On the properties of δ -interior and δ -closure in generalized topological spaces

V. Pankajam*

Department of Mathematics, Sri G.V.G Visalakshi College for Women, Udumalpet - 642 128, Tamil Nadu, India

E-mail: pankajampankaj@yahoo.co.in

(Received on: 10-07-11; Accepted on: 22-07-11)

ABSTRACT

Some family of generalized topologies using the closure and interior operators of the generalized topology of δ -open sets are defined in [7]. We discuss the relation between their interior and closure operators with the other interior and closure operators and characterize some well known generalized open sets.

Keywords and Phrases: μ -closed and μ -open sets; δ -open and δ -closed sets, generalized topology.

AMS subject Classification (2000): Primary 54 A 05, 54 A 10.

1. INTRODUCTION

The paper [1] of Prof. Á. Császár, is a base to study generalized topology and its properties. A generalized topology or simply GT μ [2] on a nonempty set X is a collection of subsets of X such that $\varphi \in \mu$ and μ is closed under arbitrary union. Elements of μ are called μ -open sets. A subset A of X is said to be μ -closed if X-A is μ -open. The pair (X, μ) is called a generalized topological space (GTS) or simply, a generalized space. If A is a subset of a space (X, μ) , then $c_u(A)$ is the smallest μ -closed set containing A and $i_u(A)$ is the largest μ -open set contained in A. If $\gamma: \rho(X) \to \rho(X)$ be a monotonic function defined on a nonempty set X and $\mu = \{A \mid A \subset \gamma(A)\}$, the family of all γ -open sets is also a generalized topology [1], $i_{\mu} = i_{\gamma}$, and $c_{\mu} = c_{\gamma}$. By a space (X, μ) , we will always mean a generalized topological space (X, μ) . A subset A of a space (X, μ) is said to be α -open [3] (resp., semiopen [3], preopen [3], b-open [9], β -open [3]) if $A \subset i_{\mu}c_{\mu}i_{\mu}(A)$ (resp., $A \subset c_{\mu}i_{\mu}(A)$, $A \subset i_{\mu}c_{\mu}(A)$, $A \subset i_{\mu}c_{\mu}(A) \cup c_{\mu}i_{\mu}(A)$, $A \subset c_{\mu}i_{\mu}c_{\mu}(A)$). We will denote the family of all α open sets by α , the family of all semiopen sets by σ , the family of all preopen sets by π , the family of all b-open sets by b and the family of all β-open sets by β. If (X, μ) is a generalized topological space, then we say that a subset $A \in \delta \subset$ $\rho(X)$ [5] if for every $x \in A$, there exists a μ -closed Q such that $x \in i_{\mu}(Q) \subset A$. Then (X, δ) is a generalized topological space [5, Proposition 2.1] such that $\delta \subset \mu$ [5, Theorem1]. Elements of δ are called the δ -open sets of (X, δ) . For $A \subset X$, $i_{\delta}(A)$ and $c_{\delta}(A)$ are the interior and closure of A in (X, δ) . In [5], using the interior and closure operators of the generalized topologies δ and μ on X, we introduce the following family of generalized open sets, namely, the family of μ_{δ} - α -open sets, denoted by ν , the family of μ_{δ} -semiopen sets, denoted by ξ , the family of μ_{δ} -preopen sets, denoted by η , the family of μ_{δ} -b-open sets, denoted by ϵ , the family of μ_{δ} -b-open sets, denoted by ψ , and study their characterizations and properties. Also, we prove that v (resp. ξ , η , ε , ψ) is nothing but the family of all α -open (resp. semiopen, preopen, b-open, β -open) sets of the generalized topological spaces (X, δ) and (X, μ) . Let (X, μ) be a space. A subset A of X is said to be μ_{δ} - α -open (resp. μ_{δ} -semiopen, μ_{δ} -preopen, μ_{δ} - β -open) if $A \subset i_{u}c_{u}i_{\delta}(A)$ (resp. $A \subset c_{u}i_{\delta}(A)$, $A \subset c_{u}i_{\delta}(A)$) $i_n c_{\delta}(A), A \subset c_n i_{\delta}(A) \cup i_n c_{\delta}(A), A \subset c_n i_n c_{\delta}(A)$). We will denote by v (resp. $\xi, \pi, \varepsilon, \psi$), the family of all μ_{δ} - α -open (resp. μ_{δ} semiopen, μ_{δ} -preopen, μ_{δ} -b-open, μ_{δ} - β -open) sets.

If $\kappa \in \{ \mu, \alpha, \sigma, \pi, b, \beta, \delta, \gamma, \xi, \eta, \epsilon, \psi \}$ and A is a subset of a space (X, κ) , then $c_{\kappa}(A)$ is the smallest κ -closed set containing A and $i_{\kappa}(A)$ is the largest κ -open set contained in A. Note that the operator c_{κ} is monotonic, increasing and idempotent and the operator i_{κ} is monotonic, decreasing and idempotent. Clearly, A is κ -open if and only if $A = i_{\kappa}(A)$ and A is κ -closed if and only if $A = c_{\kappa}(A)$. Also, for every subset A of a space (X, κ) , X- $i_{\kappa}(A) = c_{\kappa}(X$ -A). Let X be a nonempty set. Let $\lambda \subset \rho(X)$ and $\gamma \in \Gamma$. γ is said to be λ -friendly [4] if $L \cap \gamma(A) \subset \gamma(L \cap A)$ for every subset A of X and $L \in \lambda$. In [9], it is denoted that $\Gamma_4 = \{ \gamma \mid \gamma \text{ is } \mu\text{-friendly where } \mu \text{ is the GT of all } \gamma\text{-open sets} \}$ and if $\gamma \in \Gamma_4$, the space (X, γ) (resp. (X, μ) is called a γ -space). By [9, Theorem 2.1], the intersection of two μ -open sets is again a μ -open set and so every γ -space is a quasi-topological space [4]. By [9, Theorem 2.3], it is established that in a γ -space, i_{μ} and c_{μ} preserves finite intersection and finite union respectively. Later, in [4], it is established that the above result is also true for quasi-topological spaces. One can easily prove that $\delta \subset \nu \subset \eta \subset \epsilon \subset \psi$, $\delta \subset \nu \subset \xi \subset \epsilon \subset \psi$ and $\nu = \xi \cap \eta$. Refer [6] for more such relations.

The following Lemma 1.1 is essential to proceed further.

Theorem: 1.1 [7, Lemma 1.3] Let (X, μ) be a space and $A \subset X$. Then the following hold.

- (a) If *A* is μ -open, then $c_{\mu}(A) = c_{\delta}(A)$.
- (b) If *A* is μ -closed, then $i_{\mu}(A) = i_{\delta}(A)$.

Lemma: 1.2 [7, Theorem 2.4] Let (X, μ) be a generalized topological space where μ is the family of all γ -open sets of a $\gamma \in \Gamma_4$. Then the following hold.

- (a) The intersection of two δ -open set is a δ -open set.
- (b) $i_{\delta}(A) \cap i_{\delta}(A) = i_{\delta}(A \cap B)$ for every subsets A and B of X.
- (c) $c_{\delta}(A) \cup c_{\delta}(B) = c_{\delta}(A \cup B)$ for every subsets A and B of X.
- (d) $i_{\delta} \in \Gamma_4$.

Theorem: 1.3 [7, Theorem 2.6] Let (X, μ) be a space. Then the following hold.

- (a) $i_{\nu}(A) = A \cap i_{\mu}c_{\mu}i_{\delta}(A)$.
- (b) $c_{\nu}(A) = A \cup c_{\mu} i_{\mu} c_{\delta}(A)$
- (c) $i_{\xi}(A) = A \cap c_{\mu} i_{\delta}(A)$.
- (d) $c_{\xi}(A) = A \cup i_{\mu}c_{\delta}(A)$.

Theorem: 1.4 [7, Theorem 2.13] Let (X, μ) be a space where μ is the family of all γ -open sets, $\gamma \in \Gamma_4$ and $A \subset X$. Then the following hold.

```
 \begin{array}{ll} (a) \ i_{\eta}(A) = A \cap i_{\mu} c_{\delta}(A). \\ (b) \ c_{\eta}(A) = A \cup c_{\mu} i_{\delta}(A). \\ (c) \ i_{\psi}(A) = A \cap c_{\mu} i_{\mu} c_{\delta}(A). \\ \end{array}
```

2. PROPERTIES OF THE INTERIOR AND CLOSURE OPERATOR

In this section, we study the relations between the operators i_{δ} and c_{δ} with the other interior and closure operators, namely i_{μ} , c_{μ} , i_{ξ} , c_{ξ} , i_{ν} , c_{ν} , i_{η} , c_{η} , i_{ϵ} , c_{ϵ} , i_{ψ} and c_{ψ} . The dual of an identity is obtained by replacing the interior operator by the corresponding closure operator and ' \subset ' by ' \supset '.

Theorem: 2.1 Let (X,μ) be a space and $A \subset X$. Then the following hold.

```
(a) i_{\delta}i_{\eta}(A) = i_{\delta}(A).
                                                                                                                                                                        (j) i_{\delta}c_{\psi}(A) = i_{\delta}c_{\delta}i_{\delta}(A).
(b) c_{\delta}c_{\eta}(A) = c_{\delta}(A).
                                                                                                                                                                        (k) c_{\delta}i_{\Psi}(A) = c_{\delta}i_{\delta}c_{\delta}(A).
(c) i_{\delta}c_{n}(A) \subset c_{\delta}i_{\delta}(A).
                                                                                                                                                                        (1) i_{\delta}i_{\epsilon}(A) = i_{\delta}(A).
(d) c_{\delta}i_{\delta}c_{\eta}(A) = c_{\delta}i_{\delta}(A).
                                                                                                                                                                        (m) c_{\delta}c_{\varepsilon}(A) = c_{\delta}(A).
(e) i_{\delta}c_{\eta}(A) = i_{\delta}c_{\delta}i_{\delta}(A).
                                                                                                                                                                        (n) i_{\delta}c_{\varepsilon}(A) = i_{\delta}c_{\delta}i_{\delta}(A).
                                                                                                                                                                        (o) c_{\delta}i_{\varepsilon}(A) = c_{\delta}i_{\delta}c_{\delta}(A).
(f) i_{\delta}i_{\xi}(A) = i_{\delta}(A).
                                                                                                                                                                        (p) i_{\xi}i_{\eta}(A) = i_{\xi}(A) \cap i_{\eta}(A)
(g) c_{\delta}i_{\xi}(A) = c_{\delta}i_{\delta}(A) = c_{\mu}i_{\delta}(A).
                                                                                                                                                                        (q) i_{\delta}c_{\nu}(A) = i_{\delta}c_{\delta}(A).
(h) i_{\delta}i_{\psi}(A) = i_{\delta}(A).
                                                                                                                                                                        (r) c_{\delta}c_{\nu}(A) = c_{\delta}(A).
(i) c_{\delta}c_{\psi}(A) = c_{\delta}(A).
```

Proof: (a) $i_{\delta}i_{\eta}(A) = i_{\delta}(A \cap i_{\mathfrak{u}}c_{\delta}(A)) \supset i_{\delta}(i_{\delta}(A) \cap i_{\mathfrak{u}}(A)) = i_{\delta}i_{\delta}(A) = i_{\delta}(A)$. $i_{\delta}i_{\eta}(A) = i_{\delta}(A \cap i_{\mathfrak{u}}c_{\delta}(A)) \subset i_{\delta}(A)$.

- (b) The proof follows from (a) since the statement (b) is the dual of (a).
- (c) Let $x \in i_{\delta} c_{\eta}(A)$ and $x \notin c_{\delta} i_{\delta}(A)$. Then there exists a δ open set U such that $x \in U \subset c_{\eta}(A)$, $U \cap i_{\delta}(A) = \varphi$. Since $U \subset c_{\eta}(A)$ and so $U \subset A$ which implies that $x \in i_{\delta}(A)$, which is not possible.

Hence, $x \in c_{\delta}i_{\delta}(A)$.

