On π gb- Closed Sets in Topological Spaces

D. Sreeja* and C. Janaki**

*Asst. Professor, Dept. Of Mathematics, CMS College Of Science And Commerce, Coimbatore-6, India **Asst. Professor, Dept. Of Mathematics, L. R. G Govt. Arts College for Women, Tirupur-4, India

E-mail: *sreejadamu@gmail.com, **janakicsekar@yahoo.com

(Received on: 22-07-11; Accepted on: 07-08-11)

Abstract

In this paper a new class of sets called πgb -closed set is introduced and its properties are studied. Further the notion of πgb - $T_{1/2}$ space and πgb -continuity are introduced.

Mathematics Subject Classification: 54A05.

Keywords: πgb -closed, πgb -open, πgb - continuous, πgb - $T_{1/2}$ spaces.

1. Introduction

Andrijevic [3] introduced a new class of generalized open sets in a topological space, the so-called b-open sets. This type of sets was discussed by Ekici and Caldas [11] under the name of γ -open sets. The class of b-open sets is contained in the class of semi-pre-open sets and contains all semi-open sets and preopen sets. The class of b-open sets generates the same topology as the class of preopen sets. Since the advent of these notions, several research paper with interesting results in different respects came to existence ([1, 3, 6, 11, 12, 21, 22, 23]). Levine [16] introduced the concept of generalized closed sets in topological space and a class of topological spaces called T $_{1/2}$ spaces. Extensive research on generalizing closedness was done in recent years as the notions of a generalized closed, generalized semi-closed, α -generalized closed, generalized semi-pre-open closed sets were investigated in [2,7,16,18,19]. The finite union of regular open sets is said to be π -closed.

The aim of this paper is to study the notion of πgb -closed sets and its various characterizations are given in this paper. In Section 3, we study basic properties of πgb -closed sets. In Section 4, we characterize πgb -open sets. Finally in section 5, πgb -continuous and πgb -irresolute functions are discussed.

2. Preliminaries

Throughout this paper (X, τ) and (Y, τ) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) cl(A) and int(A) denote the closure of A and the interior of A respectively. (X, τ) will be replaced by X if there is no chance of confusion.

Let us recall the following definitions which we shall require later.

Definition 2.1: A subset A of a space (X, τ) is called

- (1) a preopen set [17] if $A \subset \text{int}$ (cl (A)) and a preclosed set if cl (int (A)) $\subset A$;
- (2) a semi-open set[15] if $A \subset cl(int(A))$ and a semi-closed set if int $(cl(A)) \subset A$;
- (3) a α -open set[20] if A \subset int (cl(int (A))) and a α -closed set if cl (int(cl (A))) \subset A;
- (4) a semi-preopen set[1] if $A \subset cl$ (intcl(A)) and a semi-pre-closed set if int (cl (int(A))) $\subset A$;
- (5) a regular open set if A = int(cl(A)) and a regular closed set if A = cl(int(A));
- (6) b-open [3] or sp-open [8], γ –open [11] if $A \subset cl(int(A)) \cup int(cl(A))$.

The complement of a b-open set is said to be b-closed [3]. The intersection of all b-closed sets of X containing A is called the b-closure of A and is denoted by bCl(A). The union of all b-open sets of X contained in A is called b-interior of A and is denoted by bInt(A). The family of all b-open (resp. α -open, semi-open, preopen, β -open,, b-closed, preclosed) subsets of a space X is denoted by bO(X)(resp. $\alpha O(X)$, SO(X), PO(X), $\beta O(X)$, bC(X), PC(X)) and the

D. Sreeja * and C. Janaki **/ On πgb - Closed Sets In Topological Spaces / IJMA- 2(8), August-2011, Page: 1314-1320 collection of all b-open subsets of X containing a fixed point x is denoted by bO(X, x).

The sets SO(X, x), $\alpha O(X, x)$, PO(X, x), $\beta O(X, x)$ are defined analogously.

