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ABSTRACT 
Numerical solution of the generalized equal width (GEW) equation is obtained by using the multigrid method based on 
finite difference method. The motion of a single solitary wave, interaction of two solitary waves and the Maxwellian 
initial condition pulse are studied using the proposed method. The numerical solutions are compared with the known 
analytical solutions. Using 𝐿𝐿2, 𝐿𝐿∞  error norms and conservative properties of mass, momentum and energy, accuracy 
and efficiency of the mentioned method will be established through comparison with other methods. 
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1. INTRODUCTION 
 
The GEW equation is given by the following form: 

𝑢𝑢𝑡𝑡 + 𝜖𝜖𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝜇𝜇𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 = 0,                                                                                                                                   (1) 
with the physical boundary condition s𝑢𝑢 → 0 as 𝑥𝑥 → ±∞, where 𝑡𝑡  is time and 𝑥𝑥 is the space coordinate, 𝑝𝑝 is a positive 
integer, 𝜀𝜀 and 𝜇𝜇 are a positive parameter. For this study boundary conditions are chosen 

𝑢𝑢(𝑎𝑎, 𝑡𝑡) = 0,    𝑢𝑢(𝑏𝑏, 𝑡𝑡) = 0, 
𝑢𝑢𝑥𝑥(𝑎𝑎, 𝑡𝑡) = 0,   𝑢𝑢𝑥𝑥(𝑏𝑏, 𝑡𝑡) = 0,                                                                                                                                (2) 
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 (𝑎𝑎, 𝑡𝑡) = 0,  𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 (𝑏𝑏, 𝑡𝑡) = 0, 

and the initial condition as 
𝑢𝑢(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥), 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, 

where 𝑓𝑓 is a localized disturbance inside the considered interval and it will be determined later. In the fluid 
problems,𝑢𝑢is related to the wave amplitude of the water surface or similar physical quantity. In the plasma 
applications,𝑢𝑢is negative of the electrostatic potential. Therefore, the solitary wave solution of equation (1) has an 
important role in the motion of non-linear dispersive waves. 
 
In the literature, the GEW equation has been many studies. Hamdi et al. [1] got the exact solitary wave solutions of the 
generalized EW and the generalized EW-Burges equation. The collocation method based on quadratic was presented by 
Evans and Raslan [2], Raslan [3] introduced cubic B-splines to get the numerical solution of the GEW equation. 
Petrov-Galerkin finite element method using a quadratic B-spline function as the trial function was investigated for 
solving the GEW equation by Roshan [4]. The GEW equation was solved numerically using the meshless method 
based on a global collocation with standard types of radial basis functions (RBFs) by Panahipour [5]. Taghizadeh et al. 
[6] have constructed the homogeneous balance method to obtain the exact travelling wave solutions of the GEW 
equation. Battal Gazi Karakoc and Geyikli [7] solved the GEW equation by a cubic B-splines Galerkin appoach. 
 
In this paper, we study the GEW equation by using the multigrid method. We derive a numerical method based on the 
multigrid technique based on finite difference method for obtainning the numerical solution of GEW equation in 
Section 2. In Section 3, we introduce the numerical results for solving the GEW equation through some well known 
standard problems. 
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2. NUMERICAL METHOD  
 
We apply the full multigrid algorithm for the GEW equation as shown in [8-11]. Assuming the initial condition 
𝑢𝑢(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥) and the solution 𝑢𝑢(𝑥𝑥, 𝑡𝑡), 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 has the usual partition with a space step size ∆𝑥𝑥 and a 
time step size ∆𝑡𝑡  (𝑡𝑡𝐾𝐾+1 = 𝑡𝑡𝐾𝐾 + ∆𝑡𝑡,𝐾𝐾 = 0, 1, 2, …). For convenience, the GEW equation (1) is rewritten in the form: 

𝑢𝑢𝑡𝑡 +
𝜀𝜀

𝑝𝑝 + 1
(𝑢𝑢𝑝𝑝+1)𝑥𝑥 − 𝜇𝜇𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 = 0,                                                                                                                     (3) 

 
The back-time and centre-space difference for equation (3) is 

𝑢𝑢𝑖𝑖 ,𝑛𝑛𝑘𝑘 − 𝑢𝑢𝑖𝑖 ,𝑛𝑛−1
𝑘𝑘

∆𝑡𝑡
+

𝜀𝜀
𝑝𝑝 + 1

�𝑢𝑢𝑖𝑖+1,𝑛𝑛
𝑘𝑘 �𝑝𝑝+1 − �𝑢𝑢𝑖𝑖−1,𝑛𝑛

𝑘𝑘 �𝑝𝑝+1

2∆𝑥𝑥
 

                       −𝜇𝜇
�𝑢𝑢𝑖𝑖+1,𝑛𝑛

𝑘𝑘 − 𝑢𝑢𝑖𝑖+1,𝑛𝑛−1
𝑘𝑘 � − 2�𝑢𝑢𝑖𝑖 ,𝑛𝑛𝑘𝑘 − 𝑢𝑢𝑖𝑖 ,𝑛𝑛−1

𝑘𝑘 � + (𝑢𝑢𝑖𝑖−1,𝑛𝑛
𝑘𝑘 − 𝑢𝑢𝑖𝑖−1,𝑛𝑛−1

𝑘𝑘 )
(∆𝑥𝑥)2(∆𝑡𝑡)

= 0,                            (4) 

where 𝑖𝑖 = 1, … , 2𝑘𝑘 − 1,𝑛𝑛 = 1, … , 2𝑘𝑘 , 𝑘𝑘 = 1, … ,𝑀𝑀 for a set grids 𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑀𝑀 . 
 