Therefore, $i_{\delta}c_{\eta}(A) \subset c_{\delta}i_{\delta}(A)$.

- (d) By (c), $c_{\delta}i_{\delta}c_{\eta}(A) \subset c_{\delta}i_{\delta}(A)$. But $c_{\delta}i_{\delta}(A) \subset c_{\delta}i_{\delta}c_{\eta}(A)$. Hence, $c_{\delta}i_{\delta}c_{\eta}(A) = c_{\delta}i_{\delta}(A)$.
- (e) By (c), $i_{\delta}c_{\eta}(A) \subset c_{\delta} i_{\delta}(A)$ which implies that $i_{\delta}c_{\eta}(A) \subset i_{\delta}c_{\delta}i_{\delta}(A)$. $i_{\delta}c_{\eta}(A) = i_{\delta}(A \cup c_{u}i_{\delta}(A)) \supset i_{\delta}c_{u}i_{\delta}(A) = i_{\delta}c_{\delta}i_{\delta}(A)$.

Hence, $i_{\delta}c_{\eta}(A) = i_{\delta}c_{\delta}i_{\delta}(A)$.

- (f) The proof follows from 2.1(7) of [8].
- (g) The proof follows from Theorem 2.1(10) of [8].

 $(h) \ i_{\delta}i_{\psi}(A) = i_{\delta}(A \cap c_{u}i_{u}c_{\delta}(A)) \subset i_{\delta}(c_{\delta}(A) \cap i_{u}c_{\delta}(A)) = i_{\delta}(A). \ i_{\delta}i_{\psi}(A) = i_{\delta}(A \cap c_{u}i_{u}c_{\delta}(A)) \supset i_{\delta}(i_{\delta}(A) \cap i_{u}(A)) = i_{\delta}(A).$

Hence, $i_{\delta}i_{\psi}(A) = i_{\delta}(A)$.

- (i) The proof follows from (h).
- (j) $i_{\delta}c_{\psi}(A) = i_{\delta}(A \cup i_{\mu}c_{\mu}i_{\delta}(A)) \supset i_{\delta}i_{\mu}c_{\mu}i_{\delta}(A) = i_{\delta}i_{\delta}c_{\delta}i_{\delta}(A) = i_{\delta}c_{\delta}i_{\delta}(A)$. $i_{\delta}c_{\psi}(A)$ is a subset of $i_{\delta}c_{\eta}(A)$ and $i_{\delta}c_{\eta}(A) = i_{\delta}c_{\delta}i_{\delta}(A)$, by (e). Hence, $i_{\delta}c_{\psi}(A) = i_{\delta}c_{\delta}i_{\delta}(A)$.

Therefore, $i_{\delta}c_{\psi}(A) = i_{\delta}c_{\delta}i_{\delta}(A)$.

- (k) The proof follows from (j).
- (1) $i_{\delta}i_{\epsilon}(A) = i_{\delta}(i_{\epsilon}(A) \cup i_{\eta}(A)) \supset i_{\delta}i_{\epsilon}(A) \cup i_{\delta}c_{\eta}(A) = i_{\delta}(A) \cup i_{\delta}(A)$, by (a) and (e) and so $i_{\delta}i_{\epsilon}(A) = i_{\delta}(A)$.
- (m) The proof follows from (l).
- (n) $i_{\delta}c_{\epsilon}(A) = i_{\delta}(c_{\epsilon}(A) \cap c_{\eta}(A)) = i_{\delta}c_{\delta}(A) \cap i_{\delta}c_{\eta}(A) = i_{\delta}c_{\delta}(A) \cap i_{\delta}c_{\delta}i_{\delta}(A)$, by 2.1(10) of [8] and (e) and so $i_{\delta}c_{\epsilon}(A) = i_{\delta}c_{\delta}i_{\delta}(A)$.
- (o) The proof follows from (n).
- (p) $i_{\xi}i_{\eta}(A) = i_{\eta}(A) \cap c_{\mu}i_{\delta}i_{\eta}(A) = i_{\eta}(A) \cap c_{\mu}i_{\delta}(A)$, by (a), and so $i_{\xi}i_{\eta}(A) = (A \cap i_{\mu}c_{\delta}(A)) \cap c_{\mu}i_{\delta}(A) = (A \cap c_{\mu}i_{\delta}(A)) \cap (A \cap i_{\mu}c_{\delta}(A)) = i_{\xi}(A) \cap i_{\eta}(A)$.
- $(q) \ i_{\delta}c_{\nu}(A) = i_{\delta}(A \cup c_{\mu}i_{\mu}c_{\delta}(A)) \subset i_{\delta}(A \cup c_{\mu}c_{\delta}(A)) = i_{\delta}(A \cup c_{\delta}(A)) = i_{\delta}c_{\delta}(A). \ i_{\delta}c_{\nu}(A) = i_{\delta}(A \cup c_{\mu}i_{\mu}c_{\delta}(A)) \supset i_{\delta}(A \cup i_{\mu}c_{\delta}(A)) = i_{\delta}(A \cup i_{\delta}c_{\delta}(A)) = i_{\delta}(A \cup i_{$

Hence the proof follows.

$$(r) c_{\delta}c_{\nu}(A) = c_{\delta}(A \cup c_{\mu}i_{\mu}c_{\delta}(A)) \subset c_{\delta}(A \cup c_{\mu}c_{\delta}(A)) = c_{\delta}(A). \text{ Again, } c_{\delta}c_{\nu}(A) = c_{\delta}(A \cup c_{\mu}i_{\mu}c_{\delta}(A)) \supset c_{\delta}(A).$$

Hence, $c_{\delta}c_{\nu}(A) = c_{\delta}(A)$.

The following Theorem 2.2 gives the properties of the operators i_v and c_v .

Theorem: 2.2 Let (X,μ) be a quasi-topological space and A be a subset of X. Then the following hold.

```
\begin{array}{lll} (a) \ i_{\nu}i_{\xi}(A) = i_{\nu}(A). & (g) \ c_{\nu}i_{\xi}(A) = c_{\mu}i_{\delta}(A). \\ (b) \ i_{\nu}i_{\eta}(A) = i_{\nu}(A). & (h) \ c_{\nu}i_{\eta}(A) = c_{\mu}i_{\delta}(A). \\ (c) \ i_{\nu}i_{\psi}(A) = i_{\nu}(A). & (i) \ c_{\nu}i_{\psi}(A) = c_{\mu}i_{\mu}c_{\delta}(A). \\ (d) \ i_{\nu}c_{\xi}(A) = i_{\delta}c_{\delta}(A). & (j) \ c_{\nu}c_{\xi}(A) = c_{\nu}(A). \\ (e) \ i_{\nu}c_{\eta}(A) = i_{\delta}c_{\delta}(A). & (k) \ c_{\nu}c_{\eta}(A) = c_{\nu}(A). \\ (f) \ i_{\nu}c_{\psi}(A) = i_{\mu}c_{\mu}i_{\delta}(A). & (l) \ c_{\nu}c_{\psi}(A) = c_{\nu}(A). \end{array}
```

Proof.

- (a) $i_{\nu}i_{\xi}(A) = i_{\xi}(A) \cap i_{\mu}c_{\mu}i_{\delta}(i_{\xi}(A)) = i_{\xi}(A) \cap i_{\mu}c_{\mu}i_{\delta}(A)$, by Theorem2.1(f), and so $i_{\nu}i_{\xi}(A) = (A \cap c_{\mu}i_{\delta}(A)) \cap i_{\mu}c_{\mu}i_{\delta}(A) = A \cap i_{\mu}c_{\mu}i_{\delta}(A) = i_{\nu}(A)$.
- (b) $i_{\nu}i_{\eta}(A) = i_{\eta}(A) \cap i_{\mu}c_{\mu}i_{\delta}(i_{\eta}(A)) = i_{\eta}(A) \cap i_{\mu}c_{\mu}i_{\delta}(A)$, by Theorem 2.1(a) and so $i_{\nu}i_{\eta}(A) = (A \cap i_{\mu}c_{\delta}(A)) \cap i_{\mu}c_{\mu}i_{\delta}(A) = A \cap i_{\mu}c_{\mu}i_{\delta}(A) = i_{\nu}(A)$.
- (c) $i_{\nu}i_{\psi}(A) = i_{\psi}(A) \cap i_{\mu}c_{\mu}i_{\delta}(i_{\psi}(A)) = i_{\psi}(A) \cap i_{\mu}c_{\mu}i_{\delta}(A)$, by Theorem 2.1(h) and so $i_{\nu}i_{\psi}(A) = (A \cap c_{\mu}i_{\mu}c_{\delta}(A)) \cap i_{\mu}c_{\mu}i_{\delta}(A) = A \cap i_{\mu}c_{\mu}i_{\delta}(A) = i_{\nu}(A)$.
- (d) $i_{\nu}c_{\xi}(A) = c_{\xi}(A) \cap i_{\mu}c_{\mu}i_{\delta}(c_{\xi}(A)) = c_{\xi}(A) \cap i_{\mu}c_{\mu}i_{\delta}c_{\delta}(A)$, by Theorem 2.1(10) of [8] and so $i_{\nu}c_{\xi}(A) = c_{\xi}(A) \cap i_{\delta}c_{\delta}(A) = (A \cup i_{\mu}c_{\delta}(A)) \cap i_{\delta}c_{\delta}(A) = i_{\delta}c_{\delta}(A)$.
- (e) $i_{\nu}c_{\eta}(A) = c_{\eta}(A) \cap i_{\mu}c_{\mu}i_{\delta}(c_{\eta}(A)) = c_{\eta}(A) \cap i_{\mu}c_{\mu}i_{\delta}c_{\delta}i_{\delta}(A)$, by Theorem 2.1(e) and so $i_{\nu}c_{\eta}(A) = (A \cup c_{\mu}i_{\delta}(A)) \cap i_{\delta}c_{\delta}i_{\delta}(A) = i_{\delta}c_{\delta}i_{\delta}(A)$.
- (f) $i_{\nu}c_{\psi}(A) = c_{\psi}(A) \cap i_{\mu}c_{\mu}i_{\delta}(c_{\psi}(A)) = c_{\psi}(A) \cap i_{\mu}c_{\mu}i_{\delta}c_{\delta}i_{\delta}(A)$, by Theorem 2.1(j) and so $i_{\nu}c_{\psi}(A) = (A \cup i_{\mu}c_{\mu}i_{\delta}(A)) \cap i_{\delta}c_{\delta}i_{\delta}(A) = i_{\delta}c_{\delta}i_{\delta}(A)$.
- (g) $c_v i_{\epsilon}(A) = i_{\epsilon}(A) \cup c_u i_u c_{\delta}(i_{\epsilon}(A)) = i_{\epsilon}(A) \cup c_u i_u c_{\delta} i_{\delta}(A)$, by Theorem 2.1(g) and so $c_v i_{\epsilon}(A) = (A \cap c_u i_{\delta}(A)) \cup c_{\delta} i_{\delta}(A) = c_{\delta} i_{\delta}(A)$.

- (h) The proof follows from (e).
- (i) The proof follows from (f).
- (j) The proof follows from (a).
- (k) The proof follows from (b).
- (1) The proof follows from (c).

Theorem: 2.3 Let (X,μ) be a quasi-topological space and A be a subset of X. Then the following hold.

```
(a) c_{\delta}c_{\nu}(A) = c_{\nu}c_{\delta}(A) = c_{\delta}(A).
```

(g) $c_n c_{\xi}(A) = c_{\nu}(A)$.

(b) $i_{\delta}i_{\nu}(A) = i_{\nu}i_{\delta}(A) = i_{\delta}(A)$.

(h) $c_n i_{\varepsilon}(A) = i_{\varepsilon}(A) \cup c_n i_{\delta}(i_{\varepsilon}(A)) = c_n(A) \cap c_n i_{\delta}(A)$.

(c) $c_{\nu}i_{\delta}(A) = c_{\delta}i_{\nu}(A) = c_{\delta}i_{\delta}(A)$.

