International Journal of Mathematical Archive-7(12), 2016, 75-83 MA Available online through www.ijma.info ISSN 2229 - 5046

SEPARATION AXIOMS ON TRI STAR TOPOLOGICAL SPACES

STELLA IRENE MARY J.*1, HEMALATHA M.²

¹Associate Professor, ²M.Phil scholar, Department of Mathematics, PSG College of Arts and Science, Coimbatore, India.

(Received On: 01-12-16; Revised & Accepted On: 29-12-16)

ABSTRACT

In this article, separation axioms in Tri star topological spaces are introduced. Several properties and relationship between the topological spaces induced by separation axioms are analyzed.

Keywords: T^*_{123} -open, T^*_{123} -pre open, T^*_{123} - T_k spaces T^*_{123} - pre T_k spaces, k = 0, 1, 2, 3.

AMS Subject Classification: 54A20, 54B10, 54B05, 54D10, 54A10.

1. INTRODUCTION

Let (X, τ) be a topological space. A set X equipped with two topologies τ_1, τ_2 is called a Bitopological space with topology $\tau = (\tau_1 \cup \tau_2)$. This concept was first introduced by Kelly J.C [6] in 1963. In 1982, Mashhour *et al.* [8] introduced the concept of separation axioms in bitopological spaces. After that many authors worked on separation axioms in bitopological spaces [1], [4]. The study of tri topological spaces was first initiated by Kovar M [7] in 2000. A non empty set X with three topologies τ_1, τ_2, τ_3 is called a tri topological space with topology $\tau' = (\tau_1 \cup \tau_2 \cup \tau_3)$ and is denoted by $(X, \tau_1, \tau_2, \tau_3)$. Hameed and Mohammed Yahya Abid [3] studied separation axioms in tri topological spaces. In 2014, Palaniammal S and Somasundharam S [9] defined another topology $\tau'' = (\tau_1 \cup \tau_2 \cap \tau_3)$ in tri topological spaces, which is a combination of two bitopologies defined by $\tau = (\tau_1 \cup \tau_3) \cap (\tau_2 \cup \tau_3)$ and studied the various properties of T*₁₂₃-open, T*₁₂₃-pre open and T*₁₂₃-semi open sets. Note that $\tau' \supset T*_{123} \supset \tau''$.

In this paper, we introduce T^*_{123} - T_k spaces, T^*_{123} -pre T_k spaces, k = 0, 1, 2, 3 based on the separation axioms induced by T^*_{123} -open and T^*_{123} -pre open sets and their properties are analyzed.

2. PRELIMINARIES

Definition 2.1.1: [10] A tri topological space $(X, \tau_1, \tau_2, \tau_3)$ is said to be T^*_{123} -topological space if the topology τ on X is defined by $\tau = (\tau_1 \cup \tau_3) \cap (\tau_2 \cup \tau_3)$, where $(\tau_1 \cup \tau_3)$ and $(\tau_2 \cup \tau_3)$ are bitopologies defined on the bitopological spaces (X, τ_1, τ_3) and (X, τ_2, τ_3) respectively.

Definition 2.1.2: [10] Let $(X, \tau_1, \tau_2, \tau_3)$ be T^*_{123} -topological space and $A \subset X$ is called

- 1. T^*_{123} -open if $A \subseteq \tau_1 \tau_3$ -int $(\tau_2 \tau_3$ -int $A) = \tau_2 \tau_3$ -int $(\tau_1 \tau_3$ -int A) and T^*_{123} -closed if $A \supseteq \tau_1 \tau_3$ -cl $(\tau_2 \tau_3$ --cl A).
- 2. T^*_{123} pre open if $A \subseteq \tau_1 \tau_3$ -int($\tau_2 \tau_3$ -cl A) and T^*_{123} pre closed if $\tau_1 \tau_3$ -cl ($\tau_2 \tau_3$ -int A) \subseteq A.

The intersection of all T^*_{123} -closed sets (or T^*_{123} -pre closed sets) containing A is called T^*_{123} -closure (or T^*_{123} -pre closure) of A and it is denoted by T^*_{123} -cl(A)(or T^*_{123} - pre cl(A)).

Corresponding Author: Stella Irene Mary J.*1

Stella Irene Mary J.^{*1}, Hemalatha M.² / Separation Axioms On Tri Star Topological Spaces / IJMA- 7(12), Dec.-2016.

Definition 2.1.3: [5] Let X be a topological space with topology τ . If Y is a subset of X, the collection $\tau_Y = \{Y \cap U \mid U \in \tau\}$ is a topology on Y, called subspace topology.

Definition 2.1.4: [2] Let (X, τ) be a topological space.

 T_o axiom: If x, y are distinct elements of X, then there exist an open set $U \in \tau$ such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.

 T_1 axiom: If x, y \in X and y \neq x, then there exist two open sets U and V such that U contains x but not y and V contains y but not x.

 T_2 axiom: If x, y \in X and y \neq x, then there exist two disjoint open sets U and V containing x and y respectively.

 T_3 axiom: If A is a closed subset of X and x be any point of X disjoint from A, then there exist two disjoint open sets U and V containing x and A respectively

3. SEPARATION AXIOMS IN T*123-SPACE

3.1. T*₁₂₃- T₀ space:

Definition 3.1.1: A T*₁₂₃ topological space $(X, \tau_1, \tau_2, \tau_3)$ is said to be T*₁₂₃- T₀ space if and only if for each pair distinct points x, $y \in X$, there exist a T*₁₂₃-open set U such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.

