VERY β_e-EXCELLENCE OF A GRAPH

N. SARADHA*1, V. SWAMINATHAN2

1Assistant Professor, Department of Mathematics, SCSVMV University, Enathur, Kanchipuram, Tamilnadu, India.

2Coordinator, Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai, Tamilnadu, India.

(Received On: 04-10-16; Revised & Accepted On: 22-10-16)

ABSTRACT

Let $G = (V, E)$ be a simple finite undirected graph. A subset S of V is called an equivalence set if every component of the induced sub graph $\langle S \rangle$ is complete. The equivalence number $\beta_e(G)$ is the maximum cardinality of an equivalence set of G [3]. A vertex u in $V(G)$ is said to be β_e-good if u belongs to a β_e set of G. G is said to be β_e-excellent if every vertex of G is β_e-good. A graph $G = (V,E)$ is said to be very β_e-excellent if there exists a β_e-set S of G such that for every u in $V-S$, there exists a vertex v in S such that $(S - \{v\}) \cup \{u\}$ is a β_e-set of G. S is called a very β_e-excellent set of G and G is called a very β_e-excellent graph. An equivalence graph is a vertex disjoint union of complete graphs. The concept of equivalence set, sub chromatic number, generalized coloring and equivalence covering number were studied in [1], [2], [4], [5], [6], [8], [10]. In this paper the concept of very β_e-excellence is studied.

Keywords: Equivalence set, Equivalence graph, β_e-excellence, Very β_e-excellence.

1. INTRODUCTION

Gred.H. Fricke et al [7] called a vertex u of a graph $G = (V, E)$ to be μ-good if u is contained in a $\mu(G)$-set of G (where μ is a parameter). G is said to be μ-excellent if every vertex in V is μ-good. A number of results has been proved by taking μ as the domination parameter. Sridharan and Yamuna [12], [13] introduced several types of excellence, one of them being rigid excellence. A graph G is said to be rigid μ-excellent if every vertex of G belongs to a unique μ-set of G. Rigid γ-excellence was studied in [13]. A similar study was made with respect to the parameter β_0 in [11]. A sub set S of $V(G)$ is said to be an equivalence set if every component of $\langle S \rangle$ is complete. A graph G is said to be an equivalence graph if $V(G)$ is an equivalence set. The maximum cardinality of an equivalence set is denoted by $\beta_e(G)$ [3]. In this paper, very β_e-excellence is defined and several results are derived.

2. Very β_e-Excellence of a Graph

Definition 2.1: A graph $G = (V,E)$ is said to be very β_e-excellent if there exists a β_e-set S of G such that for every u in $V-S$, there exists a vertex v in S such that $(S - \{v\}) \cup \{u\}$ is a β_e-set of G. S is called a very β_e-excellent set of G and G is called a very β_e-excellent graph.
Example 2.2: Consider P_4 with $V(P_4) = \{u_1, u_2, u_3, u_4\}$.

A graph which is very β_e-excellent

Figure-2.1

$S = \{u_1, u_2, u_4\}$ is a β_e-set of P_4. Also P_4 is β_e-excellent. $V - S = \{u_3\}$ and $(S - \{u_2\}) \cup \{u_3\}$ is a β_e set of P_4.

Therefore, S is a very β_e-excellent set of P_4 and P_4 is a very β_e-excellent graph.

Remark 2.3: Any very β_e-excellent graph is a β_e-excellent graph.

Proof: Let G be a very β_e-excellent graph and let S be a very β_e-excellent set of G. Let $u \in V - S$. Then there exist $v \in S$ such that $(S - \{v\}) \cup \{u\}$ is a β_e-set of G. Therefore, every vertex of $V - S$ is an element of a β_e-set of G.

Since S is a β_e-set of G, every element of $V(G)$ is in a β_e-set of G. Therefore, G is β_e-excellent.

Remark 2.4: A very β_e-excellent graph need not be a rigid β_e-excellent graph. For example, P_4 is a very β_e-excellent graph. But is not a rigid β_e-excellent graph.