(i) $i_n c_{\xi}(A) = c_{\xi}(A) \cap i_{\mu} c_{\delta}(c_{\xi}(A)) = i_n(A) \cup i_{\mu} c_{\delta}(A)$.

(d) $i_{\nu}c_{\delta}(A) = i_{\delta}c_{\nu}(A) = i_{\delta}c_{\delta}(A)$.

(j) $i_{\xi}i_{\eta}(A) = i_{\eta}(A) \cap c_{\mu}i_{\delta}(A)$.

(e) $i_{\mathsf{w}}i_{\delta}(A) = i_{\delta}i_{\mathsf{w}}(A) = i_{\delta}(A)$.

(f) $i_{\eta}i_{\xi}(A) = i_{\nu}(A)$.

(k) $c_{\xi}c_{\eta}(A) = c_{\eta}(A) \cup i_{u}c_{\delta}(A)$.

Proof:

(a) $c_{\delta}c_{\nu}(A) = c_{\delta}(A)$, by Theorem 2.1(r).

Again, $c_{\nu}c_{\delta}(A) = c_{\delta}(A) \cup c_{\mu}i_{\mu}c_{\delta}(c_{\delta}(A)) = c_{\delta}(A)$.

- (b) The proof follows from (a).
- $(c) c_{v}i_{\delta}(A) = i_{\delta}(A) \cup c_{u}i_{u}c_{\delta}(i_{\delta}(A)) = i_{\delta}(A) \cup c_{\delta}i_{\delta}(A) = c_{\delta}i_{\delta}(A) = c_{\delta}i_{\delta}(A). \text{ Also, } c_{\delta}i_{v}(A) = c_{\delta}(A \cap i_{u}c_{u}i_{\delta}(A)) \subset c_{\delta}(c_{\delta}(A) \cap c_{\delta}i_{\delta}(A)) = c_{\delta}i_{\delta}(A).$

Again, $c_{\delta}i_{\nu}(A) = c_{\delta}(A \cap i_{\mu}c_{\mu}i_{\delta}(A)) \supset c_{\delta}(A \cap i_{\mu}i_{\delta}(A)) = c_{\delta}i_{\delta}(A)$.

- (d) The proof follows from (c).
- (e) $i_{\psi}i_{\delta}(A) = i_{\delta}(A) \cap c_{\mu}i_{\mu}c_{\delta}(i_{\delta}(A)) = i_{\delta}(A) \cap c_{\delta}i_{\delta}(A) = i_{\delta}(A)$.

Again, $i_{\delta}i_{\psi}(A) = i_{\delta}(A \cap c_{\mu}i_{\mu}c_{\delta}(A)) \subset i_{\delta}(A)$. Also, $i_{\delta}i_{\psi}(A) \supset i_{\delta}(A \cap i_{\mu}c_{\delta}(A)) \supset i_{\delta}(i_{\delta}(A) \cap i_{\mu}c_{\delta}(A)) = i_{\delta}(A)$.

Hence, $i_{\psi}i_{\delta}(A) = i_{\delta}i_{\psi}(A) = i_{\delta}(A)$.

(f) $i_n i_{\xi}(A) = i_{\xi}(A) \cap i_{\mu} c_{\delta}(i_{\xi}(A)) = i_{\xi}(A) \cap i_{\mu} c_{\delta} i_{\delta}(A)$,

by Theorem 2.1(g) and so $i_{\eta}i_{\xi}(A) = (A \cap c_{\mu}i_{\delta}(A)) \cap i_{\mu}c_{\delta}i_{\delta}(A) = A \cap i_{\mu}c_{\mu}i_{\delta}(A) = i_{\nu}(A)$.

- (g) The proof follows from (f).
- (h) $c_{\eta}(i_{\xi}(A)) = i_{\xi}(A) \cup c_{u}i_{\delta}(i_{\xi}(A)) = i_{\xi}(A) \cup c_{u}i_{\delta}(A)$, by Theorem 2.1(f) and so $c_{\eta}(i_{\xi}(A)) = (A \cap c_{u}i_{\delta}(A)) \cup c_{u}i_{\delta}(A) = (A \cap c_{u}i_{\delta}(A)) \cup c_{u}i_{\delta}(A)$ $(A \cup c_{\mu}i_{\delta}(A)) \cap c_{\mu}i_{\delta}(A) = c_{\eta}(A) \cap c_{\mu}i_{\delta}(A).$
- (i) The proof follows from (h).
- (j) $i_{\xi}i_{\eta}(A) = i_{\eta}(A) \cap c_{\mu}i_{\delta}(i_{\eta}(A)) = i_{\eta}(A) \cap c_{\mu}i_{\delta}(A)$, by Theorem 2.1(a).
- (k) The proof follows from (j).

Theorem: 2.4 Let (X,μ) be a quasi-topological space and A be a subset of X. Then the following hold.

(a) $i_{\nu}c_{\nu}(A) = i_{\eta}(A) \cup i_{\delta}c_{\delta}(A)$.

(d) $A \cap i_{\nu}c_{\nu}(A) = c_{\nu}(A) \cup i_{\eta}(A) = i_{\eta}(A)$.

(b) $c_{\nu}i_{\nu}(A) = c_{\eta}(A) \cap c_{\mu}i_{\delta}(A)$.

(e) $A \cap c_{\nu}i_{\nu}(A) = i_{\xi}(A) \cap c_{\eta}(A) = i_{\xi}(A)$.

(c) $A \cup c_{\nu} i_{\nu}(A) = c_{\eta}(A)$.

(f) $A \cup i_{\nu} c_{\nu}(A) = c_{\xi}(A) \cup i_{\eta}(A) = c_{\xi}(A)$.

- (a) $i_{\nu}c_{\nu}(A) = c_{\nu}(A) \cap i_{\mu}c_{\mu}i_{\delta}(c_{\nu}(A)) = c_{\nu}(A) \cap i_{\mu}c_{\mu}i_{\delta}c_{\delta}(A)$,
- by Theorem 2.1(q) and so $i_{\nu}c_{\nu}(A) = (A \cup c_{\mu}i_{\mu}c_{\delta}(A)) \cap i_{\delta}c_{\delta}(A) = (A \cap i_{\delta}c_{\delta}(A)) \cup (c_{\mu}i_{\mu}c_{\delta}(A) \cap i_{\delta}c_{\delta}(A))$
 - $= (A \cap i_{\mu}c_{\delta}(A)) \cup i_{\delta}c_{\delta}(A) = i_{\eta}(A) \cup i_{\delta}c_{\delta}(A) = i_{\eta}(A) \cup i_{\mu}c_{\delta}(A).$
- (b) The proof follows from (a).

- (c) $A \cup c_{\nu}i_{\nu}(A) = A \cup (c_{\eta}(A) \cap c_{\mu}i_{\delta}(A))$, by (b) and so $A \cup c_{\nu}i_{\nu}(A) = (A \cup c_{\eta}(A)) \cap (A \cup c_{\mu}i_{\delta}(A)) = c_{\eta}(A) \cap c_{\eta}(A) = c_{\eta}(A)$.
- (d) The proof follows from (c).
- (e) $A \cap c_{v}i_{v}(A) = A \cap (c_{\eta}(A) \cap c_{\mu}i_{\delta}(A))$, by (b) and so $A \cap c_{v}i_{v}(A) = (A \cap c_{\mu}i_{\delta}(A)) \cap c_{\eta}(A) = i_{\xi}(A) \cap c_{\eta}(A) = i_{\xi}(A)$.
- (f) The proof follows from (e).

Theorem: 2.5 Let (X,μ) be a quasi-topological space and A be a subset of X. Then the following hold.

(a) $i_{\xi}c_{\nu}(A) = c_{\nu}(A) \cap c_{\mu}i_{\mu}c_{\delta}(A)$.

(d) $i_{\xi}i_{\nu}(A) = i_{\nu}(A) \cap i_{\xi}(A)$.

(b) $c_{\xi}i_{\nu}(A) = i_{\nu}(A) \cup i_{\mu}c_{\mu}i_{\delta}(A)$.

(e) $i_{\xi}i_{\psi}(A) = i_{\xi}(A)$.

(c) $c_{\varepsilon}c_{\nu}(A) = c_{\nu}(A) \cup c_{\varepsilon}(A)$.

(f) $c_{\xi}c_{\psi}(A) = c_{\psi}(A)$.

Proof:

- (a) $i_{\xi}c_{\nu}(A) = c_{\nu}(A) \cap c_{\mu}i_{\delta}(c_{\nu}(A)) = c_{\nu}(A) \cap c_{\mu}i_{\delta}c_{\delta}(A)$, by Theorem 2.1(q) and so $i_{\xi}c_{\nu}(A) = c_{\nu}(A) \cap c_{\mu}i_{\mu}c_{\delta}(A)$.
- (b) The proof follows from (a).
- (c) $c_{\xi}c_{\nu}(A) = c_{\nu}(A) \cup i_{u}c_{\delta}(c_{\nu}(A)) = c_{\nu}(A) \cup i_{u}c_{\delta}(A)$, by Theorem 2.1(r) and so $c_{\xi}c_{\nu}(A) = c_{\nu}(A) \cup (A \cup i_{u}c_{\delta}(A)) = c_{\nu}(A) \cup c_{\xi}(A)$.
- (d) The proof follows from (c).
- (e) $i_{\xi}i_{\psi}(A) = i_{\psi}(A) \cap c_{\mu}i_{\delta}(i_{\psi}(A)) = i_{\psi}(A) \cap c_{\mu}i_{\delta}(A)$, by Theorem 2.1(h) and so $i_{\xi}i_{\psi}(A) = (A \cap c_{\mu}i_{\mu}c_{\delta}(A)) \cap c_{\mu}i_{\delta}(A) = A \cap c_{\mu}i_{\delta}(A) = i_{\xi}(A)$.
- (f) The proof follows from (e).

Theorem: 2.6 Let (X, μ) be a quasi-topological space and A be a subset of X. Then the following hold.

(a) $i_n c_v(A) = c_v(A) \cap i_u c_\delta(A)$.

(e) $i_n i_v(A) = i_v(A)$.

(b) $c_n i_v(A) = i_v(A) \cup c_u i_\delta(A)$.

(f) $c_{\eta}c_{\nu}(A) = c_{\nu}(A)$.

(c) $i_{\eta}i_{\psi}(A) = i_{\eta}(A)$.

(g) $i_{\varepsilon}i_{\nu}(A) = i_{\nu}(A)$.

(d) $c_{\eta}c_{\psi}(A) = c_{\eta}(A)$.

(h) $c_{\varepsilon}c_{\nu}(A) = c_{\nu}(A)$.

Proof

- (a) $i_{\eta}c_{\nu}(A) = c_{\nu}(A) \cap i_{\mu}c_{\delta}(c_{\nu}(A)) = c_{\nu}(A) \cap i_{\mu}c_{\delta}(A)$, by Theorem 2.1(r).
- (b) The proof follows from (a).
- (c) $i_{\eta}i_{\psi}(A) = i_{\psi}(A) \cap i_{\mu}c_{\delta}(i_{\psi}(A)) = (A \cap c_{\mu}i_{\mu}c_{\delta}(A)) \cap i_{\mu}c_{\delta}i_{\delta}c_{\delta}(A)$, by Theorem 2.1(k) and so $i_{\eta}i_{\psi}(A) = (A \cap c_{\mu}i_{\mu}c_{\delta}(A)) \cap i_{\delta}c_{\delta}(A) = A \cap i_{\delta}c_{\delta}(A) = i_{\eta}(A)$.
- (d) The proof follows from (c).
- (e) $i_{\eta}i_{\nu}(A) = i_{\nu}(A) \cap i_{\mu}c_{\delta}i_{\nu}(A) = i_{\nu}(A) \cap i_{\mu}c_{\delta}i_{\delta}(A)$, by Theorem 2.3(c) and so $i_{\eta}i_{\nu}(A) = (A \cap i_{\mu}c_{\mu}i_{\delta}(A)) \cap i_{\mu}c_{\mu}i_{\delta}(A) = A \cap i_{\mu}c_{\mu}i_{\delta}(A) = i_{\nu}(A)$.
- (f) The proof follows from (e).
- (g) $i_{\varepsilon}i_{\nu}(A) = i_{\xi}i_{\nu}(A) \cup i_{\eta}i_{\nu}(A) = (i_{\nu}(A) \cap c_{u}i_{\delta}i_{\nu}(A)) \cup i_{\nu}(A)$, by (e) and so $i_{\varepsilon}i_{\nu}(A) = i_{\nu}(A)$.
- (h) The proof follows from (g).

