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ABSTRACT 
The concept of Skolem difference mean labelling was introduced by K. Murugan and A. Subramanian [6]. The concept 
of Fibonacci labelling was introduced by David W. Bange and Anthony E. Barkauskas [1] in the form Fibonacci 
graceful. This motivates us to introduce Skolem difference Fibonacci mean labelling and is defined as follows: “A 
graph G with p vertices and q edges is said to have Skolem difference Fibonacci mean labelling if it is possible to label 
the vertices x∈ V with distinct elements f(x) from the set {1,2,...,Fp+q}  in such a way that the edge e = uv is labelled 
with � 𝑓𝑓(𝑢𝑢)−𝑓𝑓(𝑣𝑣)

2
� if |𝑓𝑓(𝑢𝑢) − 𝑓𝑓(𝑣𝑣)| is even and |𝑓𝑓(𝑢𝑢)−𝑓𝑓(𝑣𝑣)|+1

2
 if |𝑓𝑓(𝑢𝑢) − 𝑓𝑓(𝑣𝑣)| is odd and the resulting edge labels are 

distinct and are from {F1, F2,...,Fq}. A graph that admits Skolem difference Fibonacci mean labelling is called a 
Skolem difference Fibonacci mean graph”. In this paper, we prove that path, star, bistar, B (m, n, k) and union of stars 
are Skolem difference Fibonacci mean graphs. 
 
Keywords: Skolem difference mean labelling, Fibonacci labelling, Skolem difference Fibonacci mean labelling.   
 
 
1. INTRODUCTION 
 
A graph G with p vertices and q edges is said to have Skolem difference Fibonacci mean labelling if it is possible to 
label the vertices x∈ V with distinct elements f(x) from the set {1,2,...,Fp+q}  in such a way that the edge e = uv is 
labelled with � f(u)−f(v)

2
� if |f(u) − f(v)| is even and |𝑓𝑓(𝑢𝑢)−𝑓𝑓(𝑣𝑣)|+1

2
 if |f(u) − f(v)| is odd and the resulting edge labels are 

distinct and are from {F1, F2,...,Fq}. A graph that admits Skolem difference Fibonacci mean labelling is called a Skolem 
difference Fibonacci mean graph. It was found that some special class of trees [7], H- class of graphs [8], some special 
class of graphs [9] and path related graphs [10] are Skolem difference Fibonacci mean graphs. The following 
definitions and notations are used in main results. 
 
Definition 1.1: A path 𝑃𝑃𝑛𝑛  with n points has V = {v1, v2, ..., vn} for its vertex set and E (𝑃𝑃𝑛𝑛 ) = {v1v2, v2v3, ..., vn-1vn} is its 
edge set. This path 𝑃𝑃𝑛𝑛  is said to have length n-1. 
 
Definition 1.2: A complete bigraph 𝐾𝐾1,𝑛𝑛 , is called a star. 
 
Definition 1.3: The bistar 𝐵𝐵𝑚𝑚 ,𝑛𝑛  is obtained by joining the centre vertices of 𝐾𝐾1,𝑚𝑚  and 𝐾𝐾1,𝑛𝑛  with an edge. 
 
Definition 1.4: The graph B (m,n,k) is obtained from a path of length k by attaching the star 𝐾𝐾1,𝑚𝑚  and 𝐾𝐾1,𝑛𝑛  with its 
pendant vertices. 
 
Definition 1.5: Let G1 (V1, E1) and G2 (V2, E2) be two graphs. Then their union G = G1 ∪ G2 is a graph with vertex set            
V = V1 ∪ V2 and edge set E = E1 ∪ E2. 
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2. MAIN RESULT 
 
Theorem 2.1: The path 𝑃𝑃𝑛𝑛  is skolem difference Fibonacci mean graph for all n ≥ 2  
 
Proof: Let V (𝑃𝑃𝑛𝑛 ) = {vi / 1 ≤ i ≤ n} 
     E (𝑃𝑃𝑛𝑛 ) = {vivi+1, vnv1 /1 ≤ i ≤ n-1} 
 
Then |𝑉𝑉(𝑃𝑃𝑛𝑛)| = n and |𝐸𝐸(𝑃𝑃𝑛𝑛)| = n-1 
 
Let f: V → {1, 2,..., F2n-1} be defined as follows 

f (vi) = 2Fi+1, 1 ≤ i ≤ n 
 
f+(E) = {f(vivi+1)/ i=1,2,...,n-1} 

= {f(v1v2), f(v2v3), ..., f(vn-1vn)} 
= �� f(v1)−f(v2)

2
� , � f(v2)−f(v3)

2
� , . . . , � f(vn−1)−f(vn )

2
�� 

= ��2F2−2F3
2

� , �2F3−2F4
2

� , . . . , �2Fn−2Fn +1
2

�� 

= �2 |𝐹𝐹2−𝐹𝐹3|
2

, 2 |𝐹𝐹3−𝐹𝐹4|
2

, . . . , 2 |𝐹𝐹𝑛𝑛−𝐹𝐹𝑛𝑛+1|
2

� 
= {F1, F2,..., Fn-1} 

 
Thus, the induced edge labels are distinct and are F1, F2,..., Fn-1. 
 