Very β_e-excellence for standard graphs

1. K_n is very β_e-excellent for all n.
2. $K_{1,n}$ is not a very β_e-excellent graph for any $n \geq 2$.
3. \overline{K}_n is a very β_e-excellent for all n.
4. W_n is not very β_e-excellent for $n \geq 5$.
5. $K_{m,n}$ is not very β_e-excellent.
6. Petersen graph is not very β_e-excellent.
7. Any equivalence graph is very β_e-excellent.

Proposition 2.5: P_n is very β_e-excellent iff $n = 2, 3, 4, 6, 7, 9, 12$.

Proof: When $n \equiv 2(\text{mod } 3)$, P_n is not β_e-excellent and hence not very β_e-excellent.

Therefore, the possible values of n are $n = 15r , n = 15r + 1, n = 15r + 3, n = 15r + 4, n = 15r + 6, n = 15r + 7, n = 15r + 9, n = 15r + 10, n = 15r + 12, n = 15r + 13, n = 15r + 15 (r \geq 1)$.

Case I: $n = 15r$. Let $n = 3k$. Then $k = 5r$; if $n = 3k$ then $\beta_e = 2k = 10r$.

Since the number of vertices is $15r$, there are $3r$ consecutive five vertices set. For very β_e-excellence, from each set at most 3 vertices can be taken. Therefore, at most $3(3r) = 9r$ vertices can be taken for constructing a very β_e-excellent set. But $\beta_e(P_n) = 10r$ where $n = 15r$. Therefore, P_n where $n = 15r$ is not very β_e-excellent.

Case II: $n = 15r + 1$.

$n = 3k + 1$ implies $k = 5r$; $\beta_e = 2k + 1 = 10r + 1$.

© 2016, IJMA. All Rights Reserved
Since there are $15r+1$ vertices, we have $3r$ five consecutive element sets. From these sets as per the definition of very β_e-excellent set, at most 3 vertices can be taken from each set. The number of possible vertices chosen is $3(3r)+1=9r+1$. But $\beta_e = 10r + 1$. Therefore, P_n where $n = 15r+1$ is not very β_e-excellent.

Case III: $n = 15r + 3$

$n = 3k$ where $k = 5r + 1$, $\beta_e = 2k = 2(5r + 1)$.

The number of possible vertices in a very β_e-excellent set chosen is $3(3r) + 2 = 9r + 2$.

Hence, P_n where $n = 15r+3$ is not very β_e-excellent.

Case IV: $n = 15r + 4$. $n = 3k + 1$ where $k = 5r + 1$, $\beta_e = 2k + 1 = 2(5r + 1) + 1 = 10r + 3$.

The number of possible vertices chosen with respect to the definition of very β_e-excellent set is $3(3r) + 3 = 9r + 3$.

But $\beta_e = 10r + 3$.

Therefore, P_n where $n = 15r+4$ is not very β_e-excellent.

Case V: $n = 15r + 6$. $n = 3k$ where $k = 5r + 2$, $\beta_e = 2k = 2(5r + 2) = 10r + 4$.

There are $3r+1$ five consecutive elements sets and from each set at most 3 vertices can be chosen is at most $3(3r+1) + 1 = 9r + 4$. But $\beta_e = 10r + 4$.

Therefore, P_n where $n = 15r+6$ is not very β_e-excellent.

Case VI: $n = 15r + 7$. $n = 3k + 1$ where $k = 5r + 2$, $\beta_e = 2k + 1 = 2(5r + 2) + 1 = 10r + 5$.

The number of maximum possible vertices chosen for a very β_e-excellent set is $3(3r+1) + 2 = 9r + 5$.

But $\beta_e = 10r + 5$.

Therefore, P_n where $n = 15r+7$ is not very β_e-excellent.

Case VII: $n = 15r + 9$. $n = 3k + 3$ where $k = 5r + 3$, $\beta_e = 2k = 2(5r + 3) = 10r + 6$.

The number of possible vertices chosen for constructing a very β_e-excellent set is $3(3r+1) + 3 = 9r + 6$.

