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ABSTRACT

Some family of generalized topologies using the closure and interior operators of the generalized topology of d-open
sets are defined in [7]. We discuss the relation between their interior and closure operators with the other interior and
closure operators and characterize some well known generalized open sets.
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1. INTRODUCTION

The paper [1] of Prof. A. Csészdr, is a base to study generalized topology and its properties. A generalized topology or
simply GT p [2] on a nonempty set X is a collection of subsets of X such that ¢e p and p is closed under arbitrary
union. Elements of p are called p-open sets. A subset A of X is said to be p-closed if X-A is p-open. The pair (X, p) is
called a generalized topological space (GTS) or simply, a generalized space. If A is a subset of a space (X, p), then
cu(A) is the smallest p -closed set containing A and i,(A) is the largest p-open set contained in A. If y : p(X) —p(X) be a
monotonic function defined on a nonempty set X and p = {Al Ac y(A)}, the family of all y-open sets is also a
generalized topology [1], i, =1i,, and ¢, = c,. By a space (X, p), we will always mean a generalized topological space
(X, w). A subset A of a space (X, ) is said to be a-open [3] (resp., semiopen [3], preopen [3], b-open [9], B-open [3] ) if
A cigc,iy(A) (resp., A C cuiy(A), A Cicy(A), A Cic(Ad)uciy(A), A C cic,(A)). We will denote the family of all a-
open sets by o, the family of all semiopen sets by o, the family of all preopen sets by =, the family of all b-open sets
by b and the family of all B-open sets by B. If (X, p) is a generalized topological space, then we say that a subset Ae 6c
p(X) [5] if for every x €A, there exists a p-closed Q such that xei,(Q) < A. Then (X, 9) is a generalized topological
space [5, Proposition 2.1] such that 6 < p [5, Theorem1]. Elements of & are called the §-open sets of (X, 3). For A c X,
is(A) and cs(A) are the interior and closure of A in (X, J). In [5], using the interior and closure operators of the
generalized topologies 6 and p on X, we introduce the following family of generalized open sets, namely, the family of
Us-a-open sets, denoted by v, the family of ps-semiopen sets, denoted by &, the family of ps-preopen sets, denoted by 1,
the family of ps-b-open sets, denoted by ¢, the family of ps-p-open sets, denoted by v, and study their characterizations
and properties. Also, we prove that v (resp. § , 1, €, ¥ ) is nothing but the family of all a-open (resp. semiopen, preopen,
b-open, B-open) sets of the generalized topological spaces (X, §) and (X, p). Let (X, p) be a space. A subset A of X is
said to be ps-0. -open (resp. ps-semiopen, ps-preopen, ps-b-open, ps- B-open) if A < iyc,is(A) (resp. A < c,is(A), A <
i,c5(A), A ¢, is(A)uics(A), A < ciucs(A)). We will denote by v (resp. &, m, €, ), the family of all ps-o-open (resp. pis-
semiopen, [s-preopen, W;-b-open, Us-B-open) sets.

Ifke{pn o, 0,mb,B,0, v,E,1m, & vy }and A is asubset of a space (X, ), then c(A) is the smallest k-closed set
containing A and i(A) is the largest x-open set contained in A. Note that the operator ¢, is monotonic, increasing and
idempotent and the operator i, is monotonic, decreasing and idempotent. Clearly, A is k-open if and only if A = i(A)
and A is k-closed if and only if A = c(A). Also, for every subset A of a space (X, k), X-i.(A) = c, (X-A). Let X be a
nonempty set. Let A < p(X) and yeT. y is said to be A-friendly [4] if LNy(A)c y(LNA) for every subset A of X and Le .
In [9], it is denoted that I'; = { y Iy is p-friendly where p is the GT of all y-open sets} and if yeI'y, the space (X, y)
(resp. (X, p) is called a y-space). By [9, Theorem 2.1], the intersection of two p-open sets is again a p-open set and so
every y-space is a quasi-topological space [4]. By [9, Theorem 2.3], it is established that in a y-space, i, and c,
preserves finite intersection and finite union respectively. Later, in [4], it is established that the above result is also true
for quasi-topological spaces. One can easily prove that 6 c vc ncecy,dc vc cec yandv=_ENn. Refer [6]
for more such relations.
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The following Lemma 1.1 is essential to proceed further.

Theorem: 1.1 [7, Lemma 1.3] Let (X, n) be a space and A < X. Then the following hold.
(a) If A is p-open, then c,(A) = c5(A).
(b) If A is p-closed, then i,(A) = i5(A).

Lemma: 1.2 [7, Theorem 2.4] Let (X, p) be a generalized topological space where p is the family of all y -open sets of
a ye 4. Then the following hold.

(a) The intersection of two d-open set is a 3-open set.

(b) i5(A)Niz(A) = i5(ANB) for every subsets A and B of X.

(c) c5(A) wcs(B) = c5(AUB) for every subsets A and B of X.

(d) ize Ty

Theorem: 1.3 [7, Theorem 2.6] Let (X, p) be a space. Then the following hold.
(@) iy(A) = ANi,c,is(A).

(b) cy(A) = Auc,i,cs(A)

(©) i(A) = ANc,is(A).

(d) cz(A) = Aui,c5(A).

Theorem: 1.4 [7, Theorem 2.13] Let (X, p) be a space where p is the family of all y-open sets, yeI', and Ac X. Then
the following hold.

(a) iy(A) = ANiycs(A). (d) cy(A) = AUi,c,is(A).
(b) cy(A) = AUc,is(A). (e) cs(A) = c(A)Ncy(A).
(©) iy(A) = ANc, i cs(A). () i(A) = i(A)Uiy(A).

2. PROPERTIES OF THE INTERIOR AND CLOSURE OPERATOR
In this section, we study the relations between the operators is and c; with the other interior and closure operators,
namely iy, ¢, iz, C, iy, Cy, In, Cn, 1g, Ce, 1y and c¢,,. The dual of an identity is obtained by replacing the interior operator by

the corresponding closure operator and ‘c’ by ‘O’.

Theorem: 2.1 Let (X,p) be a space and A < X. Then the following hold.

