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ABSTRACT
Certain new classes containing the linear operator obtained as a linear combination of Ruscheweyh derivative and a
new generalized multiplier differential operator have been considered. Sharp results concerning coefficients, distortion
theorems of functions belonging to these classes are discussed.
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1. INTRODUCTION

Denote by U the open unit disc of the complex plane, U ={z € C: |Z| <1}. Let H(U) be the space of holomorphic
functions inU. Let A denote the family of functionsin H(U) of the form

f(z):z+iakz". (1.1)
k=2

In [19], S R Swamy has introduced the following new generalized multiplier differential operator (See [17] also).

Definition 1.1: Let me N, = N U{0}, >0,y > 0, a real number such thatx + £ > 0. Then for f € A, a

new generalized multiplier operator Ior["’/}’y was defined by

0 1 f f| an m m-1
10, t@)=1@) .11, f(2)=2 (Z)+ﬂza(+z)ﬂ+7z @ . I, t@)=1,,, (0 ().

Remark 1.2: Observe that for f (z) given by (1.1), we have

los, £(2) = Z+i‘bk(a,ﬁ,%m)ak2k, (1.2)
k=2
where
@k(a’ﬁ,’%m):(a+kﬂ+k(k—1)7j | w3
a+pf
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We note that:

) 120 f (@) =10,1(2) (8D

i) 1% 50 f(2) =Dy £(2), £20 (),

i) 13 5 50f(2)=1,f(2), 1>-1 =0 ([3]and it has been considered for| > 0) and

W) 1 F(2) =D, 1(2),4 > (u/(u+1)), 12> 0([7] and they have examined for 4 > u > 0).
Remark 1.3:0) 1", . ., f(2)=D},f(2), 1> >0, was also studied by Raducanu in [8]. ii) D;" f (z) was

introduced by Salagean [10] and was considered for m > 0 by Bhoosnurmath and Swamy in [2].

Definition 1.4: ([9]) Forme N, f € A, the operator R™ is defined by R™ : A— A,
R°f(z)=f(z) R* f(2)=12f (2),...(M+DR™ f(2)=2(R"f(z)) + mR" f(z),z V.

Remark 1.5: If f (2) = Z+Z::2akzk e A, thenR" f(2) =z +Z::sz(m)aka' zeU , where

Q, (m) = % (1.4)

We now state the following new operator, introduced by us in [6]:

Definition 1.6: Let f e Ame N, =N uU{0},6 >0, >0,y >0, areal number such that

o+ [ > 0. Denote by Rlam’ﬂ’m, the operator given by RI:’M’& A A,
RIZ,, sT(2)=QL-0)R"f(2)+a], f(2),z€U.
Clearly i) RI} ;o =RI ;5 [13], [14], [15] and [16], i) RI ;o =R™ [10]andiii) Rl , , =17, [19].

Remark 1.7: If f(z) =z + Zf:z a, 2", then from (1.2) and Remark 1.4, we have

RIZ, s T(@) =2+, {1-6)Q,(m)+5D,(a,B,7.m}a, ", z€U,
where @, (a, f,7,m)and Q, (M) are as defined in (1.3) and (1.4), respectively.

Motivated by a paper of Swamy [12] we now introduce new classes, shown below:

Definition 1.8: Let f e Ame N, =NuU{0},6>0,p€[01),0(0,1],5>0,y >0, areal number such

P m
thata + B> 0. Then f(z)isintheclass S; ;5

(o, p)ifand only if
2RI, 5f (@)
ng]ﬁ‘,m‘f (z)
2RIZ .5 (2)
ng‘ﬂvyvgf (2)

‘<O‘,Z€U. (1.5)

Definition 1.9: Let f e Ame N, =NuU{0},6>0,p€[01),0(01],5>0,y >0, areal number such
thata + > 0. Then f(z)isintheclass K, (o, p) ifand only if

[Z(RIZ s, s f @]
(RI] ;. 5F(2)
[Z2(RID ., 5T (2)]
(ZRIcT,ﬁ,y,Jf(Z))‘

<o,2e€U. (1.6)
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Definition 1.10: Let f e Ame N, =N U{0},6 20,p<[01),0 € (01], =0,y >0, areal number such

that oz + 3 > 0.Then f (z)isinthe class C;', ;(o, p)ifand only if

‘ RITs, T
(RI7 5, 5T (@)
[2(RI7 5, sF ()]
(Rllo?ﬁ‘y‘df(z))l

‘<0,ZEU. 1.7
+1—2p‘

Definition 1.11: Letf e Ame N, =NuU{0},41>0,0>0,p€[01),0€(01],20,y 20, o a real
number such that & + /3 > 0.Then f (z)is inthe class P, ; (o, p) if and only if

RIM, 5f(2) .
‘“/}%M(ngﬁmf (2)) 1

‘ (1-2)

) <o,2eU. (1.8
Z

+ARID 5 5T(2)) +1-2p

‘ -4)

Definition 1.12: Letf e AmeN,=NuU{0},1>0,06>0,p€[01),0€(01],>0,>0,xa real
number such that & + 3 > 0. Then f (z)isintheclass H}, , , ;(o, p) ifand only if

| (RIT,, st @) +a2(RIT, st (2) 1 |
|RIZ g, 5T (@) +22(RIT 5, 5 (2)) +1-2p |

<o,2eU. (1.9

Let T denote the subclass of A consisting of functions whose non-zero coefficients, from second on, are negative; that
is, an analytic function f isin T if and only if it can be expressed as

f(z)=2-), ,a2“a,20zeU.