Theorem: 2.7 Let (X,μ) be a quasi-topological space and A be a subset of X. Then the following hold.

- (a) $i_{\psi}c_{\nu}(A) = c_{\nu}(A) \cap c_{\mu}i_{\mu}c_{\delta}(A) = c_{\mu}i_{\mu}c_{\delta}(A)$.
- (b) $c_{\psi}i_{\nu}(A) = i_{\mu}c_{\mu}i_{\delta}(A)$.

Proof: (a) $i_{\psi}c_{\nu}(A) = c_{\nu}(A) \cap c_{\mu}i_{\mu}c_{\delta}(c_{\nu}(A)) = c_{\nu}(A) \cap c_{\mu}i_{\mu}c_{\delta}(A)$, by Theorem 2.1(r) and so $i_{\psi}c_{\nu}(A) = (A \cup c_{\mu}i_{\mu}c_{\delta}(A)) \cap c_{\mu}i_{\mu}c_{\delta}(A) = c_{\mu}i_{\mu}c_{\delta}(A)$.

(b) The proof follows from (a).

Theorem: 2.8 Let (X,μ) be a quasi-topological space and A be a subset of X. Then the following hold.

(a) $i_{\delta}i_{\varepsilon}(A) = i_{\varepsilon}i_{\delta}(A) = i_{\delta}(A)$.

(b) $c_{\delta}c_{\varepsilon}(A) = c_{\varepsilon}c_{\delta}(A) = c_{\delta}(A)$.

(c) $i_{\varepsilon}i_{\varepsilon}(A) = i_{\varepsilon}i_{\varepsilon}(A) = i_{\varepsilon}(A)$. (n) $i_{\nu}i_{\varepsilon}(A) = i_{\varepsilon}(A) \cap i_{\mu}c_{\mu}i_{\delta}(A)$. (d) $c_{\xi}c_{\varepsilon}(A) = c_{\varepsilon}c_{\xi}(A) = c_{\xi}(A)$. (o) $c_{\varepsilon}c_{\varepsilon}(A) = c_{\varepsilon}(A) \cup i_{u}c_{\delta}(A)$. (e) $i_{\nu}i_{\varepsilon}(A) = i_{\varepsilon}i_{\nu}(A) = i_{\nu}(A)$. (p) $i_{\varepsilon}i_{\varepsilon}(A) = i_{\varepsilon}(A) \cap c_{\mu}i_{\delta}(A)$. (f) $c_v c_\varepsilon(A) = c_\varepsilon c_v(A) = c_v(A)$. (q) $c_{\eta}c_{\varepsilon}(A) = c_{\varepsilon}(A) \cup c_{\delta}i_{\delta}(A)$. (g) $i_{\varepsilon}i_{\psi}(A) = i_{\psi}i_{\varepsilon}(A) = i_{\varepsilon}(A)$. (r) $i_{\eta}i_{\varepsilon}(A) = i_{\varepsilon}(A) \cap i_{\delta}c_{\delta}(A)$. (h) $c_{\varepsilon}c_{\psi}(A) = c_{\psi}c_{\varepsilon}(A) = c_{\varepsilon}(A)$. (s) $c_{\psi}c_{\varepsilon}(A) = c_{\varepsilon}(A) \cup i_{\mu}c_{\delta}i_{\delta}(A)$. (i) $i_{\varepsilon}c_{\nu}(A) = c_{\mu}i_{\mu}c_{\delta}(A)$. (t) $i_{\psi}i_{\varepsilon}(A) = i_{\varepsilon}(A) \cap c_{\mu}i_{\delta}c_{\delta}(A)$. (j) $c_{\varepsilon}i_{\nu}(A) = i_{\mu}c_{\mu}i_{\delta}(A)$. (u) $i_{\eta}i_{\varepsilon}(A) = i_{\varepsilon}i_{\eta}(A) = i_{\eta}(A)$. (k) $c_{\nu}i_{\varepsilon}(A) = i_{\varepsilon}(A) \cup c_{\delta}i_{\delta}(A)$. (v) $c_{\eta}c_{\varepsilon}(A) = c_{\varepsilon}c_{\eta}(A) = c_{\eta}(A)$. (1) $i_{\nu}c_{\varepsilon}(A) = c_{\varepsilon}(A) \cap i_{\delta}c_{\delta}(A)$. (m) $c_{\nu}c_{\varepsilon}(A) = c_{\varepsilon}(A) \cup c_{\mu}i_{\mu}c_{\delta}(A)$.

Proof:

(a) $i_{\delta}i_{\epsilon}(A) = i_{\delta}(A)$, by Theorem 2.1(1). Again, $i_{\epsilon}i_{\delta}(A) = i_{\xi}i_{\delta}(A) \cup i_{\eta}i_{\delta}(A) = (i_{\delta}(A) \cap c_{\mu}i_{\delta}(i_{\delta}(A)) \cup (i_{\delta}(A) \cap i_{\mu}c_{\delta}(i_{\delta}(A))) = i_{\delta}(A) \cup i_{\delta}(A) = i_{\delta}(A)$.

Hence, $i_{\delta}i_{\varepsilon}(A) = i_{\varepsilon}i_{\delta}(A) = i_{\delta}(A)$.

- (b) The proof follows from (a).
- (c) $i_{\xi}i_{\varepsilon}(A) = i_{\xi}(i_{\xi}(A) \cup i_{\eta}(A)) \supset i_{\xi}(i_{\xi}(A)) \cup i_{\xi}(i_{\eta}(A)) = i_{\xi}(A) \cup (i_{\xi}(A) \cap i_{\eta}(A)) = i_{\xi}(A)$.

Clearly, $i_{\xi}(i_{\xi}(A)) \subset i_{\xi}(A)$. Hence, $i_{\xi}i_{\xi}(A) = i_{\xi}(A)$.

 $Again, \ i_{\epsilon}i_{\xi}(A)=i_{\xi}(i_{\xi}(A))) \cup i_{\eta}(i_{\xi}(A)))=i_{\xi}(A)) \cup i_{\nu}(A)), \ by \ Theorem \ 2.3(f) \ and \ so \ i_{\epsilon}i_{\xi}(A)=i_{\xi}(A)). \ Hence, \ the \ proof follows.$

- (d) The proof follows from (c).
- (e) $i_{\nu}i_{\epsilon}(A))=i_{\epsilon}(A)\cap i_{\mu}c_{\mu}i_{\delta}(i_{\epsilon}(A)))=i_{\epsilon}(A)\cap i_{\mu}c_{\mu}i_{\delta}(A))$, by Theorem 2.1(l) and so $i_{\nu}i_{\epsilon}(A)=(i_{\xi}(A))\cup i_{\eta}(A))\cap i_{\mu}c_{\mu}i_{\delta}(A)=((A\cap c_{\mu}i_{\delta}(A))\cup (A\cap i_{\mu}c_{\delta}(A))\cap i_{\mu}c_{\mu}i_{\delta}(A)=A\cap i_{\mu}c_{\mu}i_{\delta}(A)=i_{\nu}(A)$.

Again, $i_{\varepsilon}i_{v}(A) = i_{\varepsilon}i_{v}(A) \cup i_{\eta}i_{v}(A) = (i_{v}(A) \cap i_{\varepsilon}(A)) \cup i_{v}(A)$, by Theorems 2.5(d) and 2.6(e) and so $i_{\varepsilon}i_{v}(A) = i_{v}(A) \cup i_{v}(A) = i_{v}(A)$.

- (f) The proof follows from (e).
- (g) $i_{\epsilon}i_{\psi}(A) = i_{\xi}i_{\psi}(A) \cup i_{\eta}i_{\psi}(A) = i_{\xi}(A) \cup i_{\eta}(A) = i_{\epsilon}(A)$, by Theorem 2.5(e) and Theorem 2.6(c). Also, $i_{\psi}i_{\epsilon}(A) = i_{\psi}(i_{\xi}(A) \cup i_{\eta}(A)) = i_{\psi}(i_{\xi}(A)) \cup i_{\psi}(i_{\eta}(A)) = i_{\xi}(A) \cup i_{\eta}(A)$, and so $i_{\psi}i_{\epsilon}(A) = i_{\epsilon}(A)$.
- (h) The proof follows from (g).
- (i) $i_{\varepsilon}c_{\nu}(A) = i_{\xi}c_{\nu}(A) \cup i_{\eta}c_{\nu}(A) = (c_{\nu}(A)\cap c_{\mu}i_{\delta}(c_{\nu}(A)) \cup (c_{\nu}(A)\cap i_{\mu}c_{\delta}(c_{\nu}(A))) = c_{\nu}(A)\cap (c_{\mu}i_{\delta}c_{\nu}(A) \cup i_{\mu}c_{\delta}(c_{\nu}(A)) = c_{\nu}(A)\cap (c_{\mu}i_{\delta}c_{\delta}(A) \cup i_{\mu}c_{\delta}(c_{\nu}(A))) = c_{\nu}(A)\cap (c_{\mu}i_{\delta}c_{\delta}(A) \cup i_{\mu}c_{\delta}(A))$, by Theorem 2.1(q) and (r) and so $i_{\varepsilon}c_{\nu}(A) = c_{\nu}(A)\cap c_{\mu}i_{\mu}c_{\delta}(A) = (A\cup c_{\mu}i_{\mu}c_{\delta}(A))\cap c_{\mu}i_{\mu}c_{\delta}(A) = c_{\mu}i_{\mu}c_{\delta}(A)$.
- (i) The proof follows from (i).
- (k) $c_{\nu}i_{\varepsilon}(A) = i_{\varepsilon}(A) \cup c_{\mu}i_{\mu}c_{\delta}(i_{\varepsilon}(A)) = i_{\varepsilon}(A) \cup c_{\mu}i_{\mu}(c_{\delta}i_{\delta}c_{\delta}(A))$, by Theorem 2.1(o) and so $c_{\nu}i_{\varepsilon}(A) = i_{\varepsilon}(A) \cup c_{\delta}i_{\delta}c_{\delta}(A)$.
- (l) The proof follows from (k).
- (m) $c_{\nu}c_{\varepsilon}(A) = c_{\varepsilon}(A) \cup c_{\mu}i_{\mu}c_{\delta}(c_{\varepsilon}(A)) = c_{\varepsilon}(A) \cup c_{\mu}i_{\mu}c_{\delta}(A)$, by Theorem 2.1(m).
- (n) The proof follows from (m).
- (o) $c_{\varepsilon}c_{\varepsilon}(A) = c_{\varepsilon}(A) \cup i_{u}c_{\delta}(c_{\varepsilon}(A)) = c_{\varepsilon}(A) \cup i_{u}c_{\delta}(A)$, by Theorem 2.1(m).
- (p) The proof follows from (o).
- (q) $c_{\eta}c_{\varepsilon}(A) = c_{\varepsilon}(A) \cup c_{u}i_{\delta}c_{\varepsilon}(A) = c_{\varepsilon}(A) \cup c_{u}i_{\delta}c_{\delta}i_{\delta}(A)$, by Theorem 2.1(n) and so $c_{\eta}c_{\varepsilon}(A) = c_{\varepsilon}(A) \cup c_{\delta}i_{\delta}(A)$.
- (r) The proof follows from (q).
- $(s) \ c_{\psi}c_{\epsilon}(A) = c_{\epsilon}(A) \cup i_{\mu}c_{\mu}i_{\delta}c_{\epsilon}(A) = c_{\epsilon}(A) \cup i_{\mu}c_{\mu}i_{\delta}c_{\delta}i_{\delta}(A), \ by \ Theorem \ 2.1(n) \ and \ so \ c_{\psi}c_{\epsilon}(A) = c_{\epsilon}(A) \cup i_{\mu}c_{\delta}i_{\delta}(A).$
- (t) The proof follows from (s).