Example 3.1.2: Let X = {a, b, c} with $\tau_1 = \{X, \phi\}, \tau_2 = \{X, \phi, \{a\}\}, \tau_3 = Discrete topology, then for each pair x, y with x \neq y in X, there exist a T*₁₂₃-open {x} not containing y.$

Theorem 3.1.3: A T^{*}₁₂₃ topological space (X, τ_1 , τ_2 , τ_3) is a T^{*}₁₂₃- T₀ space if and only if for each pair of distinct points x, $y \in X$, there exist a subset U of X, which is $\tau_1 \cap \tau_2$ -open or τ_3 -open such that $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.

Proof: Assume that $(X, \tau_1, \tau_2, \tau_3)$ is a T^*_{123} - T_0 space. By definition 3.1.1, for any two points x, y with $x \neq y$ in X, there exist a T^*_{123} -open set U such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$. Since $\tau = (\tau_1 \cup \tau_3) \cap (\tau_2 \cup \tau_3) = (\tau_1 \cap \tau_2) \cup \tau_3$ and U is T^*_{123} -open, we have U is $(\tau_1 \cap \tau_2)$ -open or τ_3 -open.

Conversely, let x, y in X with $x \neq y$. By hypothesis, there exist a subset $U \subset X$, which is $(\tau_1 \cap \tau_2)$ -open or τ_3 -open such that $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$. But τ is union of the $(\tau_1 \cap \tau_2)$ and τ_3 open sets, implies U is T^*_{123} -open containing x or y. Hence $(X, \tau_1, \tau_2, \tau_3)$ is a T^*_{123} - T_0 space.

Theorem 3.1.4: For a space $(X, \tau_1, \tau_2, \tau_3)$ to be a T^*_{123} - T₀ space, it is sufficient that X with τ_3 -as its topology is a T₀-space or X with $\tau_1 \cap \tau_2$ - as its topology is a T₀-space.

Proof: Assume that (X, τ_3) is a T₀ space or $(X, \tau_1 \cap \tau_2)$ is a T₀ space. Then for each pair of distinct points x, y of X, there exist a τ_3 -open set U₁ or a $\tau_1 \cap \tau_2$ - open set U₂ containing either x or y. Since $\tau = (\tau_1 \cap \tau_2) \cup \tau_3$, we have U₁ and U₂ are τ -open, and hence U₁ and U₂ are T*₁₂₃-open. Consequently, $(X, \tau_1, \tau_2, \tau_3)$ is a T*₁₂₃-T₀ space.

Remark 3.1.5: The condition in the above Theorem is not necessary. We show that there exist (X, τ_3) and $(X, \tau_1 \cap \tau_2)$ spaces which are not T_0 , yet $(X, \tau_1, \tau_2, \tau_3)$ is T^*_{123} - T_0 space.

Example 3.1.6: Let X = {a, b, c} with $\tau_1 = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}, \tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}, \tau_3 = \{X, \phi, \{a, c\}\}$ then for each pair x, y with $x \neq y$ in X, there exist a subset U of X, such that $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$. Here X with τ_3 and X with $\tau_1 \bigcap \tau_2$ -are not a T₀-space, but $(X, \tau_1, \tau_2, \tau_3)$ is a T*₁₂₃-T₀ space.

Stella Irene Mary J.*¹, Hemalatha M.² / Separation Axioms On Tri Star Topological Spaces / IJMA- 7(12), Dec.-2016.

The following Theorem proves a characterization for a T^*_{123} - T_0 space:

Theorem 3.1.7: A T*₁₂₃ topological space (X, τ_1 , τ_2 , τ_3) is said to be T*₁₂₃- T₀ space if and only if the T*₁₂₃-closure of distinct points are distinct.

Proof: Assume that $(X, \tau_1, \tau_2, \tau_3)$ is T^*_{123} - T_0 space and let x, y be two distinct points of X. We show that T^*_{123} closure of x and y are also distinct. $(X, \tau_1, \tau_2, \tau_3)$ is T^*_{123} - T_0 space implies that there exist a T^*_{123} -open set U such that either $x \in U$ and $y \notin U$. Now U being T^*_{123} -open implies that X-U is T^*_{123} -closed. Also $x \notin X$ -U and $y \in X$ -U. Since T^*_{123} -cl{y} is the intersection of all T^*_{123} -closed sets containing $y, y \in T^*_{123}$ -cl{y} but $x \notin T^*_{123}$ -cl{y} as $x \notin X$ -U. Similarly $x \in T^*_{123}$ -cl{x} but $y \notin T^*_{123}$ -cl{x}. Hence T^*_{123} -cl{x} $\neq T^*_{123}$ -cl{y}.

Conversely, Suppose that for any pair of distinct points x, y in (X,τ_1,τ_2,τ_3) we have T^*_{123} -cl{x} $\neq T^*_{123}$ -cl{y}. Then there exist at least one point $z \in X$ such that $z \in T^*_{123}$ -cl{x} but $z \notin T^*_{123}$ -cl{y}. We claim that $x \notin T^*_{123}$ -cl{y}. If $x \in T^*_{123}$ -cl{y} then T^*_{123} -cl{x} $\subseteq T^*_{123}$ -cl{y}. So $z \in T^*_{123}$ -cl{y} which is contradiction. Hence $x \notin T^*_{123}$ -cl{y}. This implies that $x \in (T^*_{123}$ -cl{y})^c, which is a T^*_{123} -open set containing x but not y. Hence $(X, \tau_1, \tau_2, \tau_3)$ is a T^*_{123} -T₀ space.

The following Theorem proves the hereditary property of T^*_{123} - T_0 space.

Theorem 3.1.8: Every subspace of T^*_{123} - T_0 space is a T^*_{123} - T_0 space in $(X, \tau_1, \tau_2, \tau_3)$.