(a) isin(A) = i5(A). G izst(A) =i3Cs15(A).
(b) c5¢q(A) = c5(A). (k) csiy(A) = csiscs(A).
(€) i5¢q(A) < csis(A). (1) i5i(A) = i5(A).

(d) csiscq(A) = cois(A). (m) c5c(A) = c5(A).

(€) 15Cq(A) = i5c515(A). () i5C:(A) = i5C515(A).
(f) i512(A) = i5(A). (0) c5ie(A) = csizcs(A).
(2) csie(A) = csis(A) = ¢is(A). (p) ieiy(A) = i(A)Niy(A)
(h) i5i,(A) = i5(A). (q) i5cu(A) = i5c5(A).

(1) cscy(A) = cs(A). (1) csc(A) = c5(A).

Proof: (a) isin(A) = i5(ANi,c5(A)) D i5(15(A)Ni(A)) = i5i5(A) = i5(A). i5i4(A) = i5(ANiC5(A)) i5(A).
(b) The proof follows from (a) since the statement (b) is the dual of (a).

(c) Let xe iscq(A) and xé c;is(A). Then there exists a 6 open set U such that xe U < ¢, (A), UNis(A) = ¢. Since Uc c,(A)
=Auc,is(A) and so UC A which implies that xe i5(A), which is not possible.

Hence, xe csiz(A).

Therefore, 15¢,(A) C csis(A).

(d) By (0, csiscy(A) < csi5(A). But ¢5i5(A) < csisen(A). Hence, csisen(A) = csis(A).

(e) By (c), iscq(A) < c5i5(A) which implies that iscy(A) C iscsis(A). iscq(A) = i5(AUC,i5(A)) D isc,is(A) = iscsis(A).
Hence, i5¢,(A) = i5¢515(A).

(f) The proof follows from 2.1(7) of [8].

(g) The proof follows from Theorem 2.1(10) of [8].
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(h) i5iy(A) = is(ANcyi,c5(A)) < is(cs(A)Niycs(A)) = i5(A). 15iy(A) = i5(ANc,iycs(A)) D is(is(A)Ni(A))= i5(A).

Hence, ii,(A) = i5(A).
(i) The proof follows from (h).

() iscy(A) = is(AUILC,I5(A)) D Tsiucuis(A) = isisCsis(A) = 15C515(A). 15¢,(A) is a subset of iscy(A) and i5¢,(A) = iscsis(A), by
(e). Hence, i5c,(A) = i5csi5(A).

Therefore, i5c,(A) = i5¢515(A).

(k) The proof follows from ().

(D i5ig(A) = 15(1(A) Lin(A)) D isi(A)Uiscy(A) = i5(A)Uis(A), by (a) and (e) and s0 i5i(A) = i5(A).

(m) The proof follows from (1).

(n) isce(A) = i5(ce(A)Ncy(A)) = i5cz(A)Niscy(A) = iscs(A)Niscsis(A), by 2.1(10) of [8] and (e) and s0 isce(A) = iscsis(A).
(o) The proof follows from (n).

(D) iciy(A) = in(A)Ncydsin(A) = in(A)Nc,is(A),by (a), and 50 izig(A) = (ANi,c5(A)NC,is(A) =(ANc,is(ANNANiCH(A)) =
i(A)Niy(A).

(Q) ise(A) = 15(Auc,iycs(A)) C is(Auc,cs(A)) = is(Aucs(A)) = iscs(A). iscv(A) = is(ALcyics(A)) D i5(AUics(A)) =
i5(AUises(A)) D scs(A).

Hence the proof follows.

(r) cseu(A) = cs(Auc,ics(A)) cs(Auc,cs(A)) = c5(A). Again, cse(A) = cs(Auc,ics(A)) D cs(A).
Hence, csc(A) = c5(A).

The following Theorem 2.2 gives the properties of the operators i, and c,.

Theorem: 2.2 Let (X,p) be a quasi-topological space and A be a subset of X. Then the following hold.

() ivig(A) = i,(A). (8) ciig(A) = cyis(A).
(b) Liy(A) = iy(A). (h) ¢.iy(A) = c,is(A).
(C) lvl\y(A) = IV(A) (1) Cviw(A) = CuiuCS(A)-
(d) iyeg(A) = i5c5(A). () cvee(A) = cy(A).

(€) iven(A) = i5Cs(A). (k) cyeq(A) = c\(A).
(£) ivey(A) = i,c,is(A). D cey(A) = cu(A).
Proof:

(a) iyiz(A) = i(A)NiyCyis(ic(A)) = i(A)Ni,Cuis(A), by Theorem2.1(), and 50 iyic(A) = (ANc,is(A)NiyCis(A) =ANi,C,is(A)
= i,(A).

() iigA) = ig(A)Nicislin(A)) = iy(A)Niyc,is(A), by Theorem 2.1(a) and 50 iyig(A) = (ANi,cs(A)Niyc,is(A) =
ANiyC,is(A) = i(A).

(©) iiy(A) = i,(A)Nicisiy(A)) = iy(A)Nic,is(A), by Theorem 2.1(h) and so i,iy,(A) =(ANc,ics(A))Nic,is(A) =
ANiyc,is(A) =i(A).

(d) iyce(A) = ce(A)Niyc,is(ce(A)) = ce(A)Niyc,iscs(A), by Theorem 2.1(10) of [8] and so iyce(A) = ce(A)Nigcs(A) =
(Auiycs(A))Nises(A) = i5C5(A).

(e) iycy(A) =cy(A)Niycis(cy(A)) = cq(A)Niyc,iscsis(A), by Theorem 2.1(e) and so iycy(A) =(Auc,is(A))Niscsis(A) =
i5Cs15(A).

) ivcy(A) = cy (A)Niyc,is(cy(A)) = ¢y (A)Niyc,iscsis(A), by Theorem 2.1(j) and so ic,(A) =(AUi,c,is(A))Niscsis(A) =
15Csi5(A).