Step-1: 𝐾𝐾 = 0,𝑢𝑢(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥). 
 
Step-2: Starting from𝑘𝑘 = 1 in the coarse grid, we can calculate the approximate value 𝑢𝑢𝑖𝑖 ,𝑛𝑛  at two points using equation 
(4) leading to: 

𝑢𝑢𝑖𝑖 ,𝑛𝑛1 = 𝑢𝑢𝑖𝑖 ,𝑛𝑛−1
1 +

1
(2(∆𝑥𝑥)2 + 4𝜇𝜇) �2𝜇𝜇�𝑢𝑢𝑖𝑖+1,𝑛𝑛

1 + 𝑢𝑢𝑖𝑖−1,𝑛𝑛
1 − 𝑢𝑢𝑖𝑖+1,𝑛𝑛−1

1 − 𝑢𝑢𝑖𝑖−1,𝑛𝑛−1
1 �� 

�           −
𝜀𝜀

𝑝𝑝 + 1
(∆𝑥𝑥)(∆𝑡𝑡) ��𝑢𝑢𝑖𝑖+1,𝑛𝑛

1 �𝑝𝑝+1 − �𝑢𝑢𝑖𝑖−1,𝑛𝑛
1 �𝑝𝑝+1�� ; 𝑖𝑖 = 1,𝑛𝑛 = 1,2.                                                  (5) 

 
The right hand side for equation (5) can be computed using the initial and boundary conditions. 

 
Step-3: Interpolating the grid functions from the coarse grid to fine grid using linear interpolation 𝐼𝐼𝑘𝑘𝑘𝑘+1, in which  

𝑢𝑢𝑘𝑘+1 = 𝐼𝐼𝑘𝑘𝑘𝑘+1𝑢𝑢𝑘𝑘 ,                                                                                                                                                     (6) 
 
Step-4: Doing relaxation sweep on 𝐺𝐺𝑘𝑘+1 using the point relaxation 

𝑢𝑢𝑖𝑖 ,𝑛𝑛𝑘𝑘+1 = 𝑢𝑢𝑖𝑖 ,𝑛𝑛−1
𝑘𝑘 +

1
(2(∆𝑥𝑥)2 + 4𝜇𝜇) �2𝜇𝜇�𝑢𝑢𝑖𝑖+1,𝑛𝑛

𝑘𝑘 + 𝑢𝑢𝑖𝑖−1,𝑛𝑛
𝑘𝑘 − 𝑢𝑢𝑖𝑖+1,𝑛𝑛−1

𝑘𝑘 − 𝑢𝑢𝑖𝑖−1,𝑛𝑛−1
𝑘𝑘 �� 

�          −
𝜀𝜀

𝑝𝑝 + 1
(∆𝑥𝑥)(∆𝑡𝑡) ��𝑢𝑢𝑖𝑖+1,𝑛𝑛

𝑘𝑘 �𝑝𝑝+1 − �𝑢𝑢𝑖𝑖−1,𝑛𝑛
𝑘𝑘 �𝑝𝑝+1�� ;     𝑖𝑖 = 1, … , 2𝑘𝑘+1 − 1,𝑛𝑛 = 1, … , 2𝑘𝑘+1.         (7) 

 
Step-5: Computing the residuals 𝑟𝑟𝑘𝑘+1 on 𝐺𝐺𝑘𝑘+1and inject them into 𝐺𝐺𝑘𝑘  using full weighting restriction 𝐼𝐼𝑘𝑘+1

𝑘𝑘  to get 𝑟𝑟𝑘𝑘  as: 
𝑟𝑟𝑘𝑘 = 𝐼𝐼𝑘𝑘+1

𝑘𝑘 𝑟𝑟𝑘𝑘+1,                                                                                                                                                       (8) 
 
Step-6: Computing an approximate solution of error 𝑒𝑒𝑘𝑘 . 
 
Step-7: Interpolating the solution of error𝑒𝑒𝑘𝑘onto 𝐺𝐺𝑘𝑘+1, 

𝑒𝑒𝑘𝑘+1 = 𝐼𝐼𝑘𝑘𝑘𝑘+1𝑒𝑒𝑘𝑘 ,                                                                                                                                                      (9) 
and adding it to 𝑢𝑢𝑘𝑘+1 which is the approximate value of𝑢𝑢 on the fine grid with 𝑘𝑘 = 2. 
 