If f €T, then RI7, f(2)= Z—Zfzzé’k (ar, B,7,5,m)a, 2", where
S (a, By, 0,m)=(1-6)Q,(m)+ 5D, (a,B,7,m), (1.10)

Q,(m)and @, (ar, f,y,m)are as defined in (1.3) and (1.4), respectively. We denote by TS, (o, p),
m

TK 5, s(0.p), TCJ, s(o,p), TP}, ,s(c,p) and TH , . (0,p). the classes of functions
f(z) eT satisfying (1.5), (1.6) (1.7),(1.8) and (1.9) respectively.

In this paper, sharp results concerning coefficients and distortion theorems for the cIassesTS[Tﬁ’m(a,p),
K5, s(0.p), TC, s(o.p), TP}, . s(o,p) and THY , . (o, p)are determined. Throughout this

paper, unless otherwise mentioned we shall assume that &, (&, B, 7,0, m) is as defined in (1.10).
2. COEFFICIENT BOUNDS

In this section we study the characterization properties for functions in the cIassesTSSﬁ'y’&(O',p),

TKzﬂ'm(a,p), TC" . .(o,p). Tngﬁ%M(a,p) and THZ’M’M(O',p) are determined, following the

a,p.y,0
papers of V. P. Gupta and P. K. Jain [4], [5] and H. Silverman[11].

Theorem 2.1: A function fisin TS, (o, p)ifand only if

Z{k -l+ok+1-2p)¥  (a, B,7,0,m)a, <20(1-p). (2.1)
k=2
The result is sharp.
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Proof: Suppose f satisfies (2.1).Then for |Z| <1, we have
ZRID,,T(@) =RIT,, 12 -0fz(RI],, (@) +@-2p)RI], ,f(2)
_Zfzz(k -1¢, (@, B,7,6,ma,z"

Hence, by using the maximum modulus theorem and (1.5), f € TS;"ﬁYM (o,p).

For the converse, assume that
Z(Rw‘p,y‘&f (Z))v _ 1
RIZ 5.,.61(2)

2RI 5,51 (2)
RIZ 5, sT(2)

_Z;:z (k-1 & (@, B,7,86,m)a, 2" |

2 |<o,zeU.
20(-p)-Y ;o (kH1-2p)¢, (7. m)az" |

+1—2p‘

Since Re(z) < |Z| forall z €U, we obtain

zrzz(k_l)gk (a,ﬂ,%&m)akzk

Re <o.
20(1-p) - Y, 0k +1-2p)C, (a, B, 7,5, m)a, 2"

m

-0 - p)- Y, (k+1-20)C, (@ .. 6,mha, 2"
< Zf:z(k =1 (@, By, 6,ma, —20(1-p)+ Zfzzo'(k +1-2p)¢ (@, B, 7,6, m)a,

22

Choose values of z on the real axis so that (Z(RI wprs | (z) /RI PN | (Z)) is real. Upon clearing the denominator

in (2.2) and letting Z — 1through real values, we have the desired inequality (2.1).The
function
20(1-
f(z2)=2- ol-p) " k>
k-1+ok+1-20))¢, (a,B,y,0,m)
is an extremal function for the theorem.

Theorem 2.2: i) A function fisin TK7', (o, p)if and only if

i(k +1)(k -1+ ok +1-2p))¢, (@, B, 7,8, m)a, < 4c(l-p).

i) Afunction fisin TC (o, p)ifand only if

> k(k -1+ ok +1-2p))¢, (a, B.y,6,m)a, <20(1-p).
k=2
The results (2.4) and (2.5) are sharp.

The proof of Theorem 2.2 is similar to that of Theorem 2.1 and so omitted. Extremal functions are given by

f,(z)=2- 4o(1-p) 24 k>2,
(K +1)(k -1+ o(k +1-2p))C, (@, B, 7,5, m)

and

f(2)=2- 20(1= p) ¥ k>2,
k(k-1+o(k +1-2p)), (at, B, 7,5, m)
respectively.

a

S 1+ Ak -D)(A+ 0), (o B 7, 5., <20(1—p)

Theorem 2.3: i) A function f(z) e TP}, . (o, p)ifand only if
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i) Afunction f(z) eTH , , ;(o, p)ifand only if

Z k@+ Ak -2))1+ o), (a, B,y,6,m)a, <20(1-p). (2.9)

k=2
The results (2.8) and (2.9) are sharp.