(g) ciiz(A) = 1(A)uc,ics(iz(A)) = ix(A)Uc,i csis(A), by Theorem 2.1(g) and so ¢,iz(A) = (ANc,is(A)) Ucsis(A) = csis(A).
© 2011, IJMA. All Rights Reserved 1323
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(h) The proof follows from (e).

(i) The proof follows from (f).
(j) The proof follows from (a).
(k) The proof follows from (b).
(1) The proof follows from (c).

Theorem: 2.3 Let (X,u) be a quasi-topological space and A be a subset of X. Then the following hold.

(a) csey(A) = cyes5(A) = c5(A). (g) cnee(A) = ¢, (A).

(b) 15i/(A) = 1,i5(A) = 15(A). (h) ¢,iz(A) = i(A) Uc,is(ie(A)) = cy(A)Ne,is(A).
(€) ¢yis(A) = Csi(A) = csiz(A). (1) ince(A) = c(A)Niycs(ce(A)) = in(A) Ui cs(A).
(d) i,c5(A) = i5¢,(A) = i5c5(A). () iedy(A) = in(A)Ncyis(A).

(€) iyis(A) = i5iy(A) = i5(A). (k) cecy(A) = cy(A) Uics(A).

() 1yie(A) = 1(A).

Proof:
(a) cse(A) =c5(A), by Theorem 2.1(r).

Again, ¢,c5(A) = c5(A)Uc,i cs(cs(A)) = cx(A).
(b) The proof follows from (a).

(€) ¢\is(A) = is(A)eylcs(is(A)) = is(A)csiz(A) = csis(A). Also, csiy(A) = c5(ANILC,is(A)) © ca(cs(A)NCsis(A)) = Cois(A).
Again, ci(A) = c5(ANi,Cis(A)) D cs(ANiyis(A)) = Cais(A).

(d) The proof follows from (c).

(@) iyis(A) = is(A)Ncyicslis(A)) = is(A)Ncsis(A) = is(A).

Again, isiy(A) = i5(ANc,iycs(A)) C is(A). Also, isiy(A) D is(ANi,cs(A)) D islis(A)Ni cs(A)) = is(A).

Hence, i,is(A) = isi,(A) = i5(A).

(£) iyiz(A) = i(A)Ni,cs(iz(A)) = i(A)Ni,csis(A),

by Theorem 2.1(g) and 50 iyis(A) = (ANc,is(A))Ni,Csis(A) = ANi,C,is(A) = iy(A).

(g) The proof follows from (f).

(h) ¢,(iz(A)) = iA)Ucis(iz(A) = i(A)Uc,is(A), by Theorem 2.1(f) and so c,(i(A)) = (ANcyis(A)Uc,is(A) =
(AUC,i5(A)NC,is(A) = cy(A)Ncyis(A).

(i) The proof follows from (h).
() 1dy(A) = in(A)Ncyis(in(A)) = iy(A)Nc,is(A), by Theorem 2.1(a).
(k) The proof follows from ().

Theorem: 2.4 Let (X,u) be a quasi-topological space and A be a subset of X. Then the following hold.

(@) i,cy(A) = iy(A)uiscs(A). (d) ANiyey(A) = c(A)Uiy(A) = in(A).
(b) cvif(A) = cy(A)Nc,is(A). (e) ANc,iy(A) = i(A)Ncy(A) = i(A).
() Auc,iy(A) = cy(A). (f) AUiye,(A) = ce(A)Uig(A) = ce(A).
Proof:

(a) iva(A) = CV(A)niuCpiﬁ(Cv(A)) = CV(A)miuCpiSCS(A)7

by Theorem 2.1(q) and so i,c,(A) =(A Uc,i,c5(A))Niscs(A) =(ANiscs(A)) U(c,i cs(A)Nises(A))
= (ANi,c5(A))Uiscs(A) = in(A)Uiscs(A) = in(A)Uics(A).

(b) The proof follows from (a).
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(c) A Uc,iy(A) = Au(cy(A)Ncyis(A)), by (b) and so Aurc,i(A) = (Aucy(A)N(AUC,i5(A)) = cy(A)Ncy(A) = cy(A).
(d) The proof follows from (c).
(e) ANcyiy(A) = AN(cy(A)Ncyis(A)), by (b) and so ANc,i(A) = (ANc,is(A))Ney(A) = i(A)Ncy(A) = i(A).
(f) The proof follows from (e).

Theorem: 2.5 Let (X,u) be a quasi-topological space and A be a subset of X. Then the following hold.

(a) izc(A) = c(A)Nc i cs(A). (d) i (A) = i,(A)Ni(A).
(b) cei(A) = i(A)Uic,is(A). (e) igly(A) = ie(A).

(c) cecy(A) = e (A)Uce(A). () cecy(A) = ¢\ (A).
Proof:

(@) ic\(A) = c(A)Ncis(c(A)) = ¢, (A)Neyiscs(A), by Theorem 2.1(q) and so izc,(A) = c(A)Nc,i,cs(A).

(b) The proof follows from (a).

(©) cecy(A) = cy(A) Uiyes(c,(A)) = c(A) Lics(A), by Theorem 2.1(r) and so czey(A) = ¢y (A) W(AUIc5(A)) = ¢(A) Uce(A).
(d) The proof follows from (c).

(e) igdy(A) = i (A)Ncyis(iy(A)) = i,(A)Ncyis(A), by Theorem 2.1(h) and so iy, (A) =(ANc,iucs(A))Nc,is(A) = ANcyis(A) =
i(A).

(f) The proof follows from (e).

Theorem: 2.6 Let (X, p) be a quasi-topological space and A be a subset of X. Then the following hold.

(@) inc\(A) = c,(A)Ni,c5(A). (e) iniy(A) =1i,(A).
(b) ci(A) =i (A)uc,is(A). () cpe(A) = cy(A).
(©) iyiy(A) = iy(A). (2) ii(A) =1,(A).
(d) chey(A) = cy(A). (h) ce(A) = ¢ (A).
Proof:

(a) iycy(A) = c(A)Niycs(cy(A)) = ¢ (A)Niucs(A), by Theorem 2.1(r).
(b) The proof follows from (a).