Lemma 2.2 [3]: Let A be a subset of a space X. Then

- (1) $bCl(A) = sCl(A) \cap pCl(A) = A \cup [Int(Cl(A)) \cap Cl(Int(A))];$
- (2) $bInt(A) = sInt(A) \cup pInt(A) = A \cap [Int(Cl(A)) \cup Cl(Int(A))];$

Definition 2.3: A subset A of a space (X, τ) is called

- (1) a generalized closed (briefly g-closed)[16] if $cl(A) \subset U$ whenever $A \subset U$ and U is open.
- (2) a generalized b-closed (briefly gb-closed)[13] if $bcl(A) \subset U$ whenever $A \subset U$ and U is open.
- (3) πg -closed [10] if $cl(A) \subset U$ whenever $A \subset U$ and U is π -open.
- (4) π gp-closed [24] if $pcl(A) \subset U$ whenever $A \subset U$ and U is π -open.
- (5) $\pi g \alpha$ -closed [14] if $\alpha cl(A) \subset U$ whenever $A \subset U$ and U is π -open.
- (6) π gsp-closed [25] if spcl(A) \subset U whenever A \subset U and U is π -open.
- (7) π gs-closed [4] if $scl(A) \subset U$ whenever $A \subset U$ and U is π -open.

Definition 2.4: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

- (1) π irresolute [4] if $f^{-1}(V)$ is π closed in (X, τ) for every π -closed of (Y, σ) ;
- (2) b-irresolute: [11] if for each b-open set V in $Y, f^{-1}(V)$ is b-open in X;
- (3) b-continuous: [11] if for each open set V in Y, $f^{-1}(V)$ is b-open in X.

3. π gb-closed sets

Definition 3.1: A subset A of (X, τ) is called πgb -closed if $bcl(A) \subset U$ whenever $A \subset U$ and U is π -open in (X, τ) . By $\pi GBC(\tau)$ we mean the family of all πgb - closed subsets of the space (X, τ) .

Theorem 3.2:

- 1. Every closed set is πgb -closed
- 2. Every g-closed is π gb-closed
- 3. Every α -closed set is πgb -closed
- 4. Every pre-closed set is πgb -closed
- 5. Every gb-closed set is π gb-closed
- 6. Every πg -closed set is πgb -closed.
- 7. Every πgp -closed set is πgb -closed
- 8. Every $\pi g\alpha$ -closed set is πgb -closed
- 9. Every π gs-closed set is π gb-closed.
- 10. Every π gb-closed set is π gsp-closed.

Proof: Straight forward Converse of the above need not be true as seen in the following examples.

Example3.3: Consider $X=\{a, b, c, d\}$, $\tau=\{\Phi,\{a\},\{d\},\{a, d\},\{c, d\},\{a, c, d\},X\}$. Let $A=\{c\}$. Then A is πgb -closed but not closed, g-closed, pre-closed, pre-closed, gb-closed, πg -closed.

Example 3.4: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Let $A = \{a\}$. Therefore A is πgb -closed but not $\pi g\alpha$ -closed.

Example 3.5: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$.

Let $A = \{a, b\}$. Therefore A is πgb -closed but not πgp - closed.

Remark 3.6: The above discussions are summarized in the following diagram.

Theorem 3.7: If A is π -open and π gb- closed, then A is b-closed.

Proof: Let A is π -open and π gb-closed. Let A \subset A where A is π -open. Since A is π gb- closed, bcl (A) \subset A. Then A = bcl(A).Hence A is b-closed.

Theorem 3.8: Let A be π gb-closed in(X, τ). Then bcl(A)-A does not contain any non empty π -closed set.

Proof: Let F be a non empty π -closed set such that $F \subset bcl(A)$ -A. Since A is πgb -closed, $A \subset X$ -F where X-F is π -open implies $bcl(A) \subset X$ -F. Hence $F \subset X$ -bcl(A).Now, $F \subset bcl(A) \cap (X$ -bcl(A)) implies $F = \Phi$ which is a contradiction. Therefore bcl(A) does not contain any non empty π -closed set.

Corollary 3.9: Let A be πgb -closed in(X, τ). Then A is b-closed iff bcl(A)-A is π closed.

Proof: Let A be b-closed. Then bcl(A) = A. This implies $bcl(A)-A = \Phi$ which is π - closed. Assume bcl(A)-A is π -closed. Then $bcl(A)-A = \Phi$. Hence, bcl(A) = A

Remark 3.10: Finite union of π gb-closed sets need not be π gb-closed.