Proof: Let $(X, \tau_1, \tau_2, \tau_3)$ be a T^*_{123} - T_0 space and $(Y, \tau_1, \tau_2, \tau_3)$ be its subspace where $\tau_1 \tau_3 \cap \tau_2 \tau_3$ is subspace topology of $\tau_1 \tau_3 \cap \tau_2 \tau_3$ on Y. Let y_1, y_2 be any two distinct point of Y and hence of X. Now as $(X, \tau_1, \tau_2, \tau_3)$ is a T^*_{123} - T_0 space there exist a T^*_{123} -open set U such that $y_1 \in U$ and $y_2 \notin U$. Then $U \cap Y$ is a T^*_{123} -open in $(Y, \tau_1, \tau_2, \tau_3)$, which contains y_1 but does not contain y_2 . Hence Y is T^*_{123} - T_0 space.

3.2. T*₁₂₃- T₁ space:

Definition 3.2.1: A T*₁₂₃ topological space (X, τ_1 , τ_2 , τ_3) is said to be T*₁₂₃- T₁ space if and only if for any given pair of distinct points x and y, there exist two T*₁₂₃-open sets U and V such that U contains x but not y and V contains y but not x.

Remark 3.2.2: Every T^*_{123} - T_1 space is T^*_{123} - T_0 space, but converse not true.

Example 3.2.3: Consider the set N, of all natural numbers and let $\tau_1 = \tau_2 = \{N, \phi\}$ and τ_3 be the collection consisting of N, ϕ and those subsets of N of the form $\{1,2,3,...n\}$, $n \in N$. Clearly the space $(N, \tau_1, \tau_2, \tau_3)$ is a T^*_{123} - T_0 space. But it is not a T^*_{123} - T_1 space, because if we consider two distinct points m and n (m < n)and if we choose U = $\{1,2,3,...m\}$ then $m \in U$ and $n \notin U$, but there does not exist any T^*_{123} -open set V contains n but not m.

Theorem 3.2.4: A T*₁₂₃ topological space (X, τ_1 , τ_2 , τ_3) is a T*₁₂₃- T₁ space iff for each pair of distinct points x, $y \in X$, there exist subsets U, V of X, which are $\tau_1 \cap \tau_2$ -open or τ_3 -open such that $x \in U$ and $y \notin U$ or $x \notin V$ and $y \in V$.

Proof: Assume that $(X, \tau_1, \tau_2, \tau_3)$ is a T^*_{123} - T_1 space. By definition 3.2.1, for any two points x,y with $x \neq y$ in X, there exist T^*_{123} -open sets U and V such that U contains x but not y and V contains y but not x. Since $\tau = (\tau_1 \cap \tau_2) \cup \tau_3$ and U, $V \in \tau$, implies U is $\tau_1 \cap \tau_2$ -open or τ_3 -open.

Conversely, let x, y in X with $x \neq y$. By hypothesis, there exist subsets U, $V \subset X$, which are $(\tau_1 \cap \tau_2)$ -open or τ_3 -open such that $x \in U$ and $y \notin U$ or $x \notin V$ and $y \in V$. Then U and V must belongs to the collection τ . This implies U is T^*_{123} -open containing either x or y. Hence $(X, \tau_1, \tau_2, \tau_3)$ is a T^*_{123} -T₁ space.

Theorem 3.2.5: A space $(X, \tau_1, \tau_2, \tau_3)$ to be T^*_{123} - T_1 space, it is sufficient that X with τ_3 -is a T_1 -space or X with $\tau_1 \cap \tau_2$ -is a T_1 -space.

Proof: Assume that (X, τ_3) is a T_1 space or $(X, \tau_1 \cap \tau_2)$ is a T_1 space. Then for each pair of distinct points x, y of X, there exist a τ_3 -open sets U_1 and V_1 , such that U_1 contains x but not y and V_1 contains y but not x or $\tau_1 \cap \tau_2$ -open sets U_2 and V_2 such that U_2 contains x but not y and V_2 contains y but not x. Since $\tau = (\tau_1 \cap \tau_2) \cup \tau_3$, we have U_1, V_1 and U_2, V_2 are T^*_{123} -open sets. Hence $(X, \tau_1, \tau_2, \tau_3)$ is a T^*_{123} - T_1 space.

Remark 3.2.6: The condition in the above theorem is not necessary. We show that there exist (X, τ_3) and $(X, \tau_1 \cap \tau_2)$ spaces which are not T₁, yet $(X, \tau_1, \tau_2, \tau_3)$ is T*₁₂₃-T₁ space.

Example 3.2.7: Let X = {a, b, c} with $\tau_1 = \{X, \phi, \{a\}, \{c\}, \{b, c\}, \{a, c\}\}, \tau_2 = \{X, \phi, \{a\}, \{b, c\}\}, \tau_3 = \{X, \phi, \{a, b\}, \{c\}\}$ then for every pair of distinct points of X there exists T^*_{123} -open sets U and V contains each points respectively. Here X with τ_3 and X with $\tau_1 \cap \tau_2$ -are notT₁-space, but $(X, \tau_1, \tau_2, \tau_3)$ is a T^*_{123} -T₁ space.

Theorem 3.2.8: A T*₁₂₃ Topological space (X, τ_1 , τ_2 , τ_3) is a T*₁₂₃- T₁ space if and only if every singleton subset {x} of X is a T*₁₂₃- closed set.