(©) ipiy(A) = i,(A)Nics(iy(A)) =(ANcyi,cs(A))Niycsiscs(A), by Theorem 2.1(k) and so iniy(A) =(ANc,i,cs(A))Niscs(A) =
ANiges(A) =iy (A).

(d) The proof follows from (c).

(€) iniy(A) = iy(A)NiyCsiv(A) = iy(A)Ni,csis(A), by Theorem 2.3(c) and 50 iyiy(A) =(ANi,Chis(A))Niycuds(A) = ANiyc is(A) =
iW(A).

(f) The proof follows from (e).

(8) 1:iu(A) = iel\(A)Uiyiy(A) =(i(A)Neyisiy(A))Ui(A), by (e) and 50 iiy(A) = iy(A).

(h) The proof follows from (g).

Theorem: 2.7 Let (X,u) be a quasi-topological space and A be a subset of X. Then the following hold.
(a) iyc\(A) = cy(A)Ncyi,Cs(A) = ¢ cs(A).

(b) cyiv(A) =1i,c,is(A).

Proof: (a) i,c,(A) = c,(A)Ncyiucs(cy(A)) = cy(A)Ncyiucs(A), by Theorem 2.1(r) and so iycy(A) =(Aucyi,cs(A))Neyiucs(A) =
CuiyCs(A).

(b) The proof follows from (a).

Theorem: 2.8 Let (X,p) be a quasi-topological space and A be a subset of X. Then the following hold.
(a) i5is(A) = 1415(A) = 15(A). (b) csce(A) = cies(A) = c5(A).
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(€) igie(A) = i4iz(A) = i(A). () i,i(A) = i(A)Ni,c,is(A).
(d) cece(A) = cece(A) = c(A). (0) ceCe(A) = c(A)ics(A).
(@) Li(A) = i (A) = iy(A). (p) icde(A) = 1(A)Nc,is(A).
(f) cvcs(A) = cscv(A) = CV(A)' (q) Can(A) = CJA)UC@I@(A)
(8) icdy(A) = iyi(A) = i(A). (1) iyie(A) = 1(A)Nizcs(A).
(h) Cec\u(A) = CWCS(A) = CS(A)' (S) C‘UCE(A) = CS(A)UiHCBiB(A).
(1) iECV(A) = CuiuCS(A)- (t) lwlh(A) = lb(A)ﬂCuléQ‘,(A)
() ceiv(A) = 1¢,is(A). (W) igi(A) = icin(A) = in(A).
(k) ciig(A) = i(A)Ucsis(A). (V) cyeelA) = ccy(A) = ¢y (A).

() iyee(A) = c(A)Niges(A).
(m) c\ce(A) = c(A)uc,iycs(A).

3"{%@ = i5(A), by Theorem 2.1(1). Again, i,is(4) = ids(A)Uiyis(A) = (i5(A) Neyialis(A)U(s(A)Niyc(is(A)) =is(A)Uis(A)
= i5(A).

Hence, isi,(A) = i,is(A) = i5(A).

(b) The proof follows from (a).

(©) ida(A) = iiz(A) Uin(A)) DiglizlA)Uie(iy(A)) = i A)UGLA)Ni(A) = i(A)).

Clearly, i<(i,(A))) < ix(A)). Hence, i:i,(4)) = ix(A)).

Again, i,i(A) = ix(i:(A)))Ui,(i(A))) = i(A))Uiy(A)), by Theorem 2.3(f) and so i;i<(A) = i«(A)). Hence, the proof follows.

(d) The proof follows from (c).

() iig(A))=1(A))Niyc,is(ie(A))) = 1(A))Niyc,is(A)), by Theorem 2.1(1) and so i,iz(A)) = (ie(A)) Uin(A))) Niyc,is(A)) =
((ANc,is(A)) UANI,cs(A)))Niyc,is(A) = ANiyc,is(A) = iy(A).

Again, igiy(A) = idy(A)Uini(A) =(i,(A)Nig(A))Uiy(A), by Theorems 2.5(d) and 2.6(e) and so i¢i,(A) = iy(A)Uiy(A) =i,(A).
(f) The proof follows from (e).

(g) 1gdy(A) = id (A)Uiyiy(A) = i(A)Uiy(A) = i(A), by Theorem 2.5(e) and Theorem 2.6(c). Also, i,i(A) = i,(iz(A)
Uin(A)) 2 i, (1(A)Uiy(in(A)) = i(A)Uin(A), and s0 iyi(A) = i(A).

(h) The proof follows from (g).

(1) iccy(A) = 1eeu(A) Uine(A) = (cu(A)Neyis(ey(A)) Lley(A)Niycs(cy(A))) = cu(A)N(cuiseu(A) Liyes(cy(A)) = c(A)N(cyiscs(A)
Ui,cs(A)), by Theorem 2.1(q) and (r) and 50 i,c,(A) = cy(A)Ncyi,Cs(A) = (Auc,ics(A))NC,iucs(A) = cuiucs(A).

(j) The proof follows from (i).

(k) cig(A) = 1(A)uc,i,cs(i(A)) = 1(A)uc,iy(csiscs(A)), by Theorem 2.1(0) and so ¢y (A) = i(A)Ucsiscs(A).
(1) The proof follows from (k).

(m) c,c(A) = cg(A)Uc,i,cs(ce(A)) = c(A)uc,iycs(A), by Theorem 2.1(m).

(n) The proof follows from (m).

(0) czCe(A) = co(A)Ui,cs(ce(A)) = c(A)uiycs(A), by Theorem 2.1(m).

(p) The proof follows from (o).
(@) cnce(A) = c(A)Ucise(A) = c(A)Uc,iscsis(A), by Theorem 2.1(n) and so c,ce(A) = c(A)Ucsis(A).

(r) The proof follows from (q).
(8) cyCe(A) = ce(A)Ui,cC,isCe(A) = ce(A)Ui,cisCsis(A), by Theorem 2.1(n) and so ¢,c(A) = c(A)Ui,cCsis(A).

(t) The proof follows from (s).
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(W) inig(A) = iy(i(A) Uin(A)) D iy(i(A))Uin(iy(A)) = i,(A)Uiy(A), by Theorem 2.3(f) and so iyi(A) D i,(A). Clearly, ini(A)
Ciy(A).

