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ABSTRACT 
In this article we present a new and shortest proof of Lemoine’s Pedal Triangle Theorem, in our present proof we use 
the properties of Maneeals and the metric relation of centroid. 
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1. INTRODUCTION 
 
Lemoine’s Pedal Triangle Theorem: Lemoine’s pedal triangle theorem states that the Lemoine (symmedian) point of 
a triangle is the unique point which is the centroid of its own pedal triangle (see figure-1).  
 

 
Figure -1:  From figure -1 it is clear the symmedian point K of ∆ABC is the centroid  of ∆PQR 

 
The proof of this theorem can be found in Honsberger [10, p.72]. Darij Grinberg [6] and Cosmin Pohoata[3] has given 
a synthetic proofs for this theorem. The uniqueness part was conjectured by Clark Kimberling [2], In the article           
[5, §2.22] it was proved that among all the Maneeals, Maneeal point of order 2 (which is a symmedian point) only 
exhibits such property. And it was confirmed that it is true for all other points in the plane of the triangle with their 
works by Barry Wolk [1], Jean-Pierre Ehrmann [7], and Paul Yiu [9, §4.6.2]. 
 
In this article we try to prove this theorem using the idea of metric relation of Centroid which is shorter than the 
existing proofs. 

 
2. NOTATION AND BACKGROUND 
 
Let ABC be a non equilateral triangle. We denote its side-lengths by a, b, c, its area by ∆ and its classical center 
centroid as G. Let us call the cevians AD, BE and CF as symmedians (which are the reflections of medians with respect 
to the angular bisectors and they divide the opposite sides in the ratio of squares of other two sides) and their point of 
intersection K as Lemoine point. Let P, Q and R are the vertices of pedal triangle of Lemoine point (K).  
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We note some of the metric properties of Lemoine point (K) discussed in [4] and in [5] (by replacing n as 2 in the 
metric properties of Maneeals since Maneeal point of order 2 is Lemoine point)  
 

(a). The ratio in each symmedian divides the opposite side is given by 
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(b).The ratio in which K divides each symmedian is given by 
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(c). The Perpendicular distance from K to the sides BC, CA and AB is given by  
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Hence it is clear that 
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(d). The sides of Pedal triangle of K is given by  
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Hence it is clear that
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( )2 2 23 KP KQ KR= + +  

 
Now we state a preposition which gives the metric relation of centroid G 
 
3. PREPOSITION  
 
The sum of the squares of the distances of the vertices of a triangle from any point is equal to the sum of the squares of 
their distances from the centroid increased by three times the square of the distance between the point and the centroid. 
 
That is., if G is the centroid of triangle ABC and M be any point in the plane of the triangle then      

( )2 2 2 2 2 2 23GM AM BM CM AG BG CG= + + − + +  

             
( )2 2 2 2 2 21

3
AM BM CM AB BC CA= + + − + +      (1) 

 
The proof of this preposition is available in [8] and (1) can also be proved using a theorem [5, §2.12] related to the 
metric relation of Maneeal point of order n (since centrod is also maneeal point of order 0). Actually the preposition 1 
is a particular case of a more general theorem proved in Robert Simson’s Apollonii Pergaei Locorum Planorum Libri 
II., pp. 179 – 180 (1729). 
 
Now we prove our main theorem. 
 
4. MAIN THEOREM 
 
Lemoine’s Pedal Triangle Theorem: The Centroid (G1) of ∆PQR is acts as Lemoine point (K) of ∆ABC.                (Ω) 
 
Proof: To prove (Ω), it is enough to prove that 1 2 0G K =  
 
So from preposition-1, by replacing M as K it is enough to prove that  

( )2 2 2 2 2 23 KP KQ KR PQ QR RP+ + = + +  

 
It is a straightforward true statement using (c), (d) 
 
Which completes the proof of Lemoine’s Pedal Triangle Theorem. 
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