗ b 
(8) (a ∗ b) ∗ b = a ∧ b 
(9) b ∗ (a ∗ b) = 0 
(10) a ∗ b = 0  ⟺ a = a ∨ b 
 

Proof:  
(1) Follows from 0 ∧ a = 0 and 0 ∨ a = a = a  ∨ 0. 
(2) We  have  a ∧ 0 =  0  and  a ∨ 0  =  a  =  a ∨ a.  
(3) Since  a ∧ (a ∗ b)  =  0,  (a ∗ b) ∧ a = 0  (by  2.5 (10))  
(4) By (3) and 2.5 (10), (a ∗ b) ∨ a = a ∨ (a ∗ b)  =  a ∨ b  
(5) This is observed in the proof of theorem 3.1(1)  
(6) and (7)  are  consequences  of  (3)  above. 
(8) We  have  (a ∗ b)  ∧  (a ∧ b)  =  a ∧ (a ∗ b) ∧ b = 0 ∧ b = 0   
                  and (a ∗ b)  ∨ (a ∧ b) = ((a ∗ b) ∨ a) ∧ ((a ∗ b) ∨ b) =  (a ∨ (a ∗ b)) ∧ ((a ∗ b) ∨ b)  

                                  = (a ∨ b) ∧ ((a ∗ b)  ∨ b) = [(a ∨ b) ∧ (a ∗ b)] ∨ [(a ∨ b) ∧ b]   
                                      = (a ∗ b) ∨ b (since a ∗ b ≤ a ∨ b)    

                  and therefore,  (a ∗ b) ∗ b = a  ∧ b.  
(9) We  have  b ∧ 0  =  0  and b ∨ 0  = b ∨ (a  ∧ (a ∗ b)) =  ((b ∨ a) ∧ (b ∨ (a ∗ b)) =  ((b ∨ a) ∧ b) ∨ ((b ∨ a) ∧ (a ∗ b))                

                                            =  b ∨ ((a ∨ b) ∧ (a ∗ b)) =  b ∨ (a ∗ b)    (since  a ∗ b  ≤   a ∨ b) 
                  and hence  b ∗ (a ∗ b)  =  0. 
(10)   a ∗ b  =  0  ⟹  a ∨ 0  =  a ∨ b  (by  (4)  above)  ⟹  a  = a ∨ b.   
     Also  a  =  a ∨ b  ⟹  a ∧ 0  = 0 and  a ∨ 0 = a ∨ b ⟹  0  = a ∗ b.   
 
The following theorem gives certain inter relationships between binary operations ∧, ∨and  ∗. 
 
Theorem: 3.9 The following hold for any elements a, b and c in an Almost Boolean algebra 𝐴𝐴 = (𝐴𝐴, ∧, ∨, 0). 

(1) a ∗ (b ∨ c) = (a ∗ b) ∨ (a ∗ c) 
(2) a ∗ (b ∧ c) = (a ∗ b) ∧ (a ∗ c) 
(3) (a ∨ b) ∗ c = (a ∗ c) ∧ (b ∗ c) 
(4) (a ∧ b) ∗c = (a ∗ c) ∨ (b ∗ c)   

 
Proof:  (1) Put x = (a ∗ b) ∨ (a ∗ c).  We have 

a ∧ x  = a ∧ ((a ∗ b) ∨ (a ∗ c)) = (a ∧ (a ∗ b)) ∨ (a ∧ (a ∗ c)) =  0 ∨ 0  =  0 
                     and    a ∨x = a ∨ (a ∗ b) ∨ (a ∗ c) = a ∨ b ∨ (a ∗ c) = a ∨ b ∨ a ∨ (a ∗ c)  (by 2.5 (6)) 

          = a ∨ b ∨ a ∨ c  =  a ∨ b ∨ c = a ∨ (b ∨ c). 
and therefore   a ∗ (b ∨ c) =  x = (a ∗ b) ∨ (a ∗ c). 
 