Proof: Let X be a T^*_{123} - T_1 space and x be arbitrary point of X. If $y \in \{x\}^c$, then $y \neq x$. Since X is T^*_{123} - T_1 space and y $\neq x$ there must exist an T^*_{123} -open set U_y such that $y \in U_y$ but not x. Thus for each $y \in \{x\}^c$, there exist an T^*_{123} -open set U_y such that $y \in U_y \subseteq \{x\}^c$. Therefore $\{x\}^c = \bigcup \{y \mid y \neq x\} \subseteq \bigcup \{U_y \mid y \neq x\} \subseteq \{x\}^c$ and so $\{x\}^c = \bigcup \{U_y \mid y \neq x\}$. Since U_y is T^*_{123} -open set and the arbitrary union of T^*_{123} -open sets is T^*_{123} -open, we have $\{x\}^c$ is T^*_{123} -open. Hence $\{x\}$ is T^*_{123} -closed.

Conversely, let x and y are two distinct points of X such that $\{x\}$ and $\{y\}$ are T^*_{123} -closed set. Then $\{x\}^c$ and $\{y\}^c$ are T^*_{123} -open sets in X such that $y \in \{x\}^c$ but $x \notin \{x\}^c$ and $x \in \{y\}^c$ but $y \notin \{y\}^c$. Hence X is T^*_{123} - T_1 space.

Remark 3.2.9: A topological space $(X, \tau_1, \tau_2, \tau_3)$ is a T*₁₂₃- T₁ space if and only if every finite subset of X is T*₁₂₃- closed.

Definition 3.2.10: Let X be a T^*_{123} -topological space and $A \subset X$, $x \in X$ is a limit point of A if for every T^*_{123} -open set B containing x, B -{x} $\bigcap A \neq \phi$.

Theorem 3.2.11: If $(X, \tau_1, \tau_2, \tau_3)$ be a T^*_{123} - T_1 space, then the following statements are equivalent:

- i) $x \in X$ is a T^*_{123} -limit point of A where $A \subset X$.
- ii) Every T^*_{123} -open set containing x, contains infinite number of point of A.

Proof:

(i) \Rightarrow (ii): Assuming that $x \in X$ is a T^*_{123} -limit point of A where $A \subset X$ and U is any T^*_{123} -open set containing x, we shall show that U contains infinitely many points of A. Suppose U contains only finite number of points of A other than x. Let $V = U - \{x\} \cap A$, then V being a finite subset of T^*_{123} - T₁ space, is closed and hence V^c is T^*_{123} -open. Take $W = U \cap V^c$, which is also T^*_{123} -open and $x \in W$ implies W does not contain a point of A other than x. This means x is not a T^*_{123} -limit point of A which is contradiction to our assumption. Hence U must contain infinite number of points of A other than x.

(ii) \Rightarrow (i): It is obviously true by the definition of T^*_{123} -limit point.

3.3. T*₁₂₃- T₂ space:

Definition 3.3.1: A T*₁₂₃ topological space (X, τ_1 , τ_2 , τ_3) is said to be T*₁₂₃- T₂ space if and only if for every pair of distinct points x, y of X, there exist disjoint T*₁₂₃-open sets U and V containing x and y respectively.

Remark 3.3.2: Every T^*_{123} - T_2 space is a T^*_{123} - T_1 space, but converse need not be true.

© 2016, IJMA. All Rights Reserved

Stella Irene Mary J.^{*1}, Hemalatha M.² / Separation Axioms On Tri Star Topological Spaces / IJMA- 7(12), Dec.-2016.

Theorem 3.3.3: Every discrete space is T^*_{123} - T_2 space while no indiscrete space consisting of at least two points is T^*_{123} - T_2 space.

Proof: We know that every singleton set is T^*_{123} -open in a discrete space, therefore every pair of distinct points of a discrete space will have disjoint T^*_{123} -open sets and hence every discrete space is T^*_{123} - T_2 space. On the other hand an indiscrete space consisting of at least two points is not a T^*_{123} - T_2 space since the whole space is the only T^*_{123} - open set of each point, so that any two distinct points cannot have disjoint T^*_{123} - open sets.

3.4. T*₁₂₃- T₃ space:

Definition 3.4.1: A T*₁₂₃ topological space (X, τ_1 , τ_2 , τ_3) is said to be T*₁₂₃-regular if for each pair consisting of a point x and a T*₁₂₃-closed set B disjoint from x, there exist disjoint T*₁₂₃- open sets containing x and B respectively. A T*₁₂₃ –topological space is said to be T*₁₂₃-T₃ space if it is T*₁₂₃- regular and its points are T*₁₂₃- closed.

Theorem 3.4.2: A T*₁₂₃ topological space (X, τ_1 , τ_2 , τ_3) is said to be T*₁₂₃- T₃ space iff for each pair consisting of a point x and a T*₁₂₃-closed set B disjoint from x, there exist disjoint subsets U, V of X, which are $\tau_1 \cap \tau_2$ -open or τ_3 -open containing x and B respectively.

Proof: Assume that $(X, \tau_1, \tau_2, \tau_3)$ is a T^*_{123} - T_3 space. By definition 3.4.1, for each pair consisting of a point x and a T^*_{123} -closed set B disjoint from x, there exist disjoint T^*_{123} - open sets U and V containing x and B respectively and each of its points are T^*_{123} -closed. Since $\tau = (\tau_1 \cap \tau_2) \cup \tau_3$ and U, $V \in \tau$, implies U and V are in $\tau_1 \cap \tau_2$ -open or τ_3 -open containing x and B respectively.

Conversely, let x, y in X with $x \neq y$. By hypothesis, each pair consisting of a point x and a T^*_{123} -closed set B disjoint from x, there exist disjoint subsets U, V of X, which are $\tau_1 \cap \tau_2$ -open or τ_3 -open containing x and B respectively. Since $\tau = (\tau_1 \cap \tau_2) \cup \tau_3$, then U and V must belongs to the collection τ . This implies U and V are T^*_{123} -open sets containing x and B respectively. Hence $(X, \tau_1, \tau_2, \tau_3)$ is a T^*_{123} -T₁ space.