(u) $i_{\eta}i_{\epsilon}(A) = i_{\eta}(i_{\xi}(A) \cup i_{\eta}(A)) \supset i_{\eta}(i_{\xi}(A)) \cup i_{\eta}(i_{\eta}(A)) = i_{\nu}(A) \cup i_{\eta}(A)$, by Theorem 2.3(f) and so $i_{\eta}i_{\epsilon}(A) \supset i_{\eta}(A)$. Clearly, $i_{\eta}i_{\epsilon}(A) \subset i_{\eta}(A)$.

Hence $i_{\eta}i_{\varepsilon}(A) = i_{\eta}(A)$.

(v) The proof follows from (u).

Theorem: 2.9 Let (X, μ) be a quasi-topological space and A be a subset of X. Then the following hold.

- (a) $c_{\xi}i_{\xi}(A) = (A \cap c_{\mu}i_{\delta}(A)) \cup i_{\mu}c_{\delta}i_{\delta}(A)$.
- (b) $i_{\xi}c_{\xi}(A) = (A \cup i_{\mu}c_{\delta}(A)) \cap c_{\mu}i_{\delta}c_{\delta}(A)$.

Proof:

- (a) $c_{\xi}i_{\xi}(A) = i_{\xi}(A) \cup i_{\mu}c_{\delta}(i_{\xi}(A)) = (A \cap c_{\mu}i_{\delta}(A)) \cup i_{\mu}c_{\delta}i_{\delta}(A)$, by Theorem 2.1(g).
- (b) The proof follows from (a).

Theorem: 2.10 Let (X,μ) be a quasi-topological space and A be a subset of X. Then the following hold.

```
(k) i_n c_n(A) \subset i_{\xi} c_{\xi}(A).
(a) c_{\psi}i_{\psi}(A) = i_{\psi}c_{\psi}(A) = (A \cup i_{\delta}c_{\delta}i_{\delta}(A)) \cap c_{\delta}i_{\delta}c_{\delta}(A).
(b) c_{\eta}i_{\eta}(A) = i_{\eta}(A) \cup c_{u}i_{\delta}(A) = c_{\eta}(A) \cap (i_{u}c_{\delta}(A)) \cup c_{u}i_{\delta}(A)).
                                                                                                                                                    (1) i_{\xi}c_{\xi}(A) = c_{\xi}(A) \cap c_{\mu}i_{\mu}c_{\delta}(A).
                                                                                                                                                    (m) c_{\xi}i_{\xi}(A) \subset c_{\eta}i_{\eta}(A).
(c) i_n c_n(A) = c_n(A) \cap i_u c_\delta(A) = (A \cup c_u i_\delta(A)) \cap i_u c_\delta(A).
                                                                                                                                                    (n) c_{\eta}(i_{\delta}(A)) = c_{\mu}i_{\delta}(A).
(d) A \cup c_n i_n(A) = c_n(A).
                                                                                                                                                    (o) c_{\psi}i_{\delta}(A) = i_{\delta}c_{\psi}(A) = i_{\delta}c_{\delta}i_{\delta}(A) = i_{\mu}c_{\mu}i_{\delta}(A).
(e) A \cap c_n i_n(A) = i_n(A) \cup i_{\varepsilon}(A).
                                                                                                                                                    (p) c_{\xi}i_{\delta}(A) = i_{\mu}c_{\mu}i_{\delta}(A).
(f) A \cup i_n c_n(A) = c_n(A) \cap c_{\xi}(A).
                                                                                                                                                    (q) i_{\xi}c_{\delta}(A) = c_{\mu}i_{\mu}c_{\delta}(A).
(g) A \cap i_{\eta} c_{\eta}(A) = i_{\eta}(A).
                                                                                                                                                    (r) i_{\psi}(c_{\delta}(A)) = c_{\mu}i_{\mu}c_{\delta}(A).
(h) i_{\eta}c_{\eta}(A) \subset c_{\eta}i_{\eta}(A) and so i_{\eta}c_{\eta}(A) \cup c_{\eta}i_{\eta}(A) = c_{\eta}i_{\eta}(A).
                                                                                                                                                    (s) c_{\xi}(i_{\xi}(A)) \subset i_{\psi}(c_{\psi}(A)) \subset i_{\xi}c_{\xi}(A).
(i) c_{\eta}i_{\eta}c_{\eta}(A) = c_{\eta}i_{\eta}(A).
```

Proof:

(j) $i_{\eta}c_{\eta}i_{\eta}(A) = i_{\eta}c_{\eta}(A)$.

- (a) $i_{\psi}c_{\psi}(A) = c_{\psi}(A) \cap c_{\mu}i_{\mu}c_{\delta}(c_{\psi}(A)) = (A \cup i_{\mu}c_{\mu}i_{\delta}(A)) \cap c_{\mu}i_{\mu}c_{\delta}(A)$, by Theorem 2.1(i) and so $i_{\psi}c_{\psi}(A) = (A \cap c_{\mu}i_{\mu}c_{\delta}(A)) \cup i_{\mu}c_{\mu}i_{\delta}(A)$ = $(A \cap c_{\mu}i_{\mu}c_{\delta}(A)) \cup i_{\mu}c_{\mu}i_{\delta}i_{\psi}(A)$, by Theorem 2.1(h) and so $i_{\psi}c_{\psi}(A) = i_{\psi}(A) \cup i_{\mu}c_{\mu}i_{\delta}(i_{\psi}(A)) = c_{\psi}(i_{\psi}(A))$.
- (b) $c_{\eta}i_{\eta}(A) = i_{\eta}(A) \cup c_{\mu}i_{\delta}(i_{\eta}(A)) = i_{\eta}(A) \cup c_{\mu}i_{\delta}(A)$, by Theorem 2.1(a). Again, $(c_{\eta}(A) \cap (i_{\mu}c_{\delta}(A) \cup c_{\mu}i_{\delta}(A)) = (A \cup c_{\mu}i_{\delta}(A)) \cap (i_{\mu}c_{\delta}(A) \cup c_{\mu}i_{\delta}(A)) = c_{\mu}i_{\delta}(A) \cup (A \cap i_{\mu}c_{\delta}(A)) = i_{\eta}(A) \cup c_{\mu}i_{\delta}(A)$.
- $(c) \ i_\eta c_\eta(A) = c_\eta(A) \cap i_\mu c_\delta c_\eta(A) = c_\eta(A) \cap i_\mu c_\delta(A), \text{ by Theorem 2.1(b) and so } i_\eta c_\eta(A) = (A \cup c_u i_\delta(A)) \cap i_\mu c_\delta(A).$
- (d) $A \cup c_{\eta} i_{\eta}(A) = A \cup (i_{\eta}(A) \cup c_{\mu} i_{\delta}(i_{\eta}(A))) = A \cup (i_{\eta}(A) \cup c_{\mu} i_{\delta}(A))$, by Theorem2.1(a) and so $A \cup c_{\eta} i_{\eta}(A) = (A \cup c_{\mu} i_{\delta}(A)) \cup i_{\eta}(A) = c_{\eta}(A) \cup i_{\eta}(A) = c_{\eta}(A)$.
- (e) $A \cap c_{\eta}i_{\eta}(A) = A \cap (i_{\eta}(A) \cup c_{\mu}i_{\delta}(i_{\eta}(A))) = (A \cap i_{\eta}(A)) \cup c_{\mu}i_{\delta}(A)$, by Theorem 2.1(a) and so $A \cap c_{\eta}i_{\eta}(A) = i_{\eta}(A) \cup (A \cap c_{\mu}i_{\delta}(A)) = i_{\eta}(A) \cup i_{\xi}(A)$.
- (f) The proof follows from (e).
- (g) The proof follows from (d).
- (h) By (c), $i_{\eta}c_{\eta}(A) = c_{\eta}(A) \cap i_{\mu}c_{\delta}(A) = (A \cup c_{\mu}i_{\delta}(A)) \cap i_{\mu}c_{\delta}(A) = (A \cap i_{\mu}c_{\delta}(A)) \cup (c_{\mu}i_{\delta}(A) \cap i_{\mu}c_{\delta}(A)) \subset i_{\eta}(A) \cup c_{\mu}i_{\delta}(A) = c_{\eta}(i_{\eta}(A)),$ by (b).

Hence, $i_{\eta}c_{\eta}(A) \cup c_{\eta}i_{\eta}(A) = c_{\eta} i_{\eta}(A)$.

 $(i) \ c_\eta i_\eta(c_\eta(A)) \subset c_\eta(c_\eta(i_\eta(A))), \ by \ (h) \ and \ so \ c_\eta i_\eta(c_\eta(A)) \subset c_\eta(i_\eta(A)). \ Clearly, \ c_\eta(i_\eta(A)) \subset c_\eta i_\eta(c_\eta(A)).$

Hence, the proof follows.

- (i) The proof follows from (i).
- (k) $i_{\eta}(c_{\eta}(A)) = (A \cap i_{\mu}c_{\delta}(A)) \cup (c_{\mu}i_{\delta}(A) \cap i_{\mu}c_{\delta}(A)) \subset (A \cap c_{\mu}i_{\mu}c_{\delta}(A)) \cup i_{\mu}c_{\delta}(A) = (A \cup i_{\mu}c_{\delta}(A)) \cap c_{\mu}i_{\mu}c_{\delta}(A) = i_{\xi}c_{\xi}(A)$, by Theorem 2.9 (b).
- (1) $i_{\xi}c_{\xi}(A) = c_{\xi}(A) \cap c_{\mu}i_{\delta}(c_{\xi}(A)) = c_{\xi}(A) \cap c_{\mu}i_{\delta}c_{\delta}(A)$, by 2.1(10) of [8].

- (m) By (b), $c_{\eta}(i_{\eta}(A) = c_{\eta}(A) \cap (i_{\mu}c_{\delta}(A) \cup c_{\mu}i_{\delta}(A)) = (A \cup c_{\mu}i_{\delta}(A)) \cap (i_{\mu}c_{\delta}(A) \cup c_{\mu}i_{\delta}(A)) \supset (A \cup i_{\mu}c_{\mu}i_{\delta}(A)) \cap c_{\mu}i_{\delta}(A) = (A \cap c_{\mu}i_{\delta}(A)) \cup i_{\mu}c_{\mu}i_{\delta}(A) = c_{\xi}i_{\xi}(A)$, by Theorem 2.9(a).
- $(n) c_{\eta}(i_{\delta}(A)) = i_{\delta}(A) \cup c_{\mu}i_{\delta}(i_{\delta}(A)) = i_{\delta}(A) \cup c_{\mu}i_{\delta}(A) = c_{\mu}i_{\delta}(A).$
- (o) $c_{\psi}i_{\delta}(A) = i_{\delta}(A) \cup i_{\mu}c_{\mu}i_{\delta}(i_{\delta}(A)) = i_{\mu}c_{\mu}i_{\delta}(A) = i_{\delta}c_{\delta}i_{\delta}(A)$. Again, $i_{\delta}(c_{\psi}(A)) = i_{\delta}(A \cup i_{\mu}c_{\mu}i_{\delta}(A)) \supset i_{\delta}(i_{\mu}c_{\mu}i_{\delta}(A)) = i_{\delta}(i_{\delta}c_{\delta}i_{\delta}(A)) \supset i_{\delta}c_{\delta}i_{\delta}(A)$.

Again, $i_{\delta}(c_{\psi}(A)) \subset i_{\delta}(c_{\eta}(A)) \subset c_{\delta}i_{\delta}(A)$, by Theorem 2.1(c) and so $i_{\delta}(c_{\psi}(A)) \subset i_{\delta}c_{\delta}i_{\delta}(A)$.