(2) Put  y = (a ∗ b) ∧ (a ∗ c)  then  a ∧ y = a ∧ (a ∗ b) ∧ (a ∗ c) = 0 ∧ (a ∗ c) = 0  
                                      and  a ∨ y = a ∨ ((a ∗ b) ∧ (a ∗ c)) = (a ∨ (a ∗ b)) ∧ (a ∨ (a ∗ c)) = (a ∨ b) ∧ (a ∨ c) = a ∨ (b ∧ c) 
and  hence  a ∗ (b ∧ c) = y = (a ∗ b) ∧ (a ∗ c) 
 
(3) Put z = (a ∗ c) ∧ (b ∗ c). We have (a ∨ b) ∧ z = (a ∨ b) ∧ (a ∗ c) ∧ (b ∗ c)  
                                                                              = (a ∧ (a ∗ c) ∧ (b ∗ c)) ∨ (b ∧(a ∗ c) ∧ (b ∗ c))  

                                                                      = (0 ∧ (b ∗ c)) ∨ ((a ∗ c) ∧b∧ (b ∗ c)) =  0 ∨ 0  =  0 
and   a ∨ b ∨ z  = a ∨ b ∨ ((a ∗ c) ∧ (b ∗ c)) = (a ∨ b ∨ (a ∗ c)) ∧ (a ∨ b ∨ (b ∗ c))         
                         = (b ∨ a ∨ (a ∗ c)) ∧ (a ∨ (b ∨ c)) = (b ∨ (a ∨ c)) ∧ ((a ∨ b) ∨ c)  
                         = ((a ∨ b) ∨ c) ∧ ((a ∨ b) ∨ c) = (a ∨ b) ∨ c. 

 Thus, (a ∨ b) ∗ c = (a ∗ c) ∧ (b ∗ c).   
(4) can be proved  by using  the  similar technique  as  above. 
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Corollary: 3.10  The  following  hold  for  any  elements  a and b  in  an Almost  Boolean  algebra  𝐴𝐴. 

(1) (a ∧ b) ∗ a = b ∗ a 
(2) (a ∧ b) ∗ b  =  a ∗ b 
(3) (a ∨ b) ∗ a  =  0 
(4) (a ∨ b) ∗ b  =  0 

 
Theorem: 3.11 Let  𝐴𝐴 = (𝐴𝐴, ∧, ∨, 0)  be an Almost Boolean algebra and  𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝐴𝐴.  Then the following hold. 

(1) (a ∗ b) ∧ c = a ∗ (b ∧ c) 
(2) (a ∗ b) ∧b = a ∗ b  and  (a ∗ b) ∨b  =  b 
(3) a ∧ (b ∗ c) = b ∗ (a ∧ c) 
(4) (a ∗ b) ∨ c = (a ∗ (b ∨ c)) ∨c 
(5) a ∨ (b ∗ c) = (a ∗ b) ∗ (a ∨ c) 

 
4. ALMOST BOOLEAN RINGS 
 

U.M. Swamy and G.C. Rao [6] have introduced a ring theoretic generalization of  Boolean ring and termed it as an 
Almost Boolean ring (ABR) and they have exhibited a one-to-one correspondence between ABA's and ABR's. In this 
section, we make a detailed study of this correspondence which leads to establishing a categorical equivalence between 
ABA's and ABR's. Now, we introduce the notion of an Almost Boolean ring. 
 
Definition: 4.1 An algebra (𝐴𝐴, +,⋅ , 0) is called an Almost Boolean ring (ABR) if (A is a nonempty  set, + and  . are  
binary  operations  on  A and  0  is  a  distinguished element  in  A) it satisfies  the  following, for any 𝑎𝑎, 𝑏𝑏 and  𝑐𝑐  𝑖𝑖𝑖𝑖 𝐴𝐴. 

(1) 𝑎𝑎 +  0 = 𝑎𝑎 = 0 +  𝑎𝑎 
(2) 𝑎𝑎 + 𝑎𝑎 = 0 
(3) 𝑎𝑎 ⋅ 𝑎𝑎 𝑎𝑎 
(4) (𝑎𝑎 ⋅ 𝑏𝑏) ⋅ 𝑐𝑐  𝑎𝑎 ⋅ (𝑏𝑏 ⋅ 𝑐𝑐) 
(5) 𝑎𝑎 ⋅ (𝑏𝑏 + 𝑐𝑐) = (𝑎𝑎 ⋅ 𝑏𝑏) + (𝑎𝑎 ⋅ 𝑐𝑐) 
(6) (𝑎𝑎 +  𝑏𝑏) ⋅ 𝑐𝑐 = (𝑎𝑎 ⋅ 𝑐𝑐) + (𝑏𝑏 ⋅ 𝑐𝑐) 
(7) ((𝑎𝑎 + 𝑏𝑏)  + 𝑐𝑐) ⋅ 𝑑𝑑 = (𝑎𝑎 + (𝑏𝑏 +  𝑐𝑐)) ⋅ 𝑑𝑑 
(8) There is a left identity for  ⋅  in  A 

 
The proof of the following theorem follows from the theorem 3.8.  
 