Theorem 3.4.3: A space $(X, \tau_1, \tau_2, \tau_3)$ to be T^*_{123} - T_3 space, it is sufficient that X with τ_3 -is a T₃-space or X with $\tau_1 \cap \tau_2$ -is a T₃-space.

Proof: Assume that (X, τ_3) is a T₃ space or $(X, \tau_1 \cap \tau_2)$ is a T₃ space. Then for each pair consisting of a point x and a T*₁₂₃-closed set B disjoint from x, there exists disjoint τ_3 - open sets U₁ and V₁, such that U₁ contains x but not B and V₁ contains B but not x or $\tau_1 \cap \tau_2$ -open sets U₂ and V₂ such that U₂ contains x but not B and V₂ contains B but not x. Since $\tau = (\tau_1 \cap \tau_2) \cup \tau_3$, we have U₁, V₁ and U₂, V₂ are T*₁₂₃-open sets. Hence $(X, \tau_1, \tau_2, \tau_3)$ is a T*₁₂₃-T₃ space.

Remark 3.4.4: The condition in the above theorem is not necessary. We show that there exist (X, τ_3) and $(X, \tau_1 \cap \tau_2)$ spaces which are not T₃, yet $(X, \tau_1, \tau_2, \tau_3)$ is T*₁₂₃-T₃ space.

Example 3.4.5: Let X = {a, b, c} with $\tau_1 = \{X, \phi, \{c\}, \{b, c\}, \{a, c\}\}, \tau_2 = \{X, \phi, \{a\}, \{b, c\}\}, \tau_3 = \{X, \phi, \{a\}\}$. This space X is T^*_{123} -T₃ space. Here X with τ_3 and X with $\tau_1 \cap \tau_2$ -are not T^*_{123} -T₃-space, but $(X, \tau_1, \tau_2, \tau_3)$ is a T^*_{123} -T₃ space.

3.5. T*₁₂₃- pre T₀ space:

Definition 3.5.1: A T*₁₂₃ topological space (X, τ_1 , τ_2 , τ_3) is said to be T*₁₂₃-pre T₀ space if and only if for any pair of distinct points x, $y \in X$, there exist a T*₁₂₃- pre open set, which contains one of them but not the other.

Theorem 3.5.2: If $\{x\}$ is T^*_{123} - pre open for some $x \in X$, then $x \notin T^*_{123}$ -pre cl $\{y\}$ for all $x \neq y$.

Proof: Let {x} be T^*_{123} - pre open set for some $x \in X$, then X-{x} is T^*_{123} - pre closed. Also $x \notin X$ -{x}. If $x \in T^*_{123}$ -pre cl{y} for some $y \neq x$, then x, y both are in all the closed sets containing y, so $x \in X$ -{x} which is contradiction. Hence $x \notin T^*_{123}$ -pre cl{y}

© 2016, IJMA. All Rights Reserved

Theorem 3.5.3: If every non trivial subset of a tri topological space (X, τ_1 , τ_2 , τ_3) is either T*₁₂₃-pre open or T*₁₂₃-pre closed then number of T*₁₂₃-pre open and T*₁₂₃-pre closed sets are equal.

Proof: Suppose if number of T^*_{123} -pre open and T^*_{123} -pre closed sets are not equal, then number of T^*_{123} -pre open sets may be greater than T^*_{123} -pre closed sets or number of T^*_{123} -pre closed sets may be greater than number of T^*_{123} -pre open sets. Without loss of generality we assume that, number of T^*_{123} -pre closed sets are higher than number of T^*_{123} -pre open sets. We know that the only T^*_{123} -pre closed sets are complement of T^*_{123} -pre open sets, implies number of T^*_{123} -pre open sets must be equal to T^*_{123} -pre closed sets. From this we can find some of T^*_{123} -pre open sets are also T^*_{123} -pre closed, which is contradiction to our hypothesis. Hence number of T^*_{123} -pre open and T^*_{123} -pre closed sets are equal.

Theorem 3.5.4: If every non trivial subset of a tri topological space (X, τ_1 , τ_2 , τ_3) is either T*₁₂₃-pre open or T*₁₂₃-pre closed then (X, τ_1 , τ_2 , τ_3) is T*₁₂₃-pre T₀ space.

Proof: Assume that every non trivial subset of a tri topological space $(X, \tau_1, \tau_2, \tau_3)$ is either T^*_{123} -pre open or T^*_{123} -pre closed. Suppose $(X, \tau_1, \tau_2, \tau_3)$ is not T^*_{123} -pre T_0 space, then for atleast one of distinct points x, y of X, there does not exist a T^*_{123} -pre open set contains either x or y. This implies both x and y are in the same T^*_{123} -pre open set or same T^*_{123} -pre closed set, means $\{x\}$ and $\{y\}$ does not belongs to collections T^*_{123} -pre open sets and T^*_{123} -pre closed set. But by our hypothesis, every non trivial subset of a tri topological space $(X, \tau_1, \tau_2, \tau_3)$ is either T^*_{123} -pre open or T^*_{123} -pre closed set. So our assumption, $(X, \tau_1, \tau_2, \tau_3)$ is not T^*_{123} -pre T_0 space, is wrong.

Theorem 3.5.5: Every T^*_{123} - T_0 space is T^*_{123} -pre T_0 space.

Proof: Let $(X, \tau_1, \tau_2, \tau_3)$ be a T*₁₂₃-T₀ space, then for every pair of distinct points x, y of X, there exist a T*₁₂₃-open set contains either x or y. We know that every T*₁₂₃-open set is T*₁₂₃-pre open, this implies every pair of distinct points x, y of X, there exist a T*₁₂₃-pre open set contains either x or y. Hence $(X, \tau_1, \tau_2, \tau_3)$ is a T*₁₂₃-pre T₀ space.