Hence, $c_{\psi}i_{\delta}(A) = i_{\delta}c_{\psi}(A) = i_{\delta}c_{\delta}i_{\delta}(A) = i_{\delta}c_{\mu}(i_{\delta}(A))$.

- (r) The proof follows from (p).
- (s) $i_{\psi}c_{\delta}(A) = c_{\delta}(A) \cap c_{\mu}i_{\mu}c_{\delta}(c_{\delta}(A)) = c_{\delta}(A) \cap c_{\mu}i_{\mu}c_{\delta}(A) = c_{\mu}i_{\mu}c_{\delta}(A)$.
- (t) $c_{\xi}i_{\xi}(A) = i_{\xi}(A) \cup i_{\mu}c_{\delta}(i_{\xi}(A)) = i_{\xi}(A) \cup i_{\mu}c_{\delta}i_{\delta}(A)$, by Theorem 2.1(g) and so $c_{\xi}i_{\xi}(A) = (A \cap c_{\mu}i_{\delta}(A)) \cup i_{\mu}c_{\delta}i_{\delta}(A) = (A \cup i_{\mu}c_{\mu}i_{\delta}(A)) \cap c_{\mu}i_{\delta}(A) \subset (A \cup i_{\mu}c_{\mu}i_{\delta}(A)) \cap c_{\mu}i_{\mu}c_{\delta}(A) = (A \cup i_{\mu}c_{\mu}i_{\delta}(A)) \cap c_{\mu}i_{\mu}c_{\delta}c_{\psi}(A)$, by Theorem 2.1(i) and so $c_{\xi}i_{\xi}(A) \subset i_{\mu}c_{\psi}(A)$.

Again, $i_{\psi}c_{\psi}(A) = c_{\psi}(A) \cap c_{\mu}i_{\mu}c_{\delta}(c_{\psi}(A)) = (A \cup i_{\mu}c_{\mu}i_{\delta}(A)) \cap c_{\mu}i_{\mu}c_{\delta}(A)$, by Theorem 2.1(i) and so $i_{\psi}c_{\psi}(A) \subset A \cup i_{\mu}c_{\delta}(A)$ $\cap c_{\mu}i_{\delta}c_{\delta}(A) = c_{\xi}(A) \cap c_{\mu}i_{\delta}(c_{\xi}(A))$, by Theorem 2.1(10) of [8] and so $i_{\psi}c_{\psi}(A) = i_{\xi}(c_{\xi}(A))$.

Hence, the proof follows.

Theorem: 2.11 Let (X,μ) be a quasi-topological space and A be a subset of X. Then the following hold.

(a) $A \in \eta(\delta)$ if and only if $c_{\xi}(A) = i_{\mu}c_{\delta}(A)$.

- (e) $A \in v(\delta)$ if and only if $c_w(A) = i_u c_u i_\delta(A)$.
- (b) *A* is η -closed if and only if $i_{\xi}(A) = c_{\mu}i_{\delta}(A)$.
- (f) A is v-closed if and only if $i_{\psi}(A) = c_{\mu}i_{\mu}c_{\delta}(A)$.

(c) $A \in \xi(\delta)$ if and only if $c_n(A) = c_u i_{\delta}(A)$.

- (g) $A \in \psi(\delta)$ if and only if $c_v(A) = c_u i_u c_\delta(A)$.
- (d) A is ξ -closed if and only if $i_n(A) = i_u c_\delta(A)$.
- (h) A is $\psi(\delta)$ -closed if and only if $i_{\nu}(A) = i_{\mu}c_{\mu}i_{\delta}(A)$.

Proof:

- (a) $A \in \eta(\delta)$ if and only if $A \subset i_{\mu}c_{\delta}(A)$ if and only if $c_{\xi}(A) = A \cup i_{\mu}c_{\delta}(A) = i_{\mu}c_{\delta}(A)$.
- (b) The proof follows from (a).
- (c) $A \in \xi(\delta)$ if and only if $A \subset c_{\mu}i_{\delta}(A)$ if and only if $c_{\eta}(A) = A \cup c_{\mu}i_{\delta}(A) = c_{\mu}i_{\delta}(A)$.
- (d) The proof follows from (c).
- (e) $A \in v(\delta)$ if and only if $A \subset i_u c_u i_\delta(A)$ if and only if $c_w(A) = A \cup i_u c_u i_\delta(A) = i_u c_u i_\delta(A)$.
- (f) The proof follows from (e).
- (g) $A \in \psi(\delta)$ if and only if $A \subset c_u i_u c_\delta(A)$ if and only if $c_v(A) = A \cup c_u i_u c_\delta(A) = c_u i_u c_\delta(A)$.
- (h) The proof follows from (g).

Theorem: 2.12 Let (X,μ) be a quasi-topological space and A be a subset of X. Then the following hold.

(a) $c_{\psi}i_{\delta}(A) = i_{\mu}c_{\mu}i_{\delta}(A) = i_{\delta}c_{\delta}i_{\delta}(A)$.

(f) $c_n i_{\varepsilon}(A) = i_n(A) \cup c_n i_{\varepsilon}(A)$.

(b) $i_{\mathsf{w}}c_{\delta}(A) = c_{\mathsf{u}}i_{\mathsf{u}}c_{\delta}(A) = c_{\delta}i_{\delta}c_{\delta}(A)$.

(g) $i_{\delta}c_{\varepsilon}(A) = i_{\delta}c_{\delta}i_{\delta}(A)$.

(c) $c_{\delta}c_{\eta}i_{\delta}(A) = c_{\mu}i_{\mu}(A)$.

(h) $c_{\delta}i_{\epsilon}(A) = c_{\delta}i_{\delta}c_{\delta}(A)$.

(2) = (3) = (4) = (4)

 $(11) C_{\delta 1_{\epsilon}}(A) = C_{\delta 1_{\delta}}C_{\delta}(A)$

(d) $i_{\delta}i_{\eta}c_{\delta}(A) = i_{\mu}c_{\mu}(A)$.

(i) $c_{\varepsilon}i_{\delta}(A) = i_{\mu}c_{\mu}i_{\delta}(A)$.

(e) $i_{\eta}c_{\varepsilon}(A) = c_{\eta}(A) \cap i_{\eta}c_{\xi}(A)$.

(j) $i_{\varepsilon}c_{\delta}(A) = c_{\iota}i_{\iota}c_{\delta}(A)$.

- (a) $c_{\psi}i_{\delta}(A) = i_{\delta}(A) \cup i_{\mu}c_{\mu}i_{\delta}(i_{\delta}(A)) = i_{\delta}(A) \cup i_{\mu}c_{\mu}i_{\delta}(A) = i_{\mu}c_{\mu}i_{\delta}(A) = i_{\delta}c_{\delta}i_{\delta}(A).$
- (b) The proof follows from (a).
- (c) $c_{\delta}c_{\eta}i_{\delta}(A) = c_{\delta}(i_{\delta}(A) \cup c_{\mu}i_{\delta}(i_{\delta}(A)) \supset c_{\delta}i_{\delta}(A)$. Again, $c_{\delta}c_{\eta}i_{\delta}(A) = c_{\delta}(i_{\delta}(A) \cup c_{\mu}i_{\delta}(i_{\delta}(A)) \subset c_{\delta}(i_{\delta}(A) \cup c_{\delta}i_{\delta}(A)) = c_{\delta}i_{\delta}(A)$. This proves (c).
- (d) The proof follows from (c).
- (e) $i_{\eta}(c_{\epsilon}(A)) = c_{\epsilon}(A) \cap i_{\mu}c_{\delta}(c_{\epsilon}(A)) = (c_{\xi}(A) \cap c_{\eta}(A)) \cap i_{\mu}c_{\delta}(c_{\epsilon}(A)) = c_{\eta}(A) \cap (c_{\xi}(A) \cap i_{\mu}c_{\delta}(c_{\epsilon}(A)))$. Again, $c_{\xi}(A) \cap i_{\mu}c_{\delta}(c_{\epsilon}(A)) = c_{\xi}(A) \cap i_{\mu}c_{\delta}(c_{\xi}(A) \cap c_{\eta}(A)) = c_{\xi}(A) \cap i_{\mu}c_{\delta}(c_{\xi}(A)) = c_{\eta}(A) \cap i_{\eta}(c_{\xi}(A))$.
- (f) The proof follows from (e).

- (g) $i_{\delta}(c_{\epsilon}(A)) = i_{\delta}(c_{\xi}(A) \cap c_{\eta}(A)) = i_{\delta}(c_{\xi}(A)) \cap i_{\delta}(c_{\eta}(A)) = i_{\delta}c_{\mu}(A) \cap i_{\delta}c_{\delta}i_{\delta}(A)$, by Theorem 2.1(10) of [8] and 3.1(e) and so $i_{\delta}(c_{\epsilon}(A)) = i_{\delta}c_{\delta}i_{\delta}(A)$.
- (h) The proof follows from (g).
- (i) $c_{\varepsilon}(i_{\delta}(A)) = c_{\varepsilon}(i_{\delta}(A)) \cap c_{\eta}(i_{\delta}(A)) = i_{u}c_{\delta}i_{\delta}(A) \cap c_{\delta}i_{\delta}(A)$, by Theorem 2.10(p) and (n), and so $c_{\varepsilon}(i_{\delta}(A)) = i_{u}c_{\delta}i_{\delta}(A)$.
- (j) The proof follows from (i).

Theorem: 2.13 Let (X,μ) be a quasi-topological space and A be a subset of X. Then the following hold.

```
 \begin{array}{ll} (a) \ i_{\delta}(c_{\epsilon}(A)) = c_{\epsilon}(i_{\delta}(A)) = i_{\delta}c_{\delta}i_{\delta}(A). \\ (b) \ c_{\delta}(i_{\epsilon}(A)) = i_{\epsilon}(c_{\delta}(A)) = c_{\delta}i_{\delta}c_{\delta}(A). \\ (c) \ i_{\epsilon}(c_{\xi}(A)) = i_{\epsilon}(c_{\xi}(A)) = c_{\delta}i_{\delta}c_{\delta}(A). \\ (d) \ c_{\epsilon}(i_{\xi}(A)) = c_{\xi}(i_{\xi}(A)). \\ (e) \ i_{\xi}(c_{\xi}(A)) = c_{\xi}(A) \cap c_{\delta}i_{\delta}(A). \\ (f) \ c_{\xi}(i_{\xi}(A)) = i_{\xi}(A) \cap c_{\delta}i_{\delta}(A). \\ (g) \ i_{\eta}(c_{\epsilon}(A)) = c_{\xi}(i_{\eta}(A)) = i_{\eta}(c_{\eta}(A)). \\ (i) \ i_{\eta}(c_{\eta}(A)) = c_{\xi}(i_{\eta}(A)) = i_{\eta}(c_{\eta}(A)). \\ (j) \ c_{\eta}(i_{\eta}(A)) = i_{\xi}(c_{\eta}(A)) = c_{\eta}(i_{\eta}(A)). \\ (k) \ i_{\xi}(c_{\xi}(A)) = c_{\xi}(i_{\xi}(A)). \\ (l) \ c_{\xi}(i_{\xi}(A)) = c_{\xi}(i_{\xi}(A)). \\ (l) \ c_{\xi
```

Proof:

```
(a) i_{\delta}(c_{\epsilon}(A)) = i_{\delta}(c_{\xi}(A) \cap c_{\eta}(A)) = i_{\delta}(c_{\xi}(A)) \cap i_{\delta}c_{\eta}(A) = i_{\delta}c_{\delta}(A) \cap i_{\delta}c_{\delta}i_{\delta}(A), by Theorem 2.1(10) and 2.1(e) and so i_{\delta}(c_{\epsilon}(A)) = i_{\delta}c_{\delta}i_{\delta}(A). Also, c_{\epsilon}(i_{\delta}(A)) = c_{\xi}(i_{\delta}(A)) \cap c_{\eta}(i_{\delta}(A)) = (i_{\delta}(A) \cup i_{\mu}c_{\delta}i_{\delta}(A)) \cap (i_{\delta}(A) \cup c_{\mu}i_{\delta}i_{\delta}(A)) = (i_{\delta}(A) \cup i_{\mu}c_{\delta}i_{\delta}(A)) \cap c_{\mu}i_{\delta}(A) = i_{\delta}(A) \cup i_{\mu}c_{\delta}i_{\delta}(A).
```

