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ABSTRACT 
In this paper, we made an attempt to study the algebraic nature of bipolar valued fuzzy subsemirings under homomorphism 
and anti-homomorphism and prove some results on these. 
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INTRODUCTION  
 
In 1965, Zadeh [14] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical structure 
to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of research in 
different domains, there have been a number of generalizations of this fundamental concept such as intuitionistic fuzzy sets, 
interval-valued fuzzy sets, vague sets, soft sets etc [7]. Lee [9] introduced the notion of bipolar valued fuzzy sets. Bipolar 
valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to    
[−1, 1]. In a bipolar valued fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding 
property, the membership degree (0, 1] indicates that elements somewhat satisfy the property and the membership degree 
[−1, 0) indicates that elements somewhat satisfy the implicit counter property. Bipolar valued fuzzy sets and intuitionistic 
fuzzy sets look similar each other. However, they are different each other [9, 10]. Anitha.M.S., Muruganantha Prasad        
& K.Arjunan[1, 2] defined as Bipolar valued fuzzy subgroups of a group and homomorphism, antihomomorphism are used. 
We introduce the concept of bipolar valued fuzzy subsemiring under homomorphism, antihomomorphism and established 
some results. 
 
1. PRELIMINARIES 
 
1.1 Definition: A bipolar valued fuzzy set (BVFS) A in X is defined as an object of the form A = {< x, A+(x), A−(x) >/ 
x∈X}, where A+

 : X→ [0, 1] and A−
 : X→ [−1, 0]. The positive membership degree A+(x) denotes the satisfaction degree of 

an element x to the property corresponding to a bipolar-valued fuzzy set A and the negative membership degree A−(x) 
denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar valued fuzzy 
set A.  
 
1.2 Example: A = {< a, 0.5, −0.3 >, < b, 0.1, −0.7 >, < c, 0.5, −0.4 >} is a bipolar valued fuzzy subset of X= {a, b, c}. 
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1.3 Definition: Let R be a semiring. A bipolar valued fuzzy subset A of R is said to be a bipolar valued fuzzy subsemiring 
of R if the following conditions are satisfied, 
(i)   A+(x+y) ≥ min{A+ (x), A+ (y)} 
(ii)  A+(xy) ≥ min{A+ (x), A+ (y) } 
(iii) A− (x+y) ≤ max{A− (x), A− (y)} 
(iv) A− (xy) ≤ max{A− (x), A− (y)} for all x and y in R. 
 
1.4 Example: Let R = Z3 = {0, 1, 2} be a semiring with respect to the addition modulo and multiplication modulo. Then     
A = {< 0, 0.5, −0.6 >, < 1, 0.4, −0.5 >, < 2, 0.4, −0.5 >} is a bipolar valued fuzzy subsemiring of R. 
 
1.5 Definition: Let R be a semiring. A bipolar valued fuzzy subsemiring A of R is said to be a bipolar valued fuzzy normal 
subsemiring of R if A+(x+y) = A+(y+x), A+(xy) = A+(yx), A−(x+y) = A−(y+x) and A−(xy) = A−(yx) for all x and y in R. 
 
1.6 Definition: Let R and R׀ be any two semirings. Then the function f: R → R׀ is said to be an antihomomorphism if 
f(x+y) = f(y)+f(x) and f(xy) = f(y)f(x) for all x and y in R. 
 
1.7 Definition: Let X and X׀ be any two sets. Let f : X→ X׀ be any function and let A be a bipolar valued fuzzy subset in 
X, V be a bipolar valued fuzzy subset in f(X) = X׀, defined by V+(y) =

( )1
sup

x f y−∈

A+(x) and V−(y) =
( )1

inf
x f y−∈

A−(x), for all x in X 

and y in X׀. A is called a preimage of V under f and is defined as A+(x) = V+( f(x) ), A−(x) = V−( f(x) ) for all x in X and is 
denoted by f-1(V). 
 
2. SOME PROPERTIES 
 
2.1 Theorem: Let R and R׀ be any two semirings. The homomorphic image of a bipolar valued fuzzy subsemiring of R is a 
bipolar valued fuzzy subsemiring of R׀. 
 