Theorem 3.5.6: In any T^*_{123} - topological space (X, τ_1, τ_2, τ_3), if distinct points have distinct T^*_{123} -pre closure then X is T^*_{123} -pre T_0 space.

Proof: Let x, $y \in X$, with $x \neq y$ and also T^*_{123} -pre cl{x} is not equal to T^*_{123} -pre cl{y}. Hence there exist $z \in X$ such that $z \in T^*_{123}$ -pre cl{x} but $z \notin T^*_{123}$ -pre cl{y} or $z \in T^*_{123}$ -pre cl{y} but $z \notin T^*_{123}$ -pre cl{x}. Now without loss of generality, let $z \in T^*_{123}$ -pre cl{x} but $z \notin T^*_{123}$ -pre cl{y}. We claim that $x \notin T^*_{123}$ -pre cl{y}. If $x \in T^*_{123}$ -pre cl{y}, then T^*_{123} -pre cl{x} is contained in T^*_{123} -pre cl{y}. Hence $z \in T^*_{123}$ -pre cl{y}, which is contradiction. This means that $x \notin T^*_{123}$ -pre cl{y}, hence $x \in T^*_{123}$ -pre cl{y}, which is a T^*_{123} -pre cl{y}, but z \notin T^*_{123}-pre cl{y}. Then $(X, \tau_1, \tau_2, \tau_3)$ is a T^*_{123} -pre T_0 space.

3.6. T*₁₂₃- pre T₁ space:

Definition 3.6.1: A T*₁₂₃ topological space $(X, \tau_1, \tau_2, \tau_3)$ is said to be T*₁₂₃- pre T₁ space if and only if for any given pair of distinct points x and y, there exist two T*₁₂₃-pre open sets U and V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.

Remark 3.6.2: Every T^*_{123} - pre T_1 space is T^*_{123} - pre T_0 space, but converse need not be true.

Example 3.6.3: Let X = {a, b, c, d} with $\tau_1 = \{X, \phi\}, \tau_2 = \{X, \phi, \{d\}, \{c\}, \{c, d\}\}, \tau_3 = \{X, \phi, \{a\}, \{a, b, c\}, \{a, c\}, \{a, c, d\}, \{a, d\}\}$. Here T*₁₂₃- pre open sets are X, ϕ , {a}, {a, b, c}, {a, c}, {a, c}, {a, c}, {a, d}, {a, d}. This is T*₁₂₃- pre T₀ space, but not T*₁₂₃- pre T₁ space since for b and c cannot have distinct T*₁₂₃- pre open sets.

Theorem 3.6.4: A T*₁₂₃ Topological space (X, τ_1 , τ_2 , τ_3) is a T*₁₂₃- pre T₁ space if and only if every singleton subset {x} of X is a T*₁₂₃- pre closed set.

Proof: Let X be a T^*_{123} - pre T_1 space and x be arbitrary point of X. If $y \in \{x\}^c$, then $y \neq x$. Since X is T^*_{123} - pre T_1 space and $y \neq x$ there must exist an T^*_{123} -pre open set U_y such that $y \in U_y$ but not x. Thus for each $y \in \{x\}^c$, there exist an T^*_{123} -pre open set U_y such that $y \in U_y \subseteq \{x\}^c$. Therefore $\bigcup \{y \mid y \neq x\} \in \bigcup \{U_v \mid y \neq x\} \subseteq \{x\}^c$ and so

Stella Irene Mary J.^{*1}, Hemalatha M.² / Separation Axioms On Tri Star Topological Spaces / IJMA- 7(12), Dec.-2016.

 $\{x\}^c = \bigcup \{U_y \mid y \neq x\}$. Since U_y is T^*_{123} -pre open set and the arbitrary union of T^*_{123} -pre open set is T^*_{123} -pre open and so $\{x\}^c$. Hence $\{x\}$ is T^*_{123} -pre closed set.

Conversely, let x and y be two distinct points of X such that $\{x\}$ and $\{y\}$ are T^*_{123} -pre closed sets. Then $\{x\}^c$ and $\{y\}^c$ are T^*_{123} -pre open sets in X such that $y \in \{x\}^c$ but $x \notin \{x\}^c$ and $x \in \{y\}^c$ but $y \notin \{y\}^c$. Hence X is T^*_{123} -pre T_1 space.

Theorem 3.6.5: Every finite T^*_{123} - pre T_1 space is discrete.

Proof: Let X be a finite T^*_{123} pre T_1 space. A \subset X be any arbitrary is finite set. By Theorem 3.6.4, every $\{x\}$ in $(X, \tau_1, \tau_2, \tau_3)$ is T^*_{123} pre closed for all $x \in X$.

Consequently $A = \bigcup \{\{x\} | x \in X\} = a$ finite union of T^*_{123} pre closed sets and hence A is T^*_{123} pre closed. Since X-A is also finite, X-A = $\bigcup \{\{x\} | x \in A^c\} = a$ finite union of T^*_{123} pre closed sets. This implies X-A is a T^*_{123} pre closed set, and A is T^*_{123} pre open. Hence $(X, \tau_1, \tau_2, \tau_3)$ is a discrete space.

3.7. T*₁₂₃- pre T₂ space, T*₁₂₃- pre-irreducible:

Definition 3.7.1: A T*₁₂₃ topological space (X, τ_1 , τ_2 , τ_3) is said to be T*₁₂₃- pre T₂ space if and only if for every pair of distinct points x, y of X, there exist disjoint T*₁₂₃-pre open sets U and V containing x and y respectively. Also every T*₁₂₃- pre T₂ space is T*₁₂₃- pre T₁ space.