- (b) The proof follows from (a).
- (c) $i_{\epsilon}(c_{\xi}(A)) = i_{\xi}(c_{\xi}(A)) \cup i_{\eta}(c_{\xi}(A))$. Now $i_{\eta}(c_{\xi}(A)) = c_{\xi}(A) \cap i_{\mu}c_{\delta}(c_{\xi}(A)) = c_{\xi}(A) \cap i_{\delta}c_{\delta}(A)$, by 2.1(7) of [8] and so $i_{\eta}(c_{\xi}(A)) \subset c_{\xi}(A) \cap c_{u}i_{u}c_{\delta}(A) = i_{\xi}(c_{\xi}(A))$, by Theorem 2.10(1). Clearly $i_{\xi}(c_{\xi}(A)) \subset i_{\xi}(c_{\xi}(A))$. Hence, $i_{\xi}(c_{\xi}(A)) = i_{\xi}(c_{\xi}(A))$.
- (d) The proof follows from (c).
- (e) $i_{\varepsilon}(c_{\varepsilon}(A)) = c_{\varepsilon}(A) \cap c_{u}i_{\delta}(c_{\varepsilon}(A)) = c_{\varepsilon}(A) \cap c_{u}i_{\delta}c_{\delta}i_{\delta}(A)$, by (a) and so $i_{\varepsilon}(c_{\varepsilon}(A)) = (c_{\varepsilon}(A)) \cap c_{\eta}(A) \cap c_{\delta}i_{\delta}(A) = c_{\varepsilon}(A) \cap c_{\delta}i_{\delta}(A)$.
- (f) The proof follows from (e).
- $(g) \ i_{\eta}(c_{\epsilon}(A)) = c_{\epsilon}(A) \cap i_{\mu}c_{\delta}(c_{\epsilon}(A)) = (c_{\xi}(A) \cap c_{\eta}(A)) \cap i_{\mu}c_{\delta}(c_{\epsilon}(A)). \ \text{Now,} \ c_{\xi}(A) \cap i_{\mu}c_{\delta}(c_{\epsilon}(A)) \supset c_{\xi}(A) \cap i_{\mu}c_{\delta}(A) = i_{\mu}c_{\delta}(A). \ \text{Again,} \ c_{\xi}(A) \cap i_{\mu}c_{\delta}(c_{\epsilon}(A)) \subset c_{\xi}(A) \cap i_{\mu}c_{\delta}(c_{\eta}(A)) = c_{\xi}(A) \cap i_{\mu}c_{\delta}(A), \ \text{by Theorem 2.1(b) and so} \ c_{\xi}(A) \cap i_{\mu}c_{\delta}(c_{\epsilon}(A)) \subset i_{\mu}c_{\delta}(A).$

Hence, $i_{\eta}(c_{\epsilon}(A)) = c_{\eta}(A) \cap i_{\mu}c_{\delta}(A) = i_{\eta}(c_{\eta}(A))$, by Theorem 2.10(c). To prove the next equality, $c_{\epsilon}(i_{\eta}(A)) = c_{\xi}(i_{\eta}(A)) \cap c_{\eta}(i_{\eta}(A)) = i_{\delta}c_{\delta}(A) \cap (c_{\eta}(A) \cap (i_{\delta}c_{\delta}(A) \cup c_{\delta}i_{\delta}(A)))$ by Theorem 2.10(b) and so $c_{\epsilon}(i_{\eta}(A)) = i_{\delta}c_{\delta}(A) \cap c_{\eta}(A) = i_{\eta}(c_{\eta}(A))$, by Theorem 2.10(c).

- (h) The proof follows from (g).
- (i) $i_{\psi}(c_{\epsilon}(A)) = c_{\epsilon}(A) \cap c_{\mu}i_{\mu}c_{\delta}(c_{\epsilon}(A)) = (c_{\eta}(A) \cap c_{\xi}(A)) \cap c_{\mu}i_{\mu}c_{\delta}(A)$, since $c_{\delta}(c_{\epsilon}(A) = c_{\delta}(A)$, by Theorem 2.1(m). Therefore, $i_{\psi}(c_{\epsilon}(A)) = c_{\eta}(A) \cap (c_{\xi}(A) \cap c_{\mu}i_{\delta}(c_{\xi}(A))$, by 2.1(10) of [8] and so $i_{\psi}(c_{\epsilon}(A)) = c_{\eta}(A) \cap i_{\xi}(c_{\xi}(A)) = i_{\eta}c_{\eta}(A)$, by Theorem 2.10(c).
- (j) The proof follows from (i).
- $\begin{array}{l} (k) \ i_{\epsilon}(c_{\epsilon}(A)) = i_{\xi}(c_{\epsilon}(A)) \cup i_{\eta}(c_{\epsilon}(A)) = (c_{\xi}(A) \cap c_{\delta}i_{\delta}(A)) \cup i_{\eta}(c_{\eta}(A)), \ by \ (e) \ and \ (g) \ and \ so, \ i_{\epsilon}(c_{\epsilon}(A)) = c_{\xi}(A) \cap c_{\delta}i_{\delta}(A)) \cup \\ (A \cup c_{\delta}i_{\delta}(A)) \cap i_{\delta}c_{\delta}(A), \ by \ Theorem \ 2.10(c). \ Therefore, \ i_{\epsilon}(c_{\epsilon}(A)) = ((A \cup i_{\mu}c_{\delta}(A)) \cap c_{\mu}i_{\delta}(A)) \cup ((A \cup c_{\mu}i_{\delta}(A)) \cap i_{\mu}c_{\delta}(A)) = \\ ((A \cap c_{\mu}i_{\delta}(A)) \cup (i_{\mu}c_{\delta}(A) \cap c_{\mu}i_{\delta}(A)) \cup ((A \cap i_{\mu}c_{\delta}(A)) \cup (c_{\mu}i_{\delta}(A) \cap i_{\mu}c_{\delta}(A)) = \\ (i_{\xi}(A) \cup i_{\eta}(A)) \cup (i_{\mu}c_{\delta}(A) \cap c_{\mu}i_{\delta}(A)) \cup (i_{\eta}(A) \cup c_{\mu}i_{\delta}(A)) \cap c_{\eta}i_{\delta}(A)) = \\ (i_{\xi}(A) \cup i_{\eta}(A)) \cup (i_{\eta}(a) \cup c_{\mu}i_{\delta}(A)) \cap c_{\eta}i_{\delta}(A)), \ \ degree \ \$

Hence, $i_{\varepsilon}(c_{\varepsilon}(A)) = c_{\varepsilon}i_{\varepsilon}(A)$.

- (1) $c_{\varepsilon}(i_{\varepsilon}(c_{\varepsilon}(A))) = c_{\varepsilon}(c_{\varepsilon}(i_{\varepsilon}(A)))$, by (k) and so $c_{\varepsilon}(i_{\varepsilon}(c_{\varepsilon}(A))) = c_{\varepsilon}(i_{\varepsilon}(A))$.
- (m) By (k), $c_{\varepsilon}(i_{\varepsilon}(A)) = i_{\varepsilon}(c_{\varepsilon}(A))$. Hence, $i_{\varepsilon}c_{\varepsilon}(i_{\varepsilon}(A)) = i_{\varepsilon}(c_{\varepsilon}(A))$.

Theorem: 2.14 Let (X,μ) be a quasi-topological space and A be a subset of X, then the following statements are equivalent.

(a) A is ε -open.

- (b) $A = i_{\eta}(A) \cup i_{\xi}(A)$.
- (c) $A \subset c_{\eta}(i_{\eta}(A))$.

Proof:

- (a) \Rightarrow (b). If A is ϵ -open, then $A \subset i_{\mu}c_{\delta}(A) \cup c_{\mu}i_{\delta}(A)$. Now, $A = i_{\eta}(A) \cup i_{\xi}(A) = (A \cap i_{\mu}c_{\delta}(A)) \cup (A \cap c_{\mu}i_{\delta}(A)) = A \cap (i_{\mu}c_{\delta}(A) \cup c_{\mu}i_{\delta}(A)) = A$. Hence, $A = i_{\eta}(A) \cup i_{\xi}(A)$.
- (b) \Rightarrow (c). If $A = i_{\eta}(A) \cup i_{\xi}(A)$, then $A = i_{\eta}(A) \cup (A \cap c_{\mu}i_{\delta}(A)) \subset i_{\eta}(A) \cup c_{\mu}i_{\delta}(A) = c_{\eta}i_{\eta}(A)$, by Theorem 2.10.(b).

Hence $A \subset c_n i_n(A)$.

(c) \Rightarrow (a). $A \subset c_{\eta}i_{\eta}(A)$ implies that $A \subset i_{\eta}(A) \cup c_{\mu}i_{\delta}(i_{\eta}(A)) = i_{\eta}(A) \cup c_{\mu}i_{\delta}(A)$, by Theorem 2.1(a) and so $A \subset (A \cap i_{\mu}c_{\delta}(A)) \cup c_{\mu}i_{\delta}(A) \subset i_{\mu}c_{\delta}(A) \cup c_{\mu}i_{\delta}(A)$ and so A is ϵ -open.

Corollary: 2.15 Let (X,μ) be a quasi-topological space, then $\xi(\eta(\delta)) = \varepsilon(\delta)$.

Proof: The Proof follows from the Theorem 2.8(c).

Theorem: 2.16 Let (X,μ) be a quasi-topological space and A be a subset of X, then the following hold.

- (a) $c_{\varepsilon}(A) = c_{\xi}(A) \cap c_{\eta}(A)$.
- (b) $i_{\varepsilon}(A) = i_{\varepsilon}(A) \cup i_{n}(A)$.

Proof:

(a) Since $c_{\varepsilon}(A) \subset c_{\xi}(A)$ and $c_{\varepsilon}(A) \subset c_{\eta}(A)$, we have $c_{\varepsilon}(A) \subset c_{\xi}(A) \cap c_{\eta}(A)$.

Again, $c_{\xi}(A) \cap c_{\eta}(A) = (A \cup i_{\mu}c_{\delta}(A)) \cap (A \cup c_{\mu}i_{\delta}(A)) = A \cup (i_{\mu}c_{\delta}(A) \cap c_{\mu}i_{\delta}(A)) \subset A \cup (i_{\mu}c_{\delta}(c_{\epsilon}(A)) \cap c_{\mu}i_{\delta}(c_{\epsilon}(A))) \subset A \cup c_{\epsilon}(A) = c_{\epsilon}(A)$. Hence $c_{\epsilon}(A) = c_{\epsilon}(A) \cap c_{\eta}(A)$.

(b) The proof follows from (a).

Theorem: 2.17 Let (X,μ) be a quasi-topological space and A be a subset of X, then the following statements are equivalent.

- (a) $A \in \psi(\delta)$.
- (b) $A \subset i_{\psi}(c_{\psi}(A))$.
- (c) $A \subset i_{\xi}(c_{\xi}(A))$.

Proof:

- (a) \Rightarrow (b). If $A \in \psi(\delta)$, then $A = i_{\psi}(A) \subset i_{\psi}(c_{\psi}(A))$.
- (b) \Rightarrow (c). The proof follows from Theorem 2.10(s).
- (c) \Rightarrow (a). $A \subset i_{\xi}(c_{\xi}(A))$ implies that $A \subset c_{\xi}(A) \cap c_{\mu}i_{\delta}(c_{\xi}(A)) = c_{\xi}(A) \cap c_{\mu}i_{\mu}c_{\delta}(A)$, by Theorem 2.1(10) of [8] and so $A \subset c_{\mu}i_{\mu}c_{\delta}(A)$. Hence $A \in \psi(\delta)$.