Theorem: 4.2 Let (𝐴𝐴, ∧, ∨, 0) be an ABA. Define binary operations + and ⋅ on  𝐴𝐴  by   

a + b = (a ∗ b) ∨ (b ∗ a) and   a ⋅ b = a ∧ b. 
Then (𝐴𝐴, +, ⋅ , 0) is an ABR.  
 
Corollary: 4.3 Let 𝑋𝑋 be a set with at least two elementsand 0 and m be two distinct elements of  𝑋𝑋. For any x and y∈ 𝑋𝑋, 
define 

                                   x + y =  �
𝑦𝑦                     𝑖𝑖𝑖𝑖   𝑥𝑥 = 0
𝑥𝑥                      𝑖𝑖𝑖𝑖  𝑦𝑦 = 0

 0     𝑖𝑖𝑖𝑖  𝑥𝑥 ≠ 0 and  𝑦𝑦 ≠ 0
�  

    and   x⋅ y  =  �  0      𝑖𝑖𝑖𝑖  𝑥𝑥 = 0
𝑦𝑦     𝑖𝑖𝑖𝑖  𝑥𝑥 ≠ 0

� 

 
Then (𝑋𝑋, +, ⋅ , 0, 𝑚𝑚)  is an ABR.  
 
Corollary: 4.4 Le t (𝑅𝑅, +,⋅ , 0, 1) be a commutative regular ring with unity. For any x and y ∈ 𝑅𝑅, define 

x ⊕ y = x + y – x0y – y0x  and  x⊙ y = x0 ⋅ y, 
where x0  is  the unique idempotent such that  𝑥𝑥𝑅𝑅 =  𝑥𝑥0𝑅𝑅. Then (𝑅𝑅, ⊕, ⊙, 0, 1)  is an ABR.  
 
Theorem: 4.5 Let  (𝑅𝑅, +,⋅ , 0, 1) be an ABR. Then the following hold good for any 𝑎𝑎, b and c ∈ R. 

(1) 0 ⋅ a = 0 =  a ⋅ 0 
(2) Ra  = {x ⋅ a:  x ∈ R}  is  a  Boolean  ring  under  the  operations  induced by +  and ⋅ .  
(3) (a ⋅ b) ⋅ c  =  (b ⋅ a) ⋅ c 
(4) (a + b) ⋅ c = (b + a) ⋅ c 
(5) 𝑎𝑎 ∙ 𝑏𝑏 = 0 ⟺ 𝑏𝑏 ∙ 𝑎𝑎 = 0. 
(6) a + b = b + a. 

The following is a converse of theorem 4.2. 
 
Theorem: 4.6 Let (R, +, ⋅, 0) be an ABR. For any x and y ∈ R, define 

𝑥𝑥 ∧ 𝑦𝑦 = 𝑥𝑥 ⋅ 𝑦𝑦  and  𝑥𝑥 ∨ 𝑦𝑦 = 𝑥𝑥 + (𝑦𝑦 + 𝑥𝑥𝑦𝑦). 
Then (𝑅𝑅, ∧, ∨, 0) is an ABA. 
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Theorem:  4.7 Let (𝐵𝐵, ∧, ∨, 0)  be an ABA and  (𝐵𝐵, +,⋅ , 0)  be the corresponding ABR. Then the following are 
equivalent to each other.  

(1) (B, ∧, ∨, 0) is  a Boolean  algebra.  
(2) ∧  is commutative. 
(3) ∨ is commutative. 
(4) (B, ≤) has a unique maximal element.  
(5) + is associative. 
(6) (B, +, ⋅, 0) is a Boolean ring. 

 
5. MORPHISMS AND CONGRUENCES  
 
In [1 ], Stone proved that a morphism between two Boolean algebras is also a morphism between the corresponding  
Boolean rings and vice-versa and that the same is true for congruences. Here, we extend these concepts to ABA's and 
ABR's and we prove that these coincide in an ABA as well as an ABR. 
 
Now, formally we introduce the notions of morphisms and congruences on ABA's and ABR's. 
 
Definition: 5.1 Let  (A,  ∧, ∨,  0) and  (B,  ∧, ∨,  0)  be  ABA's.  A mapping  f:  A → B  is called  a  homomorphism 
(or  simply, a morphism)  if  𝑖𝑖(𝑎𝑎 ∧ 𝑏𝑏) = 𝑖𝑖(𝑎𝑎) ∧  𝑖𝑖(𝑏𝑏), 𝑖𝑖(𝑎𝑎 ∨ 𝑏𝑏) = 𝑖𝑖(𝑎𝑎) ∨ 𝑖𝑖(𝑏𝑏) and  𝑖𝑖(0) = 0,  for any 𝑎𝑎 and  b∈A. 
 