Example 3.11: Consider $X = \{a, b, c\}$, $\tau = \{\Phi, \{a\}, \{b\}, \{a, b\}, X\}$. Let $A = \{a\}$, $B = \{b\}$. Here A and B are πgb -closed but $A \cup B = \{a, b\}$ is not πgb -closed.

Remark 3.12: Finite intersection of πgb -closed sets need not be πgb - closed.

Example3.13: Consider $X = \{a, b, c, d\}, \tau = \{\Phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Let $A = \{a, b, c\}, B = \{a, b, d\}$. Here A and B are πgb -closed but $A \cap B = \{a, b\}$ is not πgb -closed.

Definition 3.14[5]:Let (X, τ) be a topological space $A \subset X$ and $x \in X$ is said to be b-limit point of A iff every b-open set containing x contains a point of A different from x.

Definition 3.15[5]: Let (X, τ) be a topological space, $A \subset X$. The set of all b-limit points of A is said to be b-derived set of A and is denoted by $D_b[A]$

Lemma 3.16[5]: If D (A) = D_b (A), then we have cl(A) = bcl(A)

Lemma 3.17[5]: If D (A) \subset D_b (A) for every subset A of X. Then for any subsets F and B of X, we have bcl(F \cup B) = bcl(F) \cup bcl(B)

Theorem 3.18: Let A and B be πgb - closed sets in(X, τ) such that D[A] \subset D_b[A] and D[B] \subset D_b[B]. Then A \cup B is πgb -closed

D. Sreeja * and C. Janaki **/ On πgb- Closed Sets In Topological Spaces / IJMA- 2(8), August-2011, Page: 1314-1320

Proof: Let U be π -open set such that $A \cup B \subset U$. Since A and B are πgb -closed sets we have $bcl(A) \subset U$ and $bcl(B) \subset U$. Since $D[A] \subset D_b[A]$ and $D[B] \subset D_b[B]$, by lemma 3.16,cl(A) = bcl(A) and cl(B) = bcl(B). Thus $bcl(A \cup B) \subset cl(A \cup B) = cl(A) \cup cl(B) = bcl(A) \cup bcl(B) \subset U$. This implies $A \cup B$ is πgb -closed.

Theorem 3.19: If A is π gb-closed set and B is any set such that $A \subseteq B \subseteq bcl(A)$, then B is π gb-closed set.

Proof: Let $B \subset U$ and U be π -open. Given $A \subset B$. Then $A \subset U$

Since A is πgb -closed, $A \subset U$ implies $bcl(A) \subset U$. By assumption it follows that $bcl(B) \subset bcl(A) \subset U$. Hence B is a πgb -closed set.

4. π gb- open sets

Definition 4.1: A set $A \subset X$ is called πgb -open if and only if its complement is πgb -closed.

Remark 4.2: bcl (X-A) = X-bint (A)

By $\pi GBO(\tau)$ we mean the family of all πgb -open subsets of the space(X, τ).

Theorem 4.3: If $A \subset X$ is πgb -open iff $F \subset bint(A)$ whenever F is π -closed and $F \subset A$

Proof: Necessity: Let A be π gb-open. Let F be π -closed and F \subset A. Then X-A \subset X-F where X-F is π -open. By assumption, $bcl(X-A) \subset X$ -F. By remark 4.2, X-bint (A) \subset X-F. Thus F \subset b int (A).

Sufficiency: Suppose F is π - closed and F \subset A such that F \subset bint(A).Let X-A \subset U where U is π -open. Then X-U \subset A where X-U is π -closed. By hypothesis, X-U \subset bint (A). X-bint(A) \subset U. bcl (X-A) \subset U. Thus X-A is π gb-closed and A is π gb-open.

Theorem 4.4: If bint (A) \subset B \subset A and A is π gb-open then B is π gb-open.

Proof: Let bint (A) $\subset B \subset A$. Thus X-A \subset X-B \subset bcl (X-A) .Since X-A is πgb - closed, by theorem 3.19, (X-A) \subset (X-B) \subset b cl (X-A) implies (X-B) is πgb - closed.