But $\beta_e = 10r + 6$.

Therefore, P_n where $n = 15r+9$ is not very β_e-excellent.

Case VIII: $n = 15r + 10$. $n = 3k + 1$ where $k = 5r + 3$, $\beta_e = 2k + 1 = 2(5r + 3) + 1 = 10r + 7$.

The number of possible vertices chosen for constructing a very β_e-excellent set is $3(3r+2) = 9r + 6$.

But $\beta_e = 10r + 7$.

Therefore, P_n where $n = 15r+10$ is not very β_e-excellent.

Case IX: $n = 15r + 12$. $n = 3k$ where $k = 5r + 4$, $\beta_e = 2k = 2(5r + 4) = 10r + 8$.

The number of possible vertices chosen for constructing a very β_e-excellent set is $3(3r+2)+2 = 9r+8$.

But $\beta_e = 10r + 8$.

Therefore, P_n where $n = 15r+12$ is not very β_e-excellent set.

Case X: $n = 15r + 13$. $n = 3k + 1$ where $k = 5r + 4$, $\beta_e = 2k + 1 = 2(5r + 4) + 1 = 10r + 9$.

The number of possible vertices chosen for constructing a very β_e-excellent set is $3(3r+2)+2$. But $\beta_e = 10r + 9$.

Therefore P_n where $n = 15r+13$ is not very β_e-excellent set.
Case XI: \(n = 15r + 15 \cdot n = 3k \) where \(k = 5r + 5 \); \(\beta_e = 2k = 2(5r + 5) = 10r + 10 \).

The number of possible vertices chosen for constructing a very \(\beta_e \)-excellent set is \(3(3r+5) = 9r+15 \). But \(\beta_e = 10r + 10 \). Therefore \(P_n \) where \(n = 15r + 15 \) is not very \(\beta_e \)-excellent set.

When \(n = 1,2,3,4 \) \(P_n \) is clearly very \(\beta_e \)-excellent.

When \(n = 6 \), \(\{u_1,u_2,u_5,u_6\} \) is a very \(\beta_e \)-excellent set where \(V(P_6) = \{u_1,u_2,u_3,u_4,u_5,u_6\} \).

When \(n = 7 \), \(\{u_1,u_2,u_4,u_6,u_7\} \) is a very \(\beta_e \)-excellent set.

When \(n = 9 \), \(\{u_1,u_3,u_4,u_6,u_7\} \) is a very \(\beta_e \)-excellent set.

When \(n = 10 \); \(n = 3k + 1 \) where \(k = 3 \). There are two five consecutive elements set in \(P_{10} \) and at most 6 element are possible for a very \(\beta_e \)-excellent. Hence \(P_n \) is not very \(\beta_e \)-excellent.

When \(n = 12 \), \(n = 3k \) where \(k = 4 \). \(\beta_e(P_n) = 8 \).

The set \(\{u_1,u_2,u_4,u_6,u_7,u_9,u_{11},u_{12}\} \) is a very \(\beta_e \)-excellent and hence \(P_{12} \) is a very \(\beta_e \)-excellent graph.

When \(n = 13 \), \(n = 3k+1 \) where \(k=4 \). \(\beta_e(P_{13}) = 9 \). There are two five consecutive element sets with 3 elements remaining in the last. Hence at most 6 elements can be taken from the two consecutive elements sets and all the three remaining elements are to be taken for having 9 elements. This might will not give a \(\beta_e \)-set, since 3 consecutive elements cannot be taken in a \(\beta_e \)-set. Hence \(P_{13} \) is not very \(\beta_e \)-excellent.

Proposition 2.6: \(C_n \) is very \(\beta_e \)-excellent only if \(n = 3,4,5,7,10,13 \).

Proof: Arguing as in the previous proposition 2.5 the above result is obtained.

Remark 2.7: If a graph \(G \) has a unique \(\beta_e \)-set which is not \(V(G) \) then \(G \) is not very \(\beta_e \)-excellent.