Theorem 3.7.2: Every singleton subset of T^*_{123} - pre T_2 space is T^*_{123} - pre closed.

Proof: Suppose that $(X, \tau_1, \tau_2, \tau_3)$ is T^*_{123} - pre T_2 space and x, y are distinct points of X. Since the space is T^*_{123} - pre T_2 space there exist a T^*_{123} - pre open set U of y such that $x \notin U$. Hence y cannot be a limit point of $\{x\}$ and the derived set of $\{x\}$ is empty. This implies $\{\overline{x}\} = \{x\}$. Hence $\{x\}$ is closed.

Theorem 3.7.3: If $(X, \tau_1, \tau_2, \tau_3)$ be a T*₁₂₃ – topological space, then the following statements are equivalent:

(i) $\tau_1 \tau_3 \cap \tau_2 \tau_3$ is T^*_{123} - pre T₂ topology for X.

(ii) The intersection of all T^*_{123} - pre closed sets of each point of X is a singleton.

Proof:

(i) \Leftrightarrow (ii): Let $\tau_1 \tau_3 \cap \tau_2 \tau_3$ be a T*₁₂₃- pre T₂ topology for X and x, y be distinct points of X. Then there exist T*₁₂₃- pre open sets M₁ and M₂ such that $x \in M_1$, $y \in M_2$ and M₁ $\bigcap M_2 = \phi$. Moreover $x \in X-M_2$, is T*₁₂₃- pre closed and $y \notin X-M_2$, implies y does not belongs to intersection of all T*₁₂₃- pre closed sets of x. Hence the intersection of all T*₁₂₃- pre closed sets of x is the singleton {x}, since y is arbitrary.

Conversely, if $\{x\} \in X$ is the intersection of all the T^*_{123} - pre closed sets then any $y \in X$ and $y \neq x$ implies y does not not belong to intersection of all T^*_{123} - pre closed sets of x. Then there exist a T^*_{123} - pre closed set N of x such that $y \notin N$, implies there exist a T^*_{123} - pre open set O such that $x \in O \subset N$. This implies O and X-N are T^*_{123} - pre open sets, such that $x \in O$, $y \in X$ -N and $O \cap X$ -N = ϕ . Then the space $(X, \tau_1, \tau_2, \tau_3)$ is T^*_{123} - pre T₂ space.

Definition 3.7.4: A T*₁₂₃ topological space is said to be T*₁₂₃ – pre irreducible, if it cannot be expressed as the union of two proper T*₁₂₃ – pre closed subsets of X.

Theorem 3.7.5: T^*_{123} - pre closure of every one point set is T^*_{123} - pre irreducible.

Proof: Let $A \subset X$ be a T^*_{123} - pre closure of $x \in X$. Suppose $A = A_1 \bigcup A_2$ where A_1 and A_2 are proper T^*_{123} - pre closed subsets of A. But one of these must contain x, which is contradiction to the fact that A is the smallest T^*_{123} - pre closed set containing x. Hence T^*_{123} - pre closure of every one point set is T^*_{123} - pre irreducible.

Theorem 3.7.6: In a T^*_{123} - pre T_2 space the only T^*_{123} - pre irreducible subsets are one point sets.

Proof: Let $(X, \tau_1, \tau_2, \tau_3)$ be T^*_{123} -pre T_2 space and A be T^*_{123} - pre irreducible subset of X. Then A cannot be expressed as the union of two proper T^*_{123} - pre closed subsets of X. Suppose A has more than one element then A can be written as union of singleton sets. By Theorem 3.7.2, every singleton subset of T^*_{123} - pre T_2 space is T^*_{123} - pre closed. Hence A is union of proper T^*_{123} - pre closed sets, which is contradiction to T^*_{123} - pre irreducibility of A. Hence the only T^*_{123} - pre irreducible subsets of T^*_{123} - pre T_2 spaces are one point sets.

3.8. T*₁₂₃- pre regular, T*₁₂₃- pre T₃ space:

Definition 3.8.1: A T^{*}₁₂₃ topological space (X, τ_1 , τ_2 , τ_3) is said to be T^{*}₁₂₃-pre regular if for each pair consisting of a point x and a T^{*}₁₂₃- pre closed set B disjoint from x, there exist disjoint T^{*}₁₂₃- pre open sets containing x and B respectively.

Definition 3.8.2: A T^*_{123} –topological space is said to be T^*_{123} -pre T_3 space if it is T^*_{123} - pre regular and singleton sets are T^*_{123} - pre closed.

Definition 3.8.3: In a T*₁₂₃ topological space (X, τ_1 , τ_2 , τ_3), a T*₁₂₃-pre neighborhood of a point (or a set) in X is an T*₁₂₃-pre open set which contains the point (or the set).

Theorem 3.8.4:

- (i) Every T^*_{123} -pre regular T_1 space is a T^*_{123} -pre T_3 space.
- (ii) A T*₁₂₃-topological space (X, τ_1, τ_2, τ_3) is T*₁₂₃-pre T₃ space, then (X, τ_1, τ_2, τ_3) is T*₁₂₃-pre T₁ space

Proof:

- (i) Let (X, τ₁, τ₂, τ₃) be a T*₁₂₃-pre T₁ space and x, y be two distinct points. Then since X is a T*₁₂₃-pre T₁ space, {x} is a T*₁₂₃-pre closed set, also y∉ {x}. Hence by definition of T*₁₂₃-pre regular, there exist disjoint open sets G and H such that {x} ∈ G and y∈ H. Hence every T*₁₂₃-pre regular T₁ space is a T*₁₂₃-pre T₃ space.
- (ii) Assume that $(X, \tau_1, \tau_2, \tau_3)$ be a T^*_{123} -pre T_3 space. This implies that given a T^*_{123} pre closed $F \subset X$ and $x \in X$ such that $x \notin F$, there exist T^*_{123} pre open sets G, $H \subset X$ such that $x \in G$, $F \subset H$ and $G \cap H = \phi$. Any arbitrary $y \in F$, $x \notin F$ implies $y \neq x$. Therefore for distinct x, $y \in X$, there exist T^*_{123} -open sets G, $H \subset X$ such that $x \in G$, $y \in H$ and $G \cap H = \phi$. Hence $(X, \tau_1, \tau_2, \tau_3)$ is a T^*_{123} -pre T_2 space. By definition 3.7.1, every T^*_{123} -pre T_2 space is T^*_{123} -pre T_1 space. Hence a T^*_{123} -pre T_3 space is a T^*_{123} -pre T_1 space.