Remark 4.5: For any $A \subset X$, bint $(bcl(A)-A)=\Phi$

Theorem 4.6: If $A \subset X$ is πgb -closed, then bcl(A)-A is πgb -open.

Proof: Let A be π gb- closed let F be π -closed set.F \subset b cl (A)-A.By theorem 3.8, F= Φ . By remark4.5, bint (bcl A-A) = Φ .Thus F \subset bint (bcl(A)-A).Thus bcl (A)-A is π gb- open.

Lemma 4.7[24]: Let $A \subseteq X$. If A is open or dense, then $\pi O(A, \tau/A) = V \cap A$ such that $V \in \pi O(X, \tau)$.

Theorem 4.8: Let $B \subset A \subset X$ where A is πgb -closed and π -open set. Then B is πgb -closed relative to A iff B is πgb -closed in X.

Proof: Let $B \subset A \subset X$, where A is πgb -closed and π -open set. Let B be πgb -closed in A. Let $B \subset U$ where U is π -open in X.Since $B \subset A$, $B = B \cap A \subset U \cap A$, this implies $bcl(B) = bcl_A(B) \subset U \cap A \subset U$. Hence, B is πgb -closed in X.

Let B be πgb -closed in X. Let B \subset O where O is π -open in A. Then O = U \cap A where U is π -open in X. This implies B \subset O = U \cap A \subset U. Since B is πgb -closed in X, bcl(B) \subset U. Thus bcl_A(B)= A \cap bcl(B) \subset U \cap A= O. Hence, B is πgb -closed relative to A.

Corollary 4.9: Let A be π -open, π gb-closed set. Then A \cap F is π gb-closed whenever F \in bC(X)

Proof: Since A is πgb -closed and π -open, then $bcl(A) \subset A$ and thus A is b-closed. Hence $A \cap F$ is b-closed in X which implies $A \cap F$ is πgb -closed in X.

Definition 4.10: A space (X, τ) is called a πgb - $T_{1/2}$ space if every πgb - closed set is b-closed.

Theorem 4.11:

- (i) BO $(\tau) \subset \pi GBO(\tau)$
- (ii) A space (X, τ) is $\pi gb T_{1/2}$ iff $BO(\tau) = \pi GBO(\tau)$.

Proof: (i) Let A be b-open, then X-A is b-closed so X-A is π gb-closed. Thus A is π gb-open. Hence BO $(\tau) \subset \pi$ GBO (τ) (ii) **Necessity:** Let(X, τ) be π gb- T_{1/2} space. Let $A \in \pi$ GBO (τ) . Then X-A is π gb- closed. By hypothesis, X-A is b-closed thus $A \in BO$ (τ) . Thus π GBO $(\tau) = BO$ (τ) .

Suffiency: Let $BO(\tau) = \pi GBO(\tau)$. Let A be πgb -closed. Then X-A is πgb - open. X-A $\in \pi GBO(\tau)$.X-A $\in BO(\tau)$. Hence A is b-closed. This implies (X, τ) is πgb - $T_{1/2}$ space.

Lemma 4.12: Let A be a subset of (X, τ) and $x \in X$. Then $x \in bcl(A)$ iff $V \cap \Phi$ for every b-open set V containing x.

Theorem 4.13: For a topological space(X₁) the following are equivalent

(i)X is πgb -T_{1/2} space.

(ii)Every singleton set is either π -closed or b-open.

Proof: To prove (i) \Rightarrow (ii): Let X be a πgb - $T_{1/2}$ space .Let $x \in X$ and assuming that $\{x\}$ is not π - closed. Then clearly X- $\{x\}$ is not π - open. Hence X- $\{x\}$ is trivially a πgb - closed. Since X is πgb - $T_{1/2}$ space, X- $\{x\}$ is b-closed. Therefore $\{x\}$ is b-open.

(ii \Rightarrow (i): Assume every singleton of X is either π -closed or b-open. Let A be a π gb-closed set. Let $\{x\} \in bcl(A)$.

Case (i): Let $\{x\}$ be π - closed. Suppose $\{x\}$ does not belong to A. Then $\{x\} \in bcl(A)$ -A. By theorem 3.8, $\{x\} \in A$. Hence $bcl(A) \subset A$.