Hence i,i(A) = i,(A).

(v) The proof follows from (u).

Theorem: 2.9 Let (X,p) be a quasi-topological space and A be a subset of X. Then the following hold.
(@) ceie(A) =(ANc,is(A)) Ui Csis(A).

(b) iéCé(A) =(AUiMC5(A))ﬂCHi5€5(A).

Proof:

(a) cez(A) = iz(A)Uics(i(A)) =(ANc,is(A)) Uiycsis(A), by Theorem 2.1(g).

(b) The proof follows from (a).

Theorem: 2.10 Let (X,p) be a quasi-topological space and A be a subset of X. Then the following hold.

(@) yiy(A) = i,y (A) =(AUiscsis(A))NCsiscs(A). (K) iycq(A) C icce(A).

(b) Cyin(A) = in(A)uc,is(A) = cy(A)N(iucs(A))c,is(A)). (@) iecz(A) = c(A)Neyics(A).

(©) inCy(A) = c(A)Ni,ca(A) =(Auc,is(A))Niycs(A). (m) Cele(A) C cyig(A).

(d) AUcyiy(A) = cy(A). () cy(is(A)) = c,is(A).

(€) ANcyiy(A) = in(A)Uiz(A). (0) cyis(A) = iscy(A) = i5Csis(A) = 1,c,i5(A).
(f) AU cq(A) = cy(A)Nc(A). (p) cels(A) =1,c,is(A).

(2) ANiye,(A) = iy(A). (@ 1ce5(A) = cyiycs(A).

(h) i, (A) C Cyiy(A) and 50 i,Cy(A)Uc,iy(A) = cyiy(A). (1) iy(c5(A)) = cyiycs(A).

(i) CoinCy(A) = Cyig(A). (8) ce(iflA)) < iy(ey(A)) < ice(A).

(]) incnin(A) = incn(A)-

Proof:

(a) iycy(A) = cy(A)Ncyics(cy(A)) = (AUiyc,is(A))Neyiycs(A), by Theorem 2.1(i) and so i,c¢,(A) =(ANc,i,c5(A)) Ui c,is(A)
=(ANc,iuc5(A))Uic,isiy(A), by Theorem 2.1(h) and so iycy(A) = 1,(A)Ui,c,is(iy(A)) = ¢y (iy(A)).

(b) cniy(A) = iy(A)uc,is(iy(A)) = in(A)uc,is(A), by Theorem 2.1(a). Again,
(cn(AN(ics(A)uc,is(A)) = (Auc,is(A)N(3,cs(A)uc,is(A)) = cuis(A)U( ANiucs(A)) = in(A)c,is(A).

(c) incn(A) = cy(A)Ni,Cscq(A) = cy(A)Niycs(A), by Theorem 2.1(b) and so i,c,(A) =( Auc,is(A))Ni,cs(A).

(d) AUcyig(A) = AU(i(A)Uc,is(in(A)) = AU(iy(A)Uc,is(A)), by Theorem2.1(a) and so AUCin(A)=(AUc,is(A))Uiy(A) =
Ca(A)Uiy(A) = cy(A).

(€) ANcyin(A) = AN(iy(A)Uc,is(iy(A)) =(ANiy(A))Uc,is(A), by Theorem 2.1(a) and so ANcyiy(A) = iy(A)U(ANC,is(A) =
i, (A)Ui(A).

(f) The proof follows from (e).

(g) The proof follows from (d).

Ell;;.By (©), incy(A) = cy(A)Ni,c5(A) =(AUc,is(A))Ni,cs(A) =(ANiycs(A))I(C,is(A)Niucs(A))  in(A)Uc,is(A) = ¢,y (iy(A)), by
Hence, i,cq(A)Ucyin(A) = ¢, iy(A).

(1) Cyin(cy(A)) < cy(cn(iy(A))), by (h) and so cyin(cy(A)) < cy(iy(A)). Clearly, c,(iy(A)) < cyin(cy(A)).

Hence, the proof follows.

(j) The proof follows from (i).

(K) in(Cn(A)) =(ANi,C5(A))U(Chis(A)NiyCa(A)T(ANC i CH(A))UiLCHA) = (AUiCcs(A)Neyd cs(A) = ico(A), by Theorem 2.9
(b).

(1) icce(A) = co(A)Neyis(Ce(A)) = c(A)Ncyises(A), by 2.1(10) of [8].
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(m) By (b), c(iy(A) = cy(A)N(,cs(A)uc,is(A)=(AUc,is(A))N (1 cs(AIU cuis(A)) D (AUic,is(A)) Neyis(A) =(ANc,is(A))
Uiyculs(A) = c:dz(A), by Theorem 2.9(a).
() cy(i5(A)) = is(A)e,ds(is(A)) = is(A)cyis(A) = cis(A).

(0) cyis(A) = i5(A)iC,is(i5(A)) = iycuis(A)= 15Cs15(A). Again, i5(cy(A)) = is(AUICI5(A)) D i5(iuCuis(A)) = i5(isCsis(A)) D
iSCBig(A).

Again, i5(cy(A))C i5(cy(A)) < csis(A), by Theorem 2.1(c) and s0 i5(cy(A)) < isCsis(A).

Hence, cyi5(A) = i5cy(A) = i5C515(A) = i5¢u(i5(A).

(r) The proof follows from (p).

(s) iycs(A) = c5(A)Ncyiycs(cs(A))= cs(A)Nc i cs(A) = cuiucs(A).

(1) cee(A)=ix(A)Ui,c5(i(A)) = i(A)Ui,csis(A), by Theorem 2.1(g) and so c:iz(A) =(ANc,is(A)) Vi Csis(A) =
(Aui,c,is(A))Neyis(A) < (Auiye,is(A))Neyd,cs(A) = (AUi,c,is(A))Neyiycsey(A), by Theorem 2.1(i) and so c:ie(A) <
iyCy(A).