The proof of Theorem 2.3 is similar to that of Theorem 2.1 and so omitted. Extremal functions are given by

20(1-p) 7k

f,(2) = k>2, (2.10)
@+ Ak -D)A+0), (@, B.7.0, m)
and
fo(2) = 20(1-p) 7 k>2 @2.11)
k(1+ Ak -D))1+0), (a, 8,70, m)
respectively.
Corollary 2.4: i) Iff eTS],  (o,p) thena, < 20(1-p) k>2, with

(k—1+ o(k+1-2p)), (@, B,7,6,m)’
equality only for the functions of the form f, (z) , which is as defined in (2.3).

4o(1-p)
k+)(k-1+ok+1-2p))¢, (a, B,y,5,m)
equality only for the functions of the form f, (z) , which is as defined in (2.6).

20(1-p)

k(k-1+o(k +1-2p))¢ (a, B,7,5,m)’
equality only for the functions of the form f,(z), which is as defined in (2.7).

20(1-p)
L+ Ak -D)U+0)S\ (@, B y,6,m)
equality only for the functions of the form f,(z) , which is as defined in (2.10).

20(1-p)
k(1+ Ak =1))A+0)¢, (o, B,7,6,m)
equality only for the functions of the form f (z) , which is as defined in (2.11).

i) 1ffeTK?, s(o,p)thena, < k > 2, with

i) 1ff eTC, (o, p) thena, < k > 2, with

iv) Iff(2)eTP;, . s(c,p) thena, < k > 2, with

v) 1ff(z)eTHY , , ;(0,p) then &, K > 2, with

3. DISTORTION THEOREMS

Theorem 3.1: If a function f(z) eTisin TS], (o, p) then

()| 2 [ 2011~ p) 7.z €U
1+ 0@-2p))¢, (@, B,7,6,m)
and
() <[]+ 201~ p) 7*.zeu,
(1+0@-2p))¢, (@, B,7,6,m)
with equalities for f (z) = z — 20(1-p) 22,z £1).

A+0(B=2p))5, (e, B,y,6,m)
Proof: In view of Theorem 2.1, we have
1+ 0B-20)C 5@ By, 5.mY 8, < S (K-1+ ok +1-2p)C, (@, f.7,6,ma, < 25(1- p).
iak < 20(1-p)

Thus <
k=2 AL+0(@B-2p))¢,(a, B,y,6,m)

Sowegetfor zeU ,

© 2017, IJMA. All Rights Reserved 12
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2 ol-p) 2
@ 2 < G G @ e
On the other hand
IENERS B 20(1-p) 2
ORI 22 e om

Theorem 3.2: i) If afunction f(z) e Tisin T(7, , (o, p) then

()22~ 4ol p) 72,2 €U
31+ 0(3-2p)¢, (o, B,7,6,m)

and

(@) <[]+ dol=p) 4* zeU.
3+ 0(@-2p)S, (@ f7,5,m)}

ii) If afunction f(z) eTisin TR, , (o, p) then

(@) 2] ol p) 7.z €U
1+ 0@-2p)S, (@ f7,6,m)

and

()] <)o+ ol=p) 7% 2.
(1+0(E-2p)¢, (@, 5,7,6,m)}

The proof of Theorem 3.2 is similar to that of Theorem 3.1.

Remark 3.3:The bounds of Theorem 3.2 are sharp since the -equalities are attained for the

functions f (z) =z — 4oll=p) 2* (z=+#r)and
31+0(@B-2p))¢,(a, B,y.6,m)
f(z)=z- ol-p) 2% (z = £r),, respectively

1+0(B-2p))¢, (e, B,y,6,m)
Theorem 3.4: i) If afunction f(z) e Tisin TP;, (o, p) then

()22~ 20(1=p) 2,2 eU
L+ DA+ ), (@, f,7,6,m)}

and

() <[]+ 2001 p) 7z U
L+ A+ 0)E (@, By, 5,m)

ii) If afunction f(z) eTisin THY ,  s(c,p) then

ORI A 7z eu
L+ A+ 0)E (@, B,y 8,m)

and

()] <2+ ol =p) 7z eU
1+ A)A+0)S, (e, By, 6,m)
The proof of Theorem 3.2 is similar to that of Theorem 3.1.

Remark 3.5: The bounds of Theorem 3.2 are sharp since the equalities are attained for the functions

f(z)=z- 20(1= p) 22 (z=+r)and
1+ A)A+0)¢,(a B,y.6,m)}
f(z)=z- ol=p) 2% (2 = 4r), respectively

1+ A)A+0)¢, (@ B,y,6,m)}
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