Case (ii): Let $\{x\}$ be b-open .Since $\{x\} \in bcl(A)$, we have $\{x\} \cap A \neq \Phi$ implies $\{x\} \in A$. Therefore bcl $(A) \subset A$. Therefore A is b-closed.

5. π gb- continuous and π gb- irresolute functions

Definition 5.1: A function $f: (X, \tau) \to (Y, \sigma)$ is called πgb - continuous if every $f^{-1}(V)$ is πgb - closed in (X, τ) for every closed set V of (Y, σ) .

Definition 5.2: A function $f:(X,\tau)\to (Y,\sigma)$ is called πgb - irresolute if $f^{-1}(V)$ is πgb - closed in (X,τ) for every gbr-closed set V in (Y,σ)

Proposition 5.3: Every πgb - irresolute function is πgb - continuous.

Remark 5.4: Converse of the above need not be true as seen in the following example.

Example 5.5:Consider $X = \{a, b, c\}$, $\tau = \{\Phi, \{a\}, \{b\}, \{a, b\}, X\}$. $\sigma = \{\Phi, \{a\}, X\}$. Let $f: (X, \tau) \to (X, \sigma)$ be the identity function. Then f is πgb -continuous but not πgb - irresolute.

Remark 5.6: Composition of two π gb-continuous functions need not be π gb-continuous

Example 5.7: Let $X = \{a, b, c, d\}$, $\tau = \{\Phi, \{b\}, \{c\}, \{b, c\}, X\}$, $\sigma = \{\Phi, \{a, b, d\}, X\}$ $\eta = \{\Phi, \{a, d\}, X\}$. Define $f: (X, \tau) \rightarrow (X, \sigma)$ by f(a) = a, f(b) = c, f(c) = b, f(d) = d. Define $g: (X, \sigma) \rightarrow (X, \eta)$ by g(a) = d, g(b) = c, g(c) = b, g(d) = a. Then f and g are πgb -continuous but $g \circ f$ is not πgb -continuous.

Definition 5.8: A function $f: X \rightarrow Y$ is said to be pre b-closed if f(U) is b-closed in Y for each b-closed set in X.

Proposition 5.9: Let $f: (X, \tau) \to (Y, \sigma)$ be π - irresolute and pre b-closed map. Then f(A) is πgb - closed in Y for every πgb - closed set A of X

D. Sreeja * and C. Janaki **/ On πgb- Closed Sets In Topological Spaces / IJMA- 2(8), August-2011, Page: 1314-1320

Proof: Let A be π gb-closed in X. Let $f(A) \subset V$ where V is π - open in Y. Then $A \subset f^1(V)$ and A is π gb-closed in X implies $bcl(A) \subset f^1(V)$. Hence, $f(bcl(A)) \subset V$. Since f is pre b-closed, $bcl(f(A)) \subset bcl(f(bcl(A))) = f(bcl(A)) \subset V$. Hence f(A) is π gb-closed in Y.

Definition 5.10: A topological space X is a πgb - space if every πgb - closed set is closed.

Proposition 5.11: Every π gb-space is π gb- $T_{1/2}$ space.

Theorem 5.12: Let $f: (X, \tau) \to (Y, \sigma)$ be a function.

(1) If f is πgb - irresolute and X is πgb - $T_{1/2}$ space, then f is b-irresolute.

(2)If f is πgb - continuous and X is πgb - $T_{1/2}$ space, then f is b-continuous

Proof: (1) Let V be b-closed in Y. Since f is π gb-irresolute, f⁻¹(V) is π gb-closed in X. Since X is π gb-T_{1/2} space, f⁻¹(V) is b-closed in X. Hence f is b-irresolute.

(2)Let V be closed in Y. Since f is πgb -continuous, $f^{-1}(V)$ is πgb - closed in X. By assumption, it is b-closed. Therefore f is b-continuous.

Definition 5.13[14]: A function $f: (X, \tau) \to (Y, \sigma)$ is π -open map if f(F) is π -open map in Y for every π -open in X.

Theorem 5.14: If the bijective $f:(X,\tau)\to (Y,\sigma)$ is b-irresolute and π -open map ,then f is πgb -irresolute.