Observe that 𝑖𝑖(0) = 0 if and only if 𝑖𝑖(𝑎𝑎 ∗ 𝑏𝑏) = 𝑖𝑖(𝑎𝑎) ∗ 𝑖𝑖(𝑏𝑏), for all 𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴. If 𝑖𝑖 is an epimorphism, then 𝑖𝑖(𝑚𝑚) is a 
maximal element in 𝐵𝐵 for any maximal element 𝑚𝑚 in  𝐴𝐴.  
 
Note that, without being surjective, a morphism may not carry maximal elements onto maximal elements, even in the 
case of Boolean algebras.   
 
Definition: 5.2 Let  (𝐴𝐴, ∧, ∨, 0) be an ABA. An equivalence relation 𝜃𝜃 on 𝐴𝐴  is said to be a congruence if 

(𝑎𝑎, 𝑏𝑏) and  (𝑐𝑐,𝑑𝑑) ∈ 𝜃𝜃 ⟹ (𝑎𝑎 ∧ 𝑐𝑐, 𝑏𝑏 ∧ 𝑑𝑑) ∈ 𝜃𝜃  and  (𝑎𝑎 ∨ 𝑐𝑐, 𝑏𝑏 ∨ 𝑑𝑑) ∈ 𝜃𝜃.  
 
It can be observed that for any congruence 𝜃𝜃 on an ABA 𝐴𝐴, the Quotient 𝐴𝐴 𝜃𝜃  � is also an ABA under the induced 
operations ∧ and ∨ on 𝐴𝐴 𝜃𝜃�  defined by:   

𝜃𝜃(𝑎𝑎) ∧ 𝜃𝜃(𝑏𝑏) = 𝜃𝜃(𝑎𝑎 ∧ 𝑏𝑏) and 𝜃𝜃(𝑎𝑎) ∨ 𝜃𝜃(𝑏𝑏) = 𝜃𝜃(𝑎𝑎 ∨ 𝑏𝑏), 
Where,  𝜃𝜃(𝑎𝑎) = {𝑏𝑏 ∈ 𝐴𝐴: (𝑎𝑎, 𝑏𝑏) ∈ 𝜃𝜃}, in which  𝜃𝜃(0) is the zero element and  𝜃𝜃(𝑚𝑚)  is maximal for any maximal 𝑚𝑚  in 
𝐴𝐴. Also, the class of congruence relation on 𝐴𝐴 form a complete lattice under the inclusion ordering. 
 
The following gives an inter-connection between homomorphisms and congruences on ABA's. 
 
Theorem: 5.3 Let 𝐴𝐴 be an ABA and 𝜃𝜃 a binary relation on 𝐴𝐴. Then 𝜃𝜃 is a congruence on 𝐴𝐴 if and only if 𝜃𝜃 is the kernel 
of a homomorphism of 𝐴𝐴  into some ABA𝐵𝐵.  
 
Theorem: 5.4 Let 𝐴𝐴  and 𝐵𝐵 be ABA's and 𝜃𝜃  a congruence on 𝐴𝐴, and 𝑖𝑖:  𝐴𝐴 → 𝐵𝐵  an  epimorphism such  that  ker𝑖𝑖 = 𝜃𝜃, 
where, 𝑘𝑘𝑘𝑘𝑘𝑘 𝑖𝑖 = {(𝑎𝑎,𝑏𝑏) ∈ 𝐴𝐴 × 𝐴𝐴: 𝑖𝑖(𝑎𝑎) = 𝑖𝑖(𝑏𝑏)}. Then there is an isomorphism 𝛼𝛼 ∶ 𝐴𝐴 𝜃𝜃�  →  𝐵𝐵  such that  𝛼𝛼 𝛽𝛽 = 𝑖𝑖,  
where 𝛽𝛽 ∶  𝐴𝐴 → 𝐴𝐴

𝜃𝜃�   is  the  natural  map. 
 
Similarly, the above theorem holds good in the case of ABR's. 
 
6. THE CATEGORICAL EQUIVALENCE 
 
In this section, we prove that the classes of ABA's and ABR's form categories and establish an equivalence between 
them. Let us recall from theorems 4.2 and 4.6 that an ABA can be made as an ABR and vice-versa. In the following we 
give that these two processes are inverses to each other. 
 