Again, i,cy(A) = c,(A)Ncyiucs(cy(A)) = (Auic,is(A))Ne, i cs(A), by Theorem 2.1(i) and so i,c (A)CAULC5(A))
N cuiscs(A ) = ce(A)Ncyis(ce(A)), by Theorem 2.1(10) of [8] and 50 iy,c\(A) = i(ce(A)).

Hence, the proof follows.

Theorem: 2.11 Let (X,1) be a quasi-topological space and A be a subset of X. Then the following hold.

(a) A en(d) if and only if c:(A) =1i,c5(A). (e) A ev(d) if and only if ¢, (A) = i,c,is(A).

(b) A is m-closed if and only if i:(A) = c,is(A). (f) A is v-closed if and only if i,,(A) = c,i,c5(A).

(c) A €&(8) if and only if ¢, (A) = c,is(A). (g) A ey(d) if and only if ¢,(A) = c,i,c5(A).

(d) A is &-closed if and only if i,(A) = i,c5(A). (h) A is y(6)-closed if and only if i,(A) = i,c,i5(A).
Proof:

(a) A en(d) if and only if A Ci,cs(A) if and only if cx(A) = AUi,c3(A) = i,c5(A).

(b) The proof follows from (a).

(c) A€ () if and only if A < ¢,is(A) if and only if c,(A) =AUc,is(A) = c,is(A).

(d) The proof follows from (c).

(e) Aev(d) if and only if A C iuc,is(A) if and only if ¢, (A) = AUi,c,is(A) = iycyis(A).
(f) The proof follows from (e).

(g) Ae y(9) if and only if A < c,i,c5(A) if and only if ¢,(A) = AUc,i,c5(A) = ¢, cs(A).
(h) The proof follows from (g).

Theorem: 2.12 Let (X,1) be a quasi-topological space and A be a subset of X. Then the following hold.

(a) cyis(A) = 1,¢,i5(A) = i5Csi5(A). () chie(A)=iy(A)cyiz(A).
(b) iWC5(A) = CHiHC(g(A) = Csing(A). (g) ich(A) = ingis(A).

(¢) cseqis(A) = c,iy(A). (h) c51(A) = csises(A).

(d) i5iycs(A)=1i,cu(A). (1) ceis(A) = 1,cd5(A).

(&) iyce(A) = cy(A)Niyc(A). (j) iscs(A) = cyiycs(A).
Proof:

(@) cyis(A) = is(A)iyc,is(is(A)) = is(A)Viyc,is(A) = i,Cyls(A) = 15Csi5(A).
(b) The proof follows from (a).

(€) cacyis(A) = ca(is(A)Ieyis(is(A)) D csis(A). Again, csehis(A) = ca(is(A)U cuis(is(A)) < ca(is(A)csis(A)) = csis(A).
This proves (c).

(d) The proof follows from (c).

©) in(Co(A)) = colA)Niyeal(co(A)) = (Cel)Ney(A)Niyea(es(A)) = ey(AN(eeAINiycaeu(A))). Again, ci(A)Ni,calc(A)) =
c:(A)Niycs(ce(A)Ney(A))= c(A)Niycsen(A) = ce(A)Nics(A), by Theorem 2.1(b). But ice(A) = cz(A)Niucs(c(A))=
ce(A)Ni,c5(A), by 2.1(7) of [8] and so cx(A)Niycs(ce(A)) = iyce(A). Hence, i,(cg(A)) = cy(A)Niy(ce(A)).

(f) The proof follows from (e).
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(g) i5(ce(A)) = iz(c(A)Necy(A)) = is(ce(A))Nis(cy(A)) = izcu(A)Niscsis(A), by Theorem 2.1(10) of [8] and 3.1(e) and so
i5(c:(A)) = iscsis(A).
(h) The proof follows from (g).
(1) c(i5(A)) = cx(i5(A)) Ny (15(A)) = i,c5i5(A)Nesis(A), by Theorem 2.10(p) and (n), and so c.(i5(A)) = i,Csi5(A).
(j) The proof follows from (i).

Theorem: 2.13 Let (X,p) be a quasi-topological space and A be a subset of X. Then the following hold.

() i5(ce(A))= ce(i5(A)) = i5Csiz(A). (2) 1y(Cce(A)) = c(iy(A)) = iy(cy(A)).

(b) c5(i(A)) = ig(c5(A)) = csiscs(A). (h) cy(i(A)) = ig(Ccy(A)) = cy(iy(A)).

() igce(A)) = iz(ce(A)). (1) iy(cy(A)) = culin(A)) = iy(cq(A)).

(d) c.(ie(A)) = ce(i(A)). () cy(iy(A)) = ig(cy(A)) = cy(in(A)).

(e) ie(ce(A)) = ce(A)Ncsis(A). (k) 1g(ce(A)) = c(1(A)). (D) colis(ce(A)) = co(ic(A)).
() ce(i(A)) = 1(A)Viscs(A). (m) ig(Ce(A)) = ig(Ce(is(A))).

Proof:

(a) i5(ce(A)) = i5(c(A)Ncy(A)) = i5(ce(A))Nizen(A) = i5¢5(A)Niscsis(A), by Theorem 2.1(10) and 2.1(e) and so i5(ce(A))
= i5¢515(A).Also, ¢.(15(A)) = ce(is(A))Ney(is(A)) = (15(A) Liycsis(A)N(15(A) e, izis(A)) = (15(A)Uiycsis(A))Ne,is(A)

= 15(A)U1HC515(A)

(b) The proof follows from (a).

(¢) ig(ce(A)) = ie(ce(A))uiy(cz(A)). Now in(ce(A)) = c:(A)N iucs(ce(A)) = c(A)Nises(A), by 2.1(7) of [8] and so iy(cz(A)) <
ce(A)Ncyiycs(A) = i(ce(A)), by Theorem 2.10(1). Clearly iz(ce(A)) < ig(cz(A)). Hence, is(ce(A)) = i(ce(A)).

(d) The proof follows from (c).
(e) iz(c(A)) = c(A)Ncyis(ce(A)) = co(A)Ncyiscsiz(A), by (a) and s0 ix(ca(A)) =(ce(A))Ney(A))Nesis(A)= cz(A)Ncsis(A).
(f) The proof follows from (e).