Proof: Let f : R→ R׀ be a homomorphism. Let V = f(A) where A is a bipolar valued fuzzy subsemiring of R. We have to 
prove that V is a bipolar valued fuzzy subsemiring of R׀. Now for f(x), f(y) in R׀, V+( f(x)+f(y)) = V+( f(x+y)) ≥ A+(x+y) ≥ 
min{A+(x), A+(y)} = min {V+(f(x)), V+(f(y))}which implies that V+(f(x)+f(y)) ≥ min{V+(f(x)), V+(f(y))}. And V+(f(x)f(y)) 
= V+(f(xy)) ≥ A+(xy) ≥ min{ A+(x), A+(y)} = min {V+(f(x)), V+(f(y))} which implies that V+(f(x)f(y)) ≥ min{ V+(f(x)),      
V+(f(y))}. Also V−(f(x)+f(y)) = V−(f(x+y)) ≤ A−(x+y) ≤ max{A−(x), A−(y)} = max {V−(f(x)), V−(f(y))} which implies that 
V−(f(x)+f(y)) ≤ max{V−(f(x)), V−(f(y))}. And V−(f(x)f(y)) = V−(f(xy)) ≤ A−(xy) ≤ max{A−(x), A−(y)} = max{V−(f(x)),  
V−(f(y))} which implies that V−(f(x)f(y)) ≤ max{V−(f(x)), V−(f(y))}. Hence V is a bipolar valued fuzzy subsemiring of R׀. 
 
2.2 Theorem: Let R and R׀ be any two semirings. The homomorphic preimage of a bipolar valued fuzzy subsemiring of R׀ 
is a bipolar valued fuzzy subsemiring of R. 
 
Proof: Let f: R → R׀ be a homomorphism. Let V = f(A) where V is a bipolar valued fuzzy subsemiring of R׀. We have to 
prove that A is a bipolar valued fuzzy subsemiring of R. Let x and y in R. Now A+(x+y) = V+(f(x+y) ) = V+(f(x)+f(y)) ≥ 
min {V+(f(x)), V+(f(y))}= min{A+(x), A+(y)} which implies that A+(x+y) ≥ min{A+(x), A+(y)}. And A+(xy) = V+( f(xy) ) = 
V+(f(x)f(y)) ≥ min{V+(f(x)), V+(f(y))}= min{A+(x), A+(y)} which implies that A+(xy) ≥ min{A+(x), A+(y) }. Also A−(x+y) 
= V−(f(x+y)) = V−(f(x)+f(y)) ≤ max{V−(f(x)), V−(f(y))} = max{A−(x), A−(y)} which implies that A−(x+y) ≤ max{A−(x), 
A−(y)}. And A−(xy) = V−(f(xy)) = V−(f(x)f(y)) ≤ max{V−(f(x)), V−(f(y))} = max{A−(x), A−(y)} which implies that A−(xy) ≤ 
max{A−(x), A−(y)}. Hence A is a bipolar valued fuzzy subsemiring of R. 
 
2.3 Theorem: Let R and R׀ be any two semirings. The antihomomorphic image of a bipolar valued fuzzy subsemiring of R 
is a bipolar valued fuzzy subsemiring of R׀. 
 
Proof: Let f: R → R׀ be an antihomomorphism. Let V = f(A) where A is a bipolar valued fuzzy subsemiring of R. We have 
to prove that V is a bipolar valued fuzzy subsemiring of R׀. Now for f(x), f(y) in R׀, V+(f(x)+f(y) ) = V+(f(y+x)) ≥ A+(y+x) 
≥ min {A+(x), A+(y)} = min {V+(f(x)), V+(f(y))} which implies that V+(f(x)+f(y)) ≥ min  {V+(f(x)), V+(f(y))}. And            
V+(f(x)f(y)) = V+(f(yx)) ≥ A+(yx) ≥ min { A+(x), A+(y)} = min {V+(f(x) ), V+( f(y))} which implies that V+(f(x)f(y)) ≥      
min {V+(f(x)), V+(f(y))}. Also V−(f(x)+f(y)) = V−(f(y+x)) ≤ A−(y+x) ≤ max{A−(x), A−(y)} = max{V−(f(x)), V−(f(y))} which 
implies that V−(f(x)+f(y)) ≤ max {V−(f(x)), V−(f(y))}. And V−(f(x)f(y)) = V−(f(yx) ) ≤ A−(yx) ≤ max{A−(x), A−(y)} =     
max{V−(f(x)), V−(f(y))} which implies that V−(f(x)f(y)) ≤ max {V−(f(x)), V−(f(y))}. Hence V is a bipolar valued fuzzy 
subsemiring of R׀. 