Theorem 3.8.5: A T*₁₂₃-topological space (X, τ_1 , τ_2 , τ_3) is T*₁₂₃-pre T₃ space iff each x \in X, there exist a T*₁₂₃-pre neighborhood of x which contains the closure of another T*₁₂₃-pre neighborhood of x.

Proof: Assume that $(X, \tau_1, \tau_2, \tau_3)$ be a T^*_{123} -pre T_3 space. Then for a T^*_{123} - pre closed $F \subset X$ and $x \in X$ such that $x \notin F$, there exist T^*_{123} – pre open sets G, $H \subset X$ such that $x \in G$, $F \subset H$ and $G \cap H = \phi$. $G \cap H = \phi \Rightarrow G \subset X - H \Rightarrow \overline{G} \subset \overline{X - H} = X$ -H. Since X-H is T^*_{123} - pre closed implies $\overline{G} \subset X$ -H $\subset X$ -F. And F is T^*_{123} - pre closed implies X-F is T^*_{123} - pre open. Therefore given a T^*_{123} - neighborhood X-F of $x \in X$, there exist a T^*_{123} - neighborhood G of x such that $x \in G \subset \overline{G} \subset X - F$.

Conversely, if each T^*_{123} -neighborhood of $x \in X$ contains the closure of another T^*_{123} - neighborhood of x. Consider a T^*_{123} - pre closed set $F \subset X$ and any $x \in X$ disjoint from F. Then F is T^*_{123} - pre closed and $x \notin F \Longrightarrow x \in X$ -F is T^*_{123} -pre open, this means X-F is T^*_{123} -neighborhood of $x \in X$. By assumption there exist a T^*_{123} -neighborhood G of x, such that $x \in G \subset \overline{G} \subset X - F$. Now $G \cap (X - \overline{G}) = \phi$ and $x \in \overline{G} \subset X - F$ implies, $F \subset X - \overline{G}$, also $X - \overline{G}$ is T^*_{123} - pre open. Conclusively, given a T^*_{123} - pre closed set F and any $x \in X$ such that $x \notin F$, there exist T^*_{123} - pre open sets G and X- \overline{G} such that $x \in G$, $F \subset X - \overline{G}$ and $G \cap (X - \overline{G}) = \phi$ implies $(X, \tau_1, \tau_2, \tau_3)$ be a T^*_{123} -pre regular space. Hence X is T^*_{123} -pre T_3 space.

Theorem 3.8.6: The product of T^*_{123} -pre T_3 spaces is a T^*_{123} -pre T_3 space.

Proof: Let $\{X_{\alpha}\}$ be a family of T^*_{123} -pre T_3 space and $X = \prod X_{\alpha}$. Let $x = (x_{\alpha})$ be a point of X and U be a T^*_{123} -pre open set containing x in X. Choose a T^*_{123} -pre open $\prod U_{\alpha}$ about x contained in U. Choose for each α , a T^*_{123} -pre open set V_{α} of x_{α} in X_{α} , such that $\overline{V}_{\alpha} \subset U_{\alpha}$. Take $V = \prod V_{\alpha}$, then $\overline{V} = \prod \overline{V}_{\alpha}$. By Theorem 3.8.5, $\prod \overline{V}_{\alpha} \subset \prod U_{\alpha} \subset U$. It follows that $\overline{V} \subset \prod U_{\alpha} \subset U$, so that X is a T^*_{123} -pre T_3 space.

REFERENCE

- 1. AjoyMukarjee, "Some New Bitopological Notions", L'Institutemathematique, 93(107)2013, 165-172.
- 2. Gupta B. M, "Topology", Ram NathKedar Nath, 2015 Edn.
- 3. Hameed and Mohammed, "Certain types of Separation axiom in Tri topological spaces", Iraqi Journal of Science, 52(2)2011, 212-217.
- 4. Hardi N. Aziz, DilanF.Ahmad, Salih M, "New types of Separation Axioms in Bitopological spaces", Zanco Journal of Pure and Applied Science, 27(4)2015, 20-26.
- 5. James R.Munkres, "Topology", Pearson Education, Inc., Prentice Hall, 2013Edn.
- 6. Kelly J.C, "Bitopological Spaces", Proc. London Math.Soc., 3pp. 17-89,1963.
- 7. Kovar M, "On 3-Topological version of θ regularity", Internat. J. Math. Sci., 23 (6)2000, 393-398.
- 8. Mashhour A.S, F. H. Khedr and S. N. El- Deeb, "Five separation axioms in Bitopological spaces", Bull., Fac. Sci. Aasiut Univ., 11(1)1982, 53-67.
- 9. Palaniammal S., Somasundaram S., A Study of Tri Topological Spaces, Shodhganga, a reservoir of Indian thesis., (2014).
- 10. Stella Irene Mary J, and Hemalatha M, "On tri star topological spaces induced by Bitopological spaces", IJMA 7(9) 2016, 147-153.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]