(2) in(c(A)) = c(A)Niycs(ce(A)) = (c(A)Ney(A)Niyes(Ca(A)). Now, c(A)Niycs(Ce(A)) D ce(A)Niyes(A) = i,cs(A). Again,
cx(A)Niycs(ce(A)) < ce(A)Niycs(cy(A)) = ce(A)Nics(A), by Theorem 2.1(b) and so cx(A)Ni cs(c(A)) C 1,c5(A).

Hence, i,(ci(A)) = c (A)Niycs(A) = iy(cy(A)), by Theorem 2.10(c). To prove the next equality, cy(in(A)) = ce (iy(A)) N ¢,
(iy(A)) = 15 c5(A)N(cy(A)N(scs(A)ucsis(A)) by Theorem 2.10(b) and so cg(iy(A)) = iscs(A)Ncy(A) = iy(cy(A)), by
Theorem 2.10(c).

(h) The proof follows from (g).

(1) iy(ce(A)) = ce(A)Ncyics(ce(A)) = (cn(A)Nce(A))Ne iy cs(A), since cs(ce(A) = c5(A), by Theorem 2.1(m).
Therefore, i,(ci(A)) = ¢ (A)N(ce(A)Ncyis(ce(A)), by 2.1(10) of [8] and so iy(c(A)) = cy(A)Niglce(A)) = incy(A), by
Theorem 2.10(c).

(j) The proof follows from (i).

(k) ie(ce(A)) = iz(ce(A))Uiy(ce(A)) = (ce(A)Nesiz(A))Vin(cy(A)), by (e) and (g) and 50, ix(c:(A)) = cx(A) Nesis(A)) U

(A U csi5 (A)) N isc5(A), by Theorem 2.10(c). Therefore, i(c.(A)) = ((AUics(A))Nc,is(A)) U((Auc,is(A))Nics(A)) =
((ANc,i5(A)U(es(A)Neis(A)I((ANT,c5(A))U(cyis(A) Niyes(A))=(1(A)I(iucs(A) Neyis(A))) Uiy (A) U (,cs(A)Neyis(A)))
=(iz(A)Uin(A)U(ucs(A)Neis(A)). Again, cig(A)= cx(ig(A)Ncy(1(A)) = (e(A)Uics(A)Neyin(A), by (f) and (h) and so
Cele(A) = (1(A)Uics(A))N([Ay(A)uc,is(A)), by Theorem 2.10 (b) and so c.ig(A) = (ix(A)Uiy(A))U(c,is(A)Nics(A)).

Hence, i.(c(A)) = ¢ (A).

(1) celie(ce(A)) = colce(is(A))), by (k) and 50 c,(ic(c(A)) = cx(ix(A)).

(m) By (k), ¢,(i,(A)) = ix(ci(A)). Hence, i:c,(i,(A))= ic(ca(A)).

Theorem: 2.14 Let (X,n) be a quasi-topological space and A be a subset of X, then the following statements are

equivalent.
(a) A is e-open.
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(b) A =1i,(A)Ui(A).
(©) A ccy(in(A)).

Proof:
(a) = (b). If A is e-open, then Ac i c5(A) Uc,is(A). Now, A = iy(A)Ui(A)=(ANi,c5(A)U(ANCcis(A) = A N (5 (AU
cus(A)) = A. Hence, A = i,(A)Ui(A).

(b) = (o). If A =i, (A)UigA), then A =1,(A)V(ANC,i5(A)) < iy(A)uc, i5(A)=Cyiy(A), by Theorem 2.10.(b).
Hence AcC c,jin(A).

(©) = (). A C cyiy(A) implies that A < iy(A)Uc,is(in(A)) = in(A)uc,is(A), by Theorem 2.1(a) and so A < (AN i,c5(A))
Uc,is(A) Ciycs(A)uc,is(A) and so A is e-open.

Corollary: 2.15 Let (X,p) be a quasi-topological space, then m(5)) = &(5).
Proof: The Proof follows from the Theorem 2.8(c).

Theorem: 2.16 Let (X,p) be a quasi-topological space and A be a subset of X, then the following hold.
() c(A) = c(A)Ncy(A).
(b) i(A) = i:(A)Uiy(A).

Proof:

(a) Since c(A) < cx(A) and c(A) < c,(A), we have ¢ (A)  c(A)Ncy(A).

Again, cx(A)Ncy(A)=(A Uics(A)N(A Uc,is(A)) = Au(ics(A)Neis(A)) © AU(cs(ce(A))Neyis(ce(A))) C Auc(A)= cy(A).
Hence c(A) = cx(A)Ncy(A).

(b) The proof follows from (a).

Theorem: 2.17 Let (X,n) be a quasi-topological space and A be a subset of X, then the following statements are
equivalent.

(@) Ay ().

(b) Ac iy(cy(A)).

(c) Ac ie(ce(A)).

Proof:

(a) = (b). If Ac (), then A =i, (A) < iy(c,(A)).

(b) = (c). The proof follows from Theorem 2.10(s).

(¢) = (a). A C i(ce(A)) implies that A < cx(A)Ncyis(ce(A)) = ce(A)Nc,iucs(A), by Theorem 2.1(10) of [8] and so Ac
cul,cs(A). Hence Ae y(9).

Theorem: 2.18 Let (X,p) be a quasi-topological space and A be a subset of X, then the following hold.
(a) EM(8)) = &(d).

(b) EM(3)) = w(n(8)) = &(d).

Proof:

(a) Suppose A€ {(M()). Then, A < ¢, (i,(A)) which implies that A < (AN, c5(A)) Uc,is(A), by Theorem 2.1(a) which in
turn implies that A < i,c5(A)Uc, i5(A) and so A€ £(5). Hence, {(M(5)) < &(5).

Conversely suppose, A€ &(d). A (d) if and only if A i,c5(A)Uc,is(A) if and only if

A = AN(ics(A)uc,is(A))=(ANi,cs(A)U(ANC,is(A)) < (ANics(A))uc,is(A) = cy(iy(A)), by Theorem 2.10(b) and so
Ae EM(8) which implies that £(n(3) D €(5). This proves (a).