Hence the path 𝑃𝑃𝑛𝑛  is skolem difference Fibonacci mean graph for all n ≥ 2.  
 
Example 2.2: 

 
Figure-1 

 
Theorem 2.3: The graph 𝐾𝐾1,𝑛𝑛  is skolem difference Fibonacci mean graph for all n ≥ 1  
 
Proof: Let V (𝐾𝐾1,𝑛𝑛 ) = {u, ui / 1 ≤ i ≤ n} 

     E (𝐾𝐾1,𝑛𝑛 ) = {uui /1 ≤ i ≤ n} 
 
Then �𝑉𝑉(𝐾𝐾1,𝑛𝑛)� = n+1 and �𝐸𝐸(𝐾𝐾1,𝑛𝑛)� = n 
 
Let f: V → {1, 2,..., F2n+1} be defined as follows 

f (u) = 1 
 
f (ui) = 2Fi+1, 1 ≤ i ≤ n 

 
f+(E) = {f(uui)/ 1 ≤ i ≤ n} 

= {f(uu1), f(uu2), ..., f(uun)} 
= �� f(u)−f(u1)

2
� , � f(u)−f(u2)

2
� , . . . , � f(u)−f(un )

2
�� 

= ��1−2F1−1
2

� , �1−2F2−1
2

� , . . . , �1−2Fn−1
2

�� 
= {F1, F2,..., Fn} 

Thus, the induced edge labels are distinct and are F1, F2,..., Fn. 
 
Hence the graph 𝐾𝐾1,𝑛𝑛  is skolem difference Fibonacci mean graph for all n ≥ 1.  
 
Example 2.4: The Skolem difference Fibonacci mean labelling of the star graph 𝐾𝐾1,5 is 

 
Figure-2 
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Theorem 2.5: The bistar 𝐵𝐵𝑚𝑚 ,𝑛𝑛  is skolem difference Fibonacci mean graph for all m, n ≥ 1.  
 
Proof: Let V (𝐵𝐵𝑚𝑚 ,𝑛𝑛 ) = {u, ui, v, vj / 1 ≤ i ≤ m and 1 ≤ j ≤ n} 
     E (𝐵𝐵𝑚𝑚 ,𝑛𝑛 ) = {uv, uui, vvj /1 ≤ i ≤ m and 1 ≤ j ≤ n} 
 
Then �𝑉𝑉(𝐵𝐵𝑚𝑚 ,𝑛𝑛)� = m+ n+2 and �𝐸𝐸(𝐵𝐵𝑚𝑚 ,𝑛𝑛)� = m+n+1 
 
Let f: V → {1, 2,..., F2m+2n+3} be defined as follows 

f (u) = 1 
 
f (ui) = 2Fi+1, 1 ≤ i ≤ m 
 
f (v) = 2Fm+1+1 
 
f (vj) = 2Fm+1+j+f(v), 1 ≤ j ≤ n 
 
f+(E) = { f(uv), f(uui), f(vvj) /1 ≤ i ≤ m and 1 ≤ j ≤ n} 

= {f(uv), f(uu1), f(uu2), ..., f(uum), f(vv1), f(vv2), ..., f(vvn)} 
= �� f(u)−f(v)

2
� , � f(u)−f(u1)

2
� , � f(u)−f(u2)

2
� , . . . , � f(u)−f(um )

2
� , � f(v)−f(v1)

2
� , � f(v)−f(v2)

2
� , . . . , � f(v)−f(vn )

2
�� 

=  �
�1−2Fm +n−1

2
� , �1−2F1−1

2
� , �1−2F2−1

2
� , … , �1−2Fm−1

2
� , �f(v)−2Fm +2−f(v)

2
� , �f(v)−2Fm +3−f(v)

2
� , … ,

�f(v)−2Fm +n +1−f(v)
2

�
� 

= {Fm+1, F1, F2,...,Fm, Fm+2, Fm+3,...,Fm+n+1} 
= {F1, F2, ..., Fm, Fm+1, Fm+2, Fm+3, ..., Fm+n+1} 

 
Thus, the induced edge labels are distinct and are F1, F2,..., Fm+n+1. 
 