Theorem: 6.1 Let (𝐴𝐴, ∧, ∨, 0) be  an ABA  and  𝑅𝑅(𝐴𝐴) = (𝐴𝐴, + ,⋅ , 0) be  the corresponding  ABR.  
Also, Let  𝐴𝐴(𝑅𝑅(𝐴𝐴)) = (𝐴𝐴, ∧, ∨, 0) be the ABA obtained from R(A). Then  𝐴𝐴 = 𝐴𝐴(𝑅𝑅(𝐴𝐴)).  
 
Theorem:  6.2 Let  (𝑅𝑅, + , ⋅ , 0)  be an ABR and  𝐴𝐴(𝑅𝑅) = (𝑅𝑅, ∧, ∨, 0) be the corresponding ABA. Also,  
let  𝑅𝑅(𝐴𝐴(𝑅𝑅))  = (𝑅𝑅,⊕,⊙, 0) be the ABR obtained from  𝐴𝐴(𝑅𝑅). Then  𝑅𝑅 = 𝑅𝑅(𝐴𝐴(𝑅𝑅)).   
 
Corollary: 6.3 The correspondences  𝐴𝐴   𝑅𝑅(𝐴𝐴)  and  𝑅𝑅   𝐴𝐴(𝑅𝑅)  are inverses to each other and establish a one-to-
one correspondence between the class of ABA's and  the  class  of  ABR's. 
 



U. M. Swamy1, Ch. Santhi Sundar Raj*2 and R. Chudamani3 / On Almost Boolean Algebras and Rings / IJMA- 7(12), Dec.-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                        29  

 
Theorem: 6.4 Let  𝐴𝐴1 and  𝐴𝐴2 be ABA's and  𝑅𝑅(𝐴𝐴1) and  𝑅𝑅(𝐴𝐴2) be the corresponding ABR's. Also, let  𝑖𝑖:  𝐴𝐴1 → 𝐴𝐴2 be 
a mapping. Then 𝑖𝑖 is a homomorphism of ABA's if and only if it is a homomorphism of ABR's. 
 
Proof: Suppose that  𝑖𝑖:  𝐴𝐴1 → 𝐴𝐴2 is a homomorphism of ABA's. 
 
Now for any 𝑎𝑎,b ∈ A1,   𝑖𝑖(𝑎𝑎 + 𝑏𝑏) = 𝑖𝑖((𝑎𝑎 ∗ 𝑏𝑏) ∨ (𝑏𝑏 ∗ 𝑎𝑎)) = 𝑖𝑖(𝑎𝑎 ∗ 𝑏𝑏) ∨ 𝑖𝑖(𝑏𝑏 ∗ 𝑎𝑎)   

                                                              = �𝑖𝑖(𝑎𝑎) ∗  𝑖𝑖(𝑏𝑏)� ∨  �𝑖𝑖(𝑏𝑏) ∗  𝑖𝑖(𝑎𝑎)�    
                                                                                                          = 𝑖𝑖(𝑎𝑎)   +   𝑖𝑖(𝑏𝑏)  
and  𝑖𝑖(𝑎𝑎 ⋅ 𝑏𝑏)  = 𝑖𝑖(𝑎𝑎 ∧  𝑏𝑏)  = 𝑖𝑖(𝑎𝑎) ∧  𝑖𝑖(𝑏𝑏) = 𝑖𝑖(𝑎𝑎)  ⋅ 𝑖𝑖(𝑏𝑏).  
 
Therefore  𝑖𝑖:  𝑅𝑅(𝐴𝐴1) → 𝑅𝑅(𝐴𝐴2)  is a homomorphism of ABR's.    
 
Conversely suppose that  𝑖𝑖: 𝑅𝑅(𝐴𝐴1) → 𝑅𝑅(𝐴𝐴2) is a homomorphism of ABR's. Then for any 𝑎𝑎 and b in A1,  

f(0)  = 𝑖𝑖(𝑎𝑎 +  𝑎𝑎) = 𝑖𝑖(𝑎𝑎) +  𝑖𝑖(𝑎𝑎) = 0, 
𝑖𝑖(𝑎𝑎 ∧  𝑏𝑏) = 𝑖𝑖(𝑎𝑎 ⋅  𝑏𝑏) = 𝑖𝑖(𝑎𝑎)  ⋅ 𝑖𝑖(𝑏𝑏) = 𝑖𝑖(𝑎𝑎)  ∧  𝑖𝑖(𝑏𝑏) 