(b) EM(d)) = y(M(d)), by Theorem 2.10(i) and each is equal to &(5), by (a).

Theorem: 2.19 Let V be a subset of a space (X,u). Then the following hold.
(a) Vis n-open if and only if V ci,(cy(V).

(b) Vis e-open if and only if V < ¢,(i,(V).

Proof:
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(a) Let V be n-open. Then iy(V) = V and so V < iy(cy(V)). Also, V C iy(cy(V)) < in(cs(V)) = cs(V)Niycs(cs(V)) =
cs(V)Niyes(V) =1i,c5(V) and so Vis n- open.

(b) Let V be e-open. Then V c ¢,is(V)uics(V) and so  V = (cis(V)Uics(V)HNV = (cds(VINV)U(Ges(VINV) <
iy(VMucdis(V) = i,(V)uc,is(iy(V), by Theorem 2.1(a) and so V < ¢, (iy(V)).

Conversely, suppose V c ¢,(iy(V)) = i,(V)uc,(i5G0,(V)) = (V Nies(V))ucey(is(V)), by Theorem 2.1(a) and so V C
iucs(V)uc,is(V). Hence, Vis &- open.

We define the following new families of generalized topologies.

e(v(8)) = {AlAciy(c,(A))ucy(iv(A)},

e(&(8)) = {AlA cigcy(A)ce(iA)},

eM@) = { A1A Ciy(cy(A))cy(iy(A))},

e(y®) = { A1A Ciy(cy(A)ucy(iy(A)},

&(ed)) = {A1Ac i(c(A)ey(iA)},

V(&) = {ATAciy(c(i(A))},

&&®)) = {AlAcC c(i(A)},

nEeE®)) = {AlAcic(A))} and

y(e©d)) = {ATAc clic(A))}.

The following Theorem 2.20 gives the relations between the above generalized topologies. Theorem 2.20(a) shows that
Theorem 3.6.5 of [4] is true for the generalized topology of all 3-open sets, if v &€ I'y. Theorem 2.20(b) shows that
Lemma 3.8 of [4] is true for the generalized topology of all 8-open sets, if (X,p) is a quasi-topological space.

Theorem: 2.20 If (X,p) is a quasi-topological space, then the following hold.

(@) EMG)) = y((©)) = £M(E)) = &)

(b) v(&(8)) = &(&(8))=n(&(d)) = &(d).

Proof: (a) eM(d)) = &(8), by Theorem 2.10(b) and (h), and so (a) follows from Theorem 2.18(b).

(b) &(&(8)) =n((d)) = &(e(d))by Theorem 2.13(k). &(e(5))= w(&(3)), by Theorem 2.13(1). v(&(5)) = n(&(d)), by Theorem
2.13(m). Now, v(g(3))=v(§M(d))), by Theorem 2.18(a). By Theorem 2.3 of [4], v(EM(3))) =EM(S)) = &(5), and so
v(g(8)) = €(3). Hence (b) follows.

3. CHARACTERIZATIONS OF SOME GENERALIZED OPEN SETS

In this section, we characterize some of the family of generalized open sets mentioned above by the interior and closure
operators.

Theorem: 3.1 If (X,p) is a quasi-topological space and A be a subset of X, then the following are equivalent.

(a) A is v-open. () A cicy(A).
(b) iyi(A) = A. () ceiv(A) = i5Csi5(A).
(©) iyiy(A) = A. (h) A ccyivA). () ii(A) =A.

(d) iiy(A) = A.
(e) A Ciyey(A).

Proof: (a) and (b) are equivalent by Theorem 2.2(a).
(a) and (c) are equivalent by Theorem 2.2(b).

(a) and (d) are equivalent by Theorem 2.2(c).

(a) and (e) are equivalent by Theorem 2.2(e).

(a) and (f) are equivalent by Theorem 2.2(f).

(a) and (g) are equivalent by Theorem 2.5(b).

(a) and (h) are equivalent by Theorem 2.7(b).

(a) and (i) are equivalent by Theorem 2.8(e).

Theorem: 3.2 If (X,p) is a quasi-topological space and A be a subset of X, then the following are equivalent.
(a) A is &-open.(b) A C c,iz(A). (¢) A C ¢\is(A). (d) A C csif(A). (o) i (A) = A.

Proof:

(a) and (b) are equivalent by Theorem 2.2(g).

(a) and (c) are equivalent by Theorem 2.3(c).

(a) and (d) are equivalent by Theorem 2.3(c).

(a) and (e) are equivalent by Theorem 2.8(c).
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Theorem: 3.3 If (X,p) is a quasi-topological space and A be a subset of X, then the following are equivalent.

(a) A is n-open. () A Cic/(A).
(b) A Ciyce(A). () iniy(A) = A.
(c) A ciycs(A). (8) iyis(A) = A.

(d) A cisc(A).

Proof:

(a) and (b) are equivalent by Theorem 2.2(d).
(a) and (c) are equivalent by Theorem 2.3(d).
(a) and (d) are equivalent by Theorem 2.3(d).
(a) and (e) are equivalent by Theorem 2.6(a).
(a) and (f) are equivalent by Theorem 2.6(c).
(a) and (g) are equivalent by Theorem 2.8(u).

Theorem: 3.4 If (X,u) is a quasi-topological space and A be a subset of X, then the following are equivalent.
(a) Ais g-open. (b)id,(A)=A. "

Proof: (a) and (b) are equivalent by Theorem 2.8(g).

Theorem: 3.5 If (X,p) is a quasi-topological space and A be a subset of X, then the following are equivalent.

(a) A is y-open. (d) A ciyey(A).
(b) A Cc\iy(A). (e) A Cigcy(A).
(c) A cicy(A). () iyis(A) =A.
Proof:

(a) and (b) are equivalent by Theorem 2.2(i).

(a) and (c) are equivalent by Theorem 2.5(a).

(a) and (d) are equivalent by Theorem 2.7(a).

(a) and (e) are equivalent by Theorem 2.8(i).

(a) and (f) are equivalent by Theorem 2.8(t).
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