V. Shanmugapriya*1, K. Arjunan2 /  
Bipolar Valued Fuzzy Subsemiringsof a Semiring Using Homomorphism and Anti-Homomorphism / IJMA- 7(12), Dec.-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                            101  

 
2.4 Theorem: Let R and R׀ be any two semirings. The antihomomorphic preimage of a bipolar valued fuzzy subsemiring of 
R׀ is a bipolar valued fuzzy subsemiring of R. 
 
Proof: Let f: R → R׀ be an antihomomorphism. Let V = f(A) where V is a bipolar valued fuzzy subsemiring of R׀. We have 
to prove that A is a bipolar valued fuzzy subsemiring of R. Let x and y in R. Now A+(x+y) = V+(f(x+y) ) = V+(f(y)+f(x)) ≥ 
min {V+(f(x)), V+(f(y))}= min{A+(x), A+(y)} which implies that A+(x+y) ≥ min{A+(x), A+(y)}. And A+(xy) = V+(f(xy) ) = 
V+(f(y)f(x)) ≥ min{V+(f(x)), V+(f(y))}= min{A+(x), A+(y)} which implies that A+(xy) ≥ min{A+(x), A+(y)}. Also A−(x+y) =                        
V−(f(x+y)) =V−(f(y)+f(x)) ≤ max{V−(f(x)),V−(f(y))}= max{A−(x), A−(y)} which implies that A−(x+y) ≤ max{A−(x),A−(y)}. 
And A−(xy) = V−(f(xy)) = V−(f(y)f(x)) ≤ max{V−(f(x)), V−( f(y))} = max{A−(x), A−(y)} which implies that A−(xy) ≤ max               
{A−(x), A−(y)}. Hence A is a bipolar valued fuzzy subsemiring of R. 
 
2.5 Theorem: Let R and R׀ be any two semirings. The homomorphic image of a bipolar valued fuzzy normal subsemiring 
of R is a bipolar valued fuzzy normal subsemiring of R׀. 
 
Proof: Let f: R → R׀ be a homomorphism. Let V = f(A) where A is a bipolar valued fuzzy normal subsemiring of R. We 
have to prove that V is a bipolar valued fuzzy normal subsemiring of R׀. Now for f(x), f(y) in R׀, V+( f(x)+f(y)) =            
V+(f(x+y)) ≥ A+(x+y) = A+(y+x) ≤ V+(f(y+x)) = V+(f(y)+f(x)) which implies that V+(f(x)+f(y)) = V+(f(y)+f(x)). And        
V+(f(x)f(y)) = V+(f(xy)) ≥ A+(xy) = A+(yx) ≤ V+(f(yx)) = V+(f(y)f(x)) which implies that V+(f(x)f(y)) = V+(f(y)f(x)). Also 
V−(f(x)+f(y)) = V−(f(x+y)) ≥ A−(x+y) = A−(y+x) ≤ V−(f(y+x)) = V−(f(y)+f(x)) which implies that V−(f(x)+f(y)) = 
V−(f(y)+f(x)). And V−(f(x)f(y)) = V−(f(xy)) ≥ A−(xy) = A−(yx) ≤ V−(f(yx)) = V−(f(y)f(x) ) which implies that V−(f(x)f(y)) = 
V−(f(y)f(x)). Hence V is a bipolar valued fuzzy normal subsemiring of R׀. 
 
2.6 Theorem: Let R and R׀ be any two semirings. The homomorphic preimage of a bipolar valued fuzzy normal 
subsemiring of R׀ is a bipolar valued fuzzy normal subsemiring of R. 
 