Theorem: 2.18 Let (X,μ) be a quasi-topological space and A be a subset of X, then the following hold. (a) $\xi(\eta(\delta)) = \varepsilon(\delta)$.

(b) $\xi(\eta(\delta)) = \psi(\eta(\delta)) = \varepsilon(\delta)$.

Proof:

(a) Suppose $A \in \xi(\eta(\delta))$. Then, $A \subset c_{\eta}(i_{\eta}(A))$ which implies that $A \subset (A \cap i_{\mu} c_{\delta}(A)) \cup c_{\mu}i_{\delta}(A)$, by Theorem 2.1(a) which in turn implies that $A \subset i_{\mu}c_{\delta}(A) \cup c_{\mu}i_{\delta}(A)$ and so $A \in \epsilon(\delta)$. Hence, $\xi(\eta(\delta)) \subset \epsilon(\delta)$.

Conversely suppose, $A \in \varepsilon(\delta)$. $A \in \varepsilon(\delta)$ if and only if $A \subset i_{\mu}c_{\delta}(A) \cup c_{\mu}i_{\delta}(A)$ if and only if $A = A \cap (i_{\mu}c_{\delta}(A) \cup c_{\mu}i_{\delta}(A)) = (A \cap i_{\mu}c_{\delta}(A)) \cup (A \cap c_{\mu}i_{\delta}(A)) \subset (A \cap i_{\mu}c_{\delta}(A)) \cup c_{\mu}i_{\delta}(A) = c_{\eta}(i_{\eta}(A))$, by Theorem 2.10(b) and so $A \in \xi(\eta(\delta))$ which implies that $\xi(\eta(\delta)) \supset \varepsilon(\delta)$. This proves (a).

(b) $\xi(\eta(\delta)) = \psi(\eta(\delta))$, by Theorem 2.10(i) and each is equal to $\varepsilon(\delta)$, by (a).

Theorem: 2.19 Let V be a subset of a space (X,μ) . Then the following hold.

- (a) *V* is η -open if and only if $V \subset i_{\eta}(c_{\eta}(V))$.
- (b) *V* is ε -open if and only if $V \subset c_n(i_n(V))$.

```
(a) Let V be \eta-open. Then i_{\eta}(V) = V and so V \subset i_{\eta}(c_{\eta}(V)). Also, V \subset i_{\eta}(c_{\eta}(V)) \subset i_{\eta}(c_{\delta}(V)) = c_{\delta}(V) \cap i_{\mu}c_{\delta}(c_{\delta}(V)) = c_{\delta}(V) \cap i_{\mu}c_{\delta}(V) and so V is \eta- open.
```

```
(b) Let V be \epsilon-open. Then V \subset c_{\mu}i_{\delta}(V) \cup i_{\mu}c_{\delta}(V) and so V = (c_{\mu}i_{\delta}(V) \cup i_{\mu}c_{\delta}(V)) \cap V = (c_{\mu}i_{\delta}(V) \cap V) \cup (i_{\mu}c_{\delta}(V) \cap V) \cup (i_{\mu}c_{\delta}(V)
```

Conversely, suppose $V \subset c_{\eta}(i_{\eta}(V)) = i_{\eta}(V) \cup c_{\mu}(i_{\delta}(i_{\eta}(V))) = (V \cap i_{\mu}c_{\delta}(V)) \cup c_{\mu}(i_{\delta}(V))$, by Theorem 2.1(a) and so $V \subset i_{\mu}c_{\delta}(V) \cup c_{\mu}i_{\delta}(V)$. Hence, $V \in C_{\eta}(i_{\eta}(V)) \cup c_{\mu}i_{\delta}(V)$.

We define the following new families of generalized topologies.

```
\begin{array}{ll} \epsilon(\nu(\delta)) &= \{A \mid A \subset i_{\nu}(c_{\nu}(A)) \cup c_{\nu}(i_{\nu}(A))\}, \\ \epsilon(\xi(\delta)) &= \{A \mid A \subset i_{\xi}(c_{\xi}(A)) \cup c_{\xi}(i_{\xi}(A))\}, \\ \epsilon(\eta(\delta)) &= \{A \mid A \subset i_{\eta}(c_{\eta}(A)) \cup c_{\eta}(i_{\eta}(A))\}, \\ \epsilon(\psi(\delta)) &= \{A \mid A \subset i_{\psi}(c_{\psi}(A)) \cup c_{\psi}(i_{\psi}(A))\}, \\ \epsilon(\epsilon(\delta)) &= \{A \mid A \subset i_{\epsilon}(c_{\epsilon}(A)) \cup c_{\epsilon}(i_{\epsilon}(A))\}, \\ \nu(\epsilon(\delta)) &= \{A \mid A \subset i_{\epsilon}(c_{\epsilon}(i_{\epsilon}(A)))\}, \\ \xi(\epsilon(\delta)) &= \{A \mid A \subset c_{\epsilon}(i_{\epsilon}(A))\}, \\ \eta(\epsilon(\delta)) &= \{A \mid A \subset c_{\epsilon}(i_{\epsilon}(A))\} \text{ and } \\ \psi(\epsilon(\delta)) &= \{A \mid A \subset c_{\epsilon}(i_{\epsilon}(c_{\epsilon}(A)))\}. \end{array}
```

The following Theorem 2.20 gives the relations between the above generalized topologies. Theorem 2.20(a) shows that Theorem 3.6.5 of [4] is true for the generalized topology of all δ -open sets, if $\gamma \in \Gamma_4$. Theorem 2.20(b) shows that Lemma 3.8 of [4] is true for the generalized topology of all δ -open sets, if (X,μ) is a quasi-topological space.

```
Theorem: 2.20 If (X,\mu) is a quasi-topological space, then the following hold.
```

```
(a) \xi(\eta(\delta)) = \psi(\eta(\delta)) = \varepsilon(\eta(\delta)) = \varepsilon(\delta).

(b) \nu(\varepsilon(\delta)) = \xi(\varepsilon(\delta)) = \eta(\varepsilon(\delta)) = \varepsilon(\delta).
```

Proof: (a) $\varepsilon(\eta(\delta)) = \varepsilon(\delta)$, by Theorem 2.10(b) and (h), and so (a) follows from Theorem 2.18(b).

(b) $\xi(\epsilon(\delta)) = \eta(\epsilon(\delta)) = \epsilon(\epsilon(\delta))$ by Theorem 2.13(k). $\xi(\epsilon(\delta)) = \psi(\epsilon(\delta))$, by Theorem 2.13(l). $\nu(\epsilon(\delta)) = \eta(\epsilon(\delta))$, by Theorem 2.13(m). Now, $\nu(\epsilon(\delta)) = \nu(\xi(\eta(\delta)))$, by Theorem 2.18(a). By Theorem 2.3 of [4], $\nu(\xi(\eta(\delta))) = \xi(\eta(\delta)) = \epsilon(\delta)$, and so $\nu(\epsilon(\delta)) = \epsilon(\delta)$. Hence (b) follows.

3. CHARACTERIZATIONS OF SOME GENERALIZED OPEN SETS

In this section, we characterize some of the family of generalized open sets mentioned above by the interior and closure operators.

Theorem: 3.1 If (X,μ) is a quasi-topological space and A be a subset of X, then the following are equivalent.

```
(a) A is v-open. 

(b) i_{\nu}i_{\xi}(A) = A. 

(c) i_{\nu}i_{\eta}(A) = A. 

(d) i_{\nu}i_{\psi}(A) = A. 

(e) A \subset i_{\nu}c_{\eta}(A). 

(f) A \subset i_{\nu}c_{\psi}(A). 

(g) c_{\xi}i_{\nu}(A) = i_{\delta}c_{\delta}i_{\delta}(A). 

(h) A \subset c_{\psi}i_{\nu}(A). 

(i) i_{\nu}i_{\xi}(A) = A. 

(e) A \subset i_{\nu}c_{\eta}(A).
```

Proof: (a) and (b) are equivalent by Theorem 2.2(a).

- (a) and (c) are equivalent by Theorem 2.2(b).
- (a) and (d) are equivalent by Theorem 2.2(c).
- (a) and (e) are equivalent by Theorem 2.2(e).
- (a) and (f) are equivalent by Theorem 2.2(f).
- (a) and (g) are equivalent by Theorem 2.5(b).
- (a) and (h) are equivalent by Theorem 2.7(b).
- (a) and (i) are equivalent by Theorem 2.8(e).

Theorem: 3.2 If (X,μ) is a quasi-topological space and A be a subset of X, then the following are equivalent. (a) A is ξ -open.(b) $A \subset c_v i_{\xi}(A)$. (c) $A \subset c_v i_{\xi}(A)$. (d) $A \subset c_{\delta} i_{v}(A)$. (e) $i_{\xi} i_{\xi}(A) = A$.

- (a) and (b) are equivalent by Theorem 2.2(g).
- (a) and (c) are equivalent by Theorem 2.3(c).
- (a) and (d) are equivalent by Theorem 2.3(c).
- (a) and (e) are equivalent by Theorem 2.8(c).

Theorem: 3.3 If (X,μ) is a quasi-topological space and A be a subset of X, then the following are equivalent.

(a) A is η -open.

(e) $A \subset i_n c_v(A)$.

(b) $A \subset i_{\nu}c_{\varepsilon}(A)$.

(f) $i_n i_w(A) = A$.

(c) $A \subset i_{\nu}c_{\delta}(A)$.

(g) $i_{\eta}i_{\varepsilon}(A) = A$.

(d) $A \subset i_{\delta}c_{\nu}(A)$.

Proof:

- (a) and (b) are equivalent by Theorem 2.2(d).
- (a) and (c) are equivalent by Theorem 2.3(d).
- (a) and (d) are equivalent by Theorem 2.3(d).
- (a) and (e) are equivalent by Theorem 2.6(a).
- (a) and (f) are equivalent by Theorem 2.6(c).
- (a) and (g) are equivalent by Theorem 2.8(u).

Theorem: 3.4 If (X, μ) is a quasi-topological space and A be a subset of X, then the following are equivalent. (a) A is ε -open. (b) $i_{\varepsilon}i_{\psi}(A) = A$.

Proof: (a) and (b) are equivalent by Theorem 2.8(g).

Theorem: 3.5 If (X,μ) is a quasi-topological space and A be a subset of X, then the following are equivalent.

(a) A is ψ -open.

(d) $A \subset i_{\psi}c_{\nu}(A)$.

(b) $A \subset c_{\nu}i_{\Psi}(A)$.

(e) $A \subset i_{\varepsilon}c_{\nu}(A)$.

(c) $A \subset i_{\xi}c_{\nu}(A)$.

(f) $i_{\psi}i_{\varepsilon}(A) = A$.

Proof:

- (a) and (b) are equivalent by Theorem 2.2(i).
- (a) and (c) are equivalent by Theorem 2.5(a).
- (a) and (d) are equivalent by Theorem 2.7(a).
- (a) and (e) are equivalent by Theorem 2.8(i).
- (a) and (f) are equivalent by Theorem 2.8(t).

REFERENCES

- [1] Á. Császár, Generalized open sets, Acta Math. Hungar. 75(1-2) (1997), 65 87.
- [2] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96(2002), 351 357.
- [3] Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar. 106(2005), 53 66.
- [4] Á. Császár, Further remarks on the formula for gamma-interior, Acta Math. Hungar, 113(2006), 325 332.
- [5] Á. Császár, δ- and θ-modifications of generalized topologies, Acta Math. Hungar., 120(3)(2008), 275 279.
- [6] Á. Császár, Mixed constructions for generalized topologies, Acta Math. Hungar. 122(1-2) (2009), 153 159.
- [7] V. Pankajam and D. Sivaraj, On some generalized open sets, J. Adv. Res. in Applied Maths., to appear.
- [8] V. Pankajam and D. Sivaraj, More on δ -interior in the generalized topological spaces, *Journal of Advanced Studies in Topology*, .2(2)(2011), 26-30.
- [9] P. Sivagami, Remarks on γ-interior, Acta Math. Hungar. 119(2008), 81 94.