Proof: Let V be π gb-closed in Y. Let $f^{-1}(V) \subset U$ where U is π - open in X. hen $V \subset f(U)$ and f(U) is π -open implies $bcl(V) \subset f(U)$. Since f is b-irresolute, $(f^{-1}(bcl(V)))$ is b-closed. Hence $bcl(f^{-1}(V)) \subset bcl(f^{-1}(bcl(V))) = f^{-1}(bcl(V)) \subset U$. Therefore, f is π gb- irresolute.

Theorem 5.15: If f: $X \rightarrow Y$ is π -open, b-irresolute, pre b-closed surjective function. If X is π gb- T _{1/2} space, then Y is π gb-T _{1/2} space.

Proof: Let F be a πgb -closed set in Y. Let $f^1(F) \subset U$ where U is π - open in X. Then $F \subset f(U)$ and F is a πgb -closed set in Y implies $bcl(F) \subset f(U)$. Since f is b-irresolute, $bcl(f^1(F)) \subset bcl(f^1(bcl(F))) = f^1(bcl(F)) \subset U$. Therefore $f^1(F)$ is πgb -closed in X. Since X is πgb -T_{1/2} space, $f^1(F)$ is b-closed in X. Since f is pre b-closed, $f(f^1(F)) = F$ is b-closed in Y. Hence Y is πgb -T_{1/2} space.

REFERENCES

- [1] D. Andrijevic, Semipreopen sets, Mat. Vesnik 38 (1986), 24-32.
- [2] S. P. Arya and T. M. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math.21 (1990), no. 8, 717-719.
- [3] D. Andrijevic, On b-open sets, Mat. Vesnik 48 (1996), 59-64.
- [4] G. Aslim, A. Caksu Guler and T. Noiri, On πgs -closed sets in topological Spaces, Acta Math. Hungar., 112 (4) (2006), 275-283.
- [5] Ahmad-Al-Omari and Mohd.Salmi Md Noorani, On Generalized b-closed Sets, Bull. Malays.Math.Sci.Soc . 32(1)(2009),19-30.
- [6] M. Caldas and S. Jafari, On some applications of b-open sets in topological spaces, Kochi J. Math. 2 (2007), 11-19.
- [7] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 16 (1995), 35-48.
- [8] J. Dontchev and M. Przemski, On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar. 71 (1996), 109-120.
- [9] J. Dontchev and M. Ganster, On δ -generalized closed sets and $T_{3/4}$ -spaces, Mem. Fac.Sci. Kochi Univ. Ser. A (Math.), 17 (1996), 15-31.
- [10] J.Dontchev and T.Noiri, Quasi Normal Spaces and πg-closed sets ,Acta Math. Hungar., 89(3)(2000), 211-219.
- [11] E. Ekici and M. Caldas, Slightly -continuous functions, Bol. Soc. Parana, Mat. (3) 22 (2004), 63-74.

- [12] M. Ganster and M. Steiner, On some questions about b-open sets, Questions Answers Gen.Topology 25 (2007), 45-52.
- [13] M. Ganster and M. Steiner, On bt-closed sets, Appl. Gen. Topol. 8 (2007), 243-247.
- [14] C.Janaki, Studies on πgα-closed sets in Topology, Ph.D Thesis, Bharathiar University, Coimbatore.(2009).
- [15] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36-41.
- [16] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2) 19 (1970),89-96.
- [17] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt No. 53 (1982), 47-53.
- [18] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 15 (1994), 51-63.
- [19] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T_{1/2}, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 17 (1996), 33-42.
- [20] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [21] A. A. Nasef, On b-locally closed sets and related topics, Chaos Solitons Fractals 12 (2001), 1909-1915.
- [22] A. A. Nasef, Some properties of contra--continuous functions, Chaos Solitons Fractals 24 (2005), 471-477.
- [23] J. H. Park, Strongly θ-b-continuous functions, Acta Math. Hungar. 110 (2006), 347-359.
- [24] J. H Park, On πgp-closed sets in Topological Spaces, Indian J.Pure Appl. Math.,(To appear)
- [25] M. S.Sarsak and N. Rajesh, π -Generalized Semi-Preclosed Sets, International Mathematical Forum, 5 (2010), 573-578.