Proposition 2.8: \(C_n \circ K_1 \) is not very \(\beta_e \)-excellent.

Proof:

Case I: Let \(n \) be even.

Let \(V(C_n \circ K_1) = \{u_1,u_2,...,u_n,v_1,v_2,...,v_n\} \). Any \(\beta_e \)-set \(S \) of \(C_n \circ K_1 \) consists of all \(v_i \)'s and alternate \(u_i \)'s. Any vertex outside \(S \) cannot come inside by replacing a vertex of \(S \) without affecting the equivalence nature of \(S \). Therefore, \(C_n \circ K_1 \) is not very \(\beta_e \)-excellent.

Case II: Let \(n \) be odd.

A similar argument as before shows that there exist no \(\beta_e \) excellent set which is very \(\beta_e \)-excellent.

Observation 2.9: A very \(\beta_e \)-excellent graph may have isolates. Also, there are non-equivalence graphs which have isolates and which are very \(\beta_e \)-excellent.
For example, $K_m \cup \overline{K_n}$ is a very β_e-excellent graph which have isolates, but this is an equivalence graph. $C_4 \cup K_1$ is a non equivalence graph which is very β_e-excellent and which has an isolate.

Remark 2.10: If G is a very β_e-excellent graph then $G \cup K_m$ is also very β_e-excellent.

Proposition 2.11: Let G be a very β_e-excellent graph without isolates. Let S be a very β_e-excellent set of G. Then for any $u \in S$, $|pn[u,S]| \geq 1$.

Proof: Let G be a very β_e-excellent graph and let S be a very β_e-excellent set of G. Let $u \in S$. Suppose u is an isolate of S and any neighbor of u in G is adjacent with some vertex of S other than u. Then $pn[u,S] = 1$. Also, if all the neighbors of u form a complete sub graph with u, then $pn[u,S] = 1$.

Corollary 2.12: P_6 is very β_e-excellent. $S = \{u_1,u_2,u_5,u_6\}$ is a very β_e-excellent set of G and $pn[u_5,S] = 2 > 1$.

Remark 2.13: Let G be a graph without isolates. Let S be a very β_e-excellent set of G. Let $x \in V - S$. Then there exist $u \in S$ such that $(S - \{u\}) \cup \{x\}$ is a β_e-set of G. For example, P_7 is very β_e-excellent. Let $V(P_7) = \{u_1,u_2,u_3,u_4,u_5,u_6,u_7\}$. Let $S = \{u_1,u_2,u_4,u_5,u_6,u_7\}$.

Theorem 2.14: Let G be a graph without isolates. Suppose there exist a β_e-set S of G such that for every $x \in V - S$, there exist $u \in S$ such that $x \in pn(u,S)$. Then G is very β_e-excellent.

Proof: By hypothesis, there exist a β_e-set S of G such that for every $x \in V - S$, there exist $u \in S$ such that $x \in pn(u,S)$. Then $(S - \{u\}) \cup \{x\}$ is a β_e-set of G. Therefore S is a very β_e-excellent set of G. Hence G is a very β_e-excellent graph.

Illustration 2.15: Let $V(C_4) = \{u_1,u_2,u_3,u_4\}$. Let $S = \{u_1,u_2\}$. Then u_3 and u_4 are private neighbours of S. $(S - \{u_1\}) \cup \{u_3\}$ is a β_e-set. $(S - \{u_2\}) \cup \{u_4\}$ is a β_e-set.

Theorem 2.16: Let G be a graph such that G is an equivalence graph. Let $V_1,V_2,...,V_k$ be the components of G which are complete. Add vertices $u_1, u_2,...,u_k$. Join u_i only with every vertex of V_i, $1 \leq i \leq k$. Let H be the resulting graph. Then H is very β_e-excellent.

Proof: Clearly H is an equivalence graph and H is very β_e-excellent.

REFERENCES

2. N. Alon, Covering graphs by the minimum number of equivalence relations, Combinatorica 6 (3) (1986), 201-206.

Source of support: Nil, Conflict of interest: None Declared

Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.