Proof: Let f: R → R׀ be a homomorphism. Let V = f(A) where V is a bipolar valued fuzzy normal subsemiring of R׀. We 
have to prove that A is a bipolar valued fuzzy normal subsemiring of R. Let x and y in R. Now A+(x+y) = V+(f(x+y)) = 
V+(f(x)+f(y)) = V+(f(y)+f(x)) = V+(f(y+x)) = A+(y+x) which implies that A+(x+y) = A+(y+x). And A+(xy) = V+(f(xy)) = 
V+(f(x)f(y)) = V+(f(y)f(x)) = V+(f(yx)) = A+(yx) which implies that A+(xy) = A+(yx). Also A−(x+y) = V−(f(x+y)) = 
V−(f(x)+f(y)) = V−(f(y)+f(x)) = V−(f(y+x)) = A−(y+x) which implies that A−(x+y) = A−(y+x). And A−(xy) = V−(f(xy)) = 
V−(f(x)f(y))  = V−(f(y)f(x)) = V−(f(yx)) = A−(yx) which implies that A−(xy) = A−(yx). Hence A is a bipolar valued fuzzy 
normal subsemiring of R. 
 
2.7 Theorem: Let R and R׀ be any two semirings. The antihomomorphic image of a bipolar valued fuzzy normal 
subsemiring of R is a bipolar valued fuzzy normal subsemiring of R׀. 
 
Proof: Let f: R → R׀ be an antihomomorphism. Let V = f(A) where A is a bipolar valued fuzzy normal subsemiring of R. 
We have to prove that V is a bipolar valued fuzzy normal subsemiring of R׀. Now for f(x), f(y) in G׀, V+(f(x)+f(y)) = 
V+(f(y+x)) ≥ A+(y+x) = A+(x+y) ≤ V+(f(x+y)) = V+(f(y)+f(x)) which implies that V+( f(x)+f(y)) = V+(f(y)+f(x)). And 
V+(f(x)f(y)) = V+(f(yx)) ≥ A+(yx) = A+(xy) ≤ V+(f(xy)) =  V+(f(y)f(x)) which implies that V+(f(x)f(y)) = V+(f(y)f(x)). Also 
V−(f(x)+f(y)) = V−(f(y+x)) ≤ A−(y+x) = A−(x+y) ≥ V−(f(x+y)) = V−(f(y)+f(x)) which implies that V−(f(x)+f(y)) = 
V−(f(y)+f(x)). And V−(f(x)f(y)) = V−(f(yx)) ≤ A−(yx) = A−(xy) ≥ V−(f(xy)) = V−(f(y)f(x)) which implies that V−(f(x)f(y)) = 
V−(f(y)f(x)). Hence V is a bipolar valued fuzzy normal subsemiring of R׀. 
 
2.8 Theorem: Let R and R׀ be any two semirings. The antihomomorphic preimage of a bipolar valued fuzzy normal 
subsemiring of R׀ is a bipolar valued fuzzy normal subsemiring of R. 
 
Proof: Let f: R → R׀ be an antihomomorphism. Let V = f(A) where V is a bipolar valued fuzzy normal subsemiring of R׀. 
We have to prove that A is a bipolar valued fuzzy normal subsemiring of R. Let x and y in R. Now A+(x+y) = V+(f(x+y)) = 
V+(f(y)+f(x)) = V+(f(x)+f(y)) = V+(f(y+x)) = A+(y+x) which implies that A+(x+y) = A+(y+x). And A+(xy) = V+(f(xy)) = 
V+(f(y)f(x)) = V+(f(x)f(y)) = V+(f(yx)) = A+(yx) which implies that A+(xy) = A+(yx). Also A−(x+y) = V−(f(x+y)) = 
V−(f(y)+f(x)) = V−(f(x)+f(y)) = V−(f(y+x)) = A−(y+x) which implies that A−(x+y) = A−(y+x). And A−(xy) = V−(f(xy)) = 
V−(f(y)f(x)) = V−(f(x)f(y)) = V−(f(yx)) = A−(yx) which implies that A−(xy) = A−(yx). Hence A is a bipolar valued fuzzy 
normal subsemiring of R. 
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