Hence the graph 𝐵𝐵𝑚𝑚 ,𝑛𝑛  is skolem difference Fibonacci mean graph for all m, n ≥ 1.  
 
Example 2.6: The Skolem difference Fibonacci mean labelling of the bistar graph B4,3 is 

 
Figure-3 

 
Corollary 2.7: The bistar 𝐵𝐵𝑛𝑛 ,𝑛𝑛  is Skolem difference Fibonacci mean graph for all n ≥ 1.  
 
Theorem 2.8: The graph B (m,n,k) is Skolem difference Fibonacci mean graph for all m, n, k ≥ 1(or)  𝐾𝐾1,𝑚𝑚@ 𝑃𝑃𝑘𝑘@ 𝐾𝐾1,𝑛𝑛  
is skolem difference Fibonacci mean graph for all m, n, k ≥ 1 . 
 
Proof: Let V (B (m, n, k)) = {ui, vj, ws / 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ s ≤ k+1} 
     E (B (m, n, k)) = {w1ui, wsws+1, wk+1vj /1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ s ≤ k} 
 
Then |𝑉𝑉(B(m, n, k))| = k+m+ n+1 and |𝐸𝐸(B(m, n, k))| = k+m+n 
 
Let f: V → {1, 2,..., F2k+2m+2n+1} be defined as follows 

f (ws) = 2Fs+1, 1 ≤ s ≤ k+1 
 
f (ui) = 2Fk+i+f(w1), 1 ≤ i ≤ m 
 
f (vj) = 2Fm+k+j+f(wk+1), 1 ≤ j ≤ n 
 
f+ (E) = {f(w1ui), f(wsws+1), f(wk+1vj) /1 ≤ i ≤ m,1 ≤ j ≤ n and 1 ≤ s ≤ k} 
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 = {f(w1u1), f(w1u2),..., f(w1um), f(w1,w2), f(w2w3),..., f(wkwk+1), f(wk+1v1), f(wk+1v2),..., f(wk+1vn)} 

 = �
� f(w1)−f(u1)

2
� , � f(w1)−f(u2)

2
� , …,      � f(w1)−f(um )

2
� , � f(w1)−f(w2)

2
� , � f(w2)−f(w3)

2
� , …,      � f(wk )−f(wk +1)

2
� ,

� f(wk +1)−f(v1)
2

� , � f(wk +1)−f(v2)
2

� , . . . ,      � f(wk +1)−f(vn )
2

�
� 

 = �
�f(w1)−2Fk +1−f(w1)

2
� , �f(w1)−2Fk +2−f(w1)

2
� , … , �f(w1)−2Fk +m−f(w1)

2
� , �2F2−2F3

2
� , �2F3−2F4

2
� , … ,

�2Fk +1−2Fk +2
2

� , �f(wk +1)−2Fm +k +1−f(wk +1)
2

� , �f(wk +1)−2Fm +k +2−f(wk +1)
2

� , . . . , �f(wk +1)−2Fm +k +n−f(wk +1)
2

�
� 

 = {Fk+1, Fk+2,..., Fk+m, |𝐹𝐹2 − 𝐹𝐹3|, |𝐹𝐹3 − 𝐹𝐹4|,..., |𝐹𝐹𝑘𝑘+1 − 𝐹𝐹𝑘𝑘+2|, Fm+k+1, Fm+k+2,..., Fm+k+n} 
 = {Fk+1, Fk+2,..., Fk+m, |𝐹𝐹1|, |𝐹𝐹2|,..., |𝐹𝐹𝑘𝑘 |, Fm+k+1, Fm+k+2,..., Fm+k+n} 
 = {F1, F2, ..., Fk, Fk+1, Fk+2,..., Fk+m, Fm+k+1, Fm+k+2,..., Fm+k+n} 

 
Thus, the induced edge labels are distinct and are F1, F2,..., Fm+n+k. 
 
Hence the graph B (m, n, k) is Skolem difference Fibonacci mean graph for all m, n, k ≥ 1.  
 
Example 2.9: The Skolem difference Fibonacci mean labelling of the graph B(2,3,3) is 

 
Figure-4 

 
Definition 2.10: The coconut tree graph is obtained by identifying the central vertex of K1,m with a pendant vertex of 
the path Pn. 
 
Corollary 2.11: The coconut tree graph B (1, n-1, m) is Skolem difference Fibonacci mean graph. 
  