                      and 𝑖𝑖(𝑎𝑎 ∨  𝑏𝑏) = 𝑖𝑖�𝑎𝑎 + (𝑏𝑏 + 𝑎𝑎 ⋅  𝑏𝑏)� = 𝑖𝑖(𝑎𝑎)  +  𝑖𝑖(𝑏𝑏 +  𝑎𝑎 ⋅  𝑏𝑏) 
                 = 𝑖𝑖(𝑎𝑎) + �𝑖𝑖(𝑏𝑏) + 𝑖𝑖(𝑎𝑎) ⋅  𝑖𝑖(𝑏𝑏)� = 𝑖𝑖(𝑎𝑎) ∨  𝑖𝑖(𝑏𝑏). 

Thus 𝑖𝑖:  𝐴𝐴1 → 𝐴𝐴2   is a homomorphism of ABA's. 
 
Corollary: 6.5 𝐴𝐴   𝑅𝑅(𝐴𝐴) and  𝑅𝑅  𝐴𝐴(𝑅𝑅) establish an equivalence between the category of ABA's and that of 
ABR's. 
 
Theorem: 6.6 Let (𝐴𝐴, ∧, ∨, 0) be an Almost Boolean algebra and  𝑅𝑅(𝐴𝐴) = (𝐴𝐴, +,⋅, 0) be the corresponding Almost 
Boolean ring. Let 𝜃𝜃 be an equivalence relation on A. Then is 𝜃𝜃 is a congruence on 𝐴𝐴 if and only if it is a congruence on 
𝑅𝑅(𝐴𝐴). 
 
Proof: Assume that θ is compatible with 𝐴𝐴. Since  the  binary  operations  ∧ and ∙  are  the  same,  we  have  to  only  
prove  that  𝜃𝜃 is compatible  with  ∨  if and  only if  it is  so  with +.  Suppose that θ is compatible with ∨. Then, the 
quotient 𝐴𝐴 𝜃𝜃�  is an ABA in which 𝜃𝜃(𝑎𝑎) ∗  𝜃𝜃(𝑏𝑏) =  𝜃𝜃(𝑎𝑎 ∗ 𝑏𝑏)for any 𝑎𝑎, 𝑏𝑏 ∈  𝐴𝐴.  
 
This implies that θ is compatible with the operation ∗ also.  
 
Now, for any 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝐴𝐴, (𝑎𝑎, 𝑏𝑏), (𝑐𝑐,𝑑𝑑) ∈  𝜃𝜃 ⟹ (𝑎𝑎 ∗  𝑐𝑐, 𝑏𝑏 ∗  𝑑𝑑), (𝑐𝑐 ∗  𝑎𝑎,𝑑𝑑 ∗ 𝑏𝑏) ∈  𝜃𝜃 

                                   ⟹ ((𝑎𝑎 ∗  𝑐𝑐) ∨ (𝑐𝑐 ∗ 𝑎𝑎), (𝑏𝑏 ∗ 𝑑𝑑) ∨ (𝑑𝑑 ∗ 𝑏𝑏)) ∈ 𝜃𝜃 
                                                                           ⟹ (𝑎𝑎 + 𝑐𝑐, 𝑏𝑏 + 𝑑𝑑)  ∈  𝜃𝜃.    
Therefore  𝜃𝜃 is compatible with +.  
 
Conversely supposethat θ is compatible with +.   
 
Then(𝑎𝑎, 𝑏𝑏), (𝑐𝑐,𝑑𝑑) ∈  𝜃𝜃 ⟹ (𝑎𝑎, 𝑏𝑏), (𝑐𝑐,𝑑𝑑), (𝑎𝑎𝑐𝑐, 𝑏𝑏𝑑𝑑) ∈  𝜃𝜃 
                                       ⟹ �𝑎𝑎 +  (𝑐𝑐 +  𝑎𝑎𝑐𝑐), 𝑏𝑏 +  (𝑑𝑑 +  𝑏𝑏𝑑𝑑)� ∈  𝜃𝜃  
                                            ⟹ (𝑎𝑎 ∨  𝑐𝑐, 𝑏𝑏 ∨  𝑑𝑑)  ∈  𝜃𝜃. 
Therefore, 𝜃𝜃  is compatible with ∨.  Thus  𝜃𝜃  is  a  congruence  on  the  Almost  Boolean  algebra 𝐴𝐴 if and only if it is so 
on the Almost Boolean ring  𝑅𝑅(𝐴𝐴). 
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