Corollary 2.12: The graph obtained by the subdivision of the central edge of the bistar Bm,n is Skolem difference 
Fibonacci mean graph for all m, n ≥ 1. 
 
Proof: Note that G ≅ B(m,n,2). 
 
Hence G Skolem difference Fibonacci mean graph.             
 
Example 2.13: The Skolem difference Fibonacci mean labelling of the subdivision of the central edge of the bistar B6,4 
is 

 
Figure-5 

 
Theorem 2.14: The graph ⋃ 𝐾𝐾1,𝑙𝑙𝑖𝑖

𝑟𝑟
𝑖𝑖=1  is skolem difference Fibonacci mean graph. 

 
Proof: Let V (⋃ 𝐾𝐾1,𝑙𝑙𝑖𝑖

𝑟𝑟
𝑖𝑖=1 ) = {ui /1 ≤ i ≤ r}∪ {uij / 1 ≤ i ≤ r and 1 ≤ j ≤ ℓi} 

     E (⋃ 𝐾𝐾1,𝑙𝑙𝑖𝑖
𝑟𝑟
𝑖𝑖=1 ) = {ui uij / 1 ≤ i ≤ r and 1 ≤ j ≤ ℓi} 
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Then �𝑉𝑉(⋃ 𝐾𝐾1,𝑙𝑙𝑖𝑖

𝑟𝑟
𝑖𝑖=1 )� = r+ ℓ1+ ℓ2+...+ ℓr and �𝐸𝐸(⋃ 𝐾𝐾1,𝑙𝑙𝑖𝑖

𝑟𝑟
𝑖𝑖=1 )� = ℓ1+ ℓ2+...+ ℓr 

 
Let f: V (G) → {1,2,...,F2(ℓ1+ ℓ2+...+ ℓr)+r} be defined as follows 

f (u1) = 1, f (u2) = 2 
 
f (ui) = Fi+2, 3 ≤ i ≤ r 
 
f (u1j) = 2Fj+1, 1 ≤ j ≤ ℓ1 

 
f (uij) = 2𝐹𝐹�∑ 𝑙𝑙𝑘𝑘−1

𝑖𝑖
𝑘𝑘=2 �+j + f (ui), 2 ≤ i ≤ r and 1 ≤ j ≤ ℓr 

 
f+(E) = {f(uiuij / 1 ≤ i ≤ r and 1 ≤ j ≤ ℓi} 

= {f(u1u11), f(u1u12),..., f(u1u 1ℓ1), f(u2u21), f(u2u22),..., f(u2u 2ℓ2),..., f(urur1), f(urur2),..., f(uru rℓr)} 

= �
� f(u1)−f(u11 )

2
� , � f(u1)−f(u12 )

2
� , … , �

 f(u1)−f�u1l1�

2
� , � f(u2)−f(u21 )

2
� , � f(u2)−f(u22 )

2
� , … , �

 f(u2)−f�u2l2�

2
� , … ,

� f(ur )−f(ur1)
2

� , � f(ur )−f(ur2)
2

� , . . . , �
 f(ur )−f(urlr )

2
�

� 

= �
�1−2F1−1

2
� , �1−2F2−1

2
� , … , �

1−2Fl1−1

2
� , �

f(u2)−2Fl1+1−f(u2)

2
� , �

f(u2)−2Fl1+2−f(u2)

2
� , … , �

f(u2)−2Fl1+l2
−f(u2)

2
� ,

… , �
f(ur )−2Fl1+l2+⋯+lr−1+1−f(ur )

2
� , �

f(ur )−2Fl1+l2+⋯+lr−1+2−f(ur )

2
� , . . . , �

f(ur )−2Fl1+l2+⋯+lr−1+lr
−f(ur )

2
�

� 

= {F1, F2,..., Fl1 , Fl1+1 , Fl1+2 ,..., Fl1+l2
,..., Fl1+l2+⋯+lr−1+1 , Fl1+l2+⋯+lr−1+2 ,..., Fl1+l2+⋯+lr−1+lr

} 
= {F1, F2,..., Fl1+l2+⋯+lr−1+lr

} 
 
Thus, the induced edge labels are distinct and areF1, F2,..., Fl1+l2+⋯+lr−1+lr

. 
 
Hence, ⋃ 𝐾𝐾1,𝑙𝑙𝑖𝑖

𝑟𝑟
𝑖𝑖=1  is a Skolem difference Fibonacci mean graph. 

 
Example 2.15: Skolem difference Fibonacci mean labelling of the graph 𝑘𝑘1,3 ∪ 𝑘𝑘1,5 ∪ 𝑘𝑘1,7 ∪  𝑘𝑘1,4  is 

 

 
Figure-6 
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