By taking this solution on coarse grid and repeating steps 3-7, we obtain the approximate values of𝑢𝑢on the grid with 
𝑘𝑘 = 3 and so 𝑘𝑘 = 4, 5, … ,𝑀𝑀 the final value is the solution at the time level 𝐾𝐾 + 1. 
 
Step-8: 𝐾𝐾 = 𝐾𝐾 + 1, go to step 2 (lead to the  solution at higher time level as needed). 
 
3. NUMERICAL EXAMPLES AND RESULTS  
 
In this section, numerical solutions of GEW equation are obtained for standard problems as: the motion of single 
solitary wave, interaction of two solitary waves and the development of Maxwellian initial condition into solitary 
waves. 
 
The analytical solution of the GEW equation (1) can be obtained by using the transformation 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝑥𝑥 − 𝑐𝑐𝑐𝑐), 
where𝑐𝑐 represents the constant velocity of the wave travelling in the positive direction of the𝑥𝑥 -axis and the analytic 
solution can be expressed in the form [2, 3, 4, 7] 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = �
𝑐𝑐(𝑝𝑝 + 1)(𝑝𝑝 + 2)

2𝜀𝜀
𝑠𝑠𝑠𝑠𝑠𝑠ℎ2 �

𝑝𝑝
2√𝜇𝜇

(𝑥𝑥 − 𝑐𝑐𝑐𝑐 − 𝑥𝑥0)�
𝑝𝑝

,                                                                      (10) 
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Where 𝑥𝑥0 is an arbitrary constant. For the GEW equation, it is important to discuss the following three invariant 
conditions given in [2, 3, 4, 7] which respectively correspond to conversation of mass, momentum and energy: 

𝐼𝐼1 = � 𝑢𝑢 𝑑𝑑𝑑𝑑 = ∆𝑥𝑥�𝑢𝑢𝑖𝑖 ,𝑛𝑛 ,
𝑁𝑁

𝑖𝑖=1

𝑏𝑏

𝑎𝑎
 

𝐼𝐼2 = � (𝑢𝑢2 + 𝜇𝜇(𝑢𝑢𝑥𝑥)2)𝑑𝑑𝑑𝑑 = ∆𝑥𝑥���𝑢𝑢𝑖𝑖 ,𝑛𝑛�
2 + 𝜇𝜇�(𝑢𝑢𝑥𝑥)𝑖𝑖 ,𝑛𝑛�

2� ,
𝑁𝑁

𝑖𝑖=1

𝑏𝑏

𝑎𝑎
                                                               (11) 

𝐼𝐼3 = � 𝑢𝑢𝑝𝑝+1 𝑑𝑑𝑑𝑑 = ∆𝑥𝑥�(𝑢𝑢𝑖𝑖 ,𝑛𝑛)𝑝𝑝+2.
𝑁𝑁

𝑖𝑖=1

𝑏𝑏

𝑎𝑎
 

 
The accuracy of the method is measured by both the 𝐿𝐿2 error norm 

𝐿𝐿2 = ‖𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑢𝑢𝑁𝑁‖2 = �∆𝑥𝑥��𝑢𝑢𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − (𝑢𝑢𝑁𝑁)𝑖𝑖 �
2

𝑁𝑁

𝑖𝑖=0

 ,                                                                                (12) 

and the 𝐿𝐿∞  error norm 
𝐿𝐿∞ = ‖𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑢𝑢𝑁𝑁‖∞ = max

𝑖𝑖
|𝑢𝑢𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − (𝑢𝑢𝑁𝑁)𝑖𝑖| ,                                                                                        (13) 

to show how good the numerical results in comparison with the exact results. 
 
3.1The Motion of Single Solitary Wave 
 
Consider equation (1) with boundary conditions (2) and the initial condition 

𝑢𝑢(𝑥𝑥, 0) = �
𝑐𝑐(𝑝𝑝 + 1)(𝑝𝑝 + 2)

2𝜀𝜀
𝑠𝑠𝑠𝑠𝑠𝑠ℎ2 �

𝑝𝑝
2√𝜇𝜇

(𝑥𝑥 − 𝑥𝑥0)�
𝑝𝑝

,                                                                               (14) 

different values of 𝑝𝑝, 𝑐𝑐 and amplitude �𝑐𝑐(𝑝𝑝+1)(𝑝𝑝+2)
2𝜀𝜀

𝑝𝑝
 and the same values of ∆𝑥𝑥 = 0.1,∆𝑡𝑡 = 0.2, 𝜀𝜀 = 3, 𝜇𝜇 = 1 and 

𝑥𝑥0 = 30 over the interval [0, 80] is considered to coincide with papers[4, 7].  
 
Case-1: we choose the quantities 𝑝𝑝 = 2, 𝑐𝑐 = 1

32
 and 1

2
. Hence, the solitarywave has amplitude 0.25 and 1, respectively.  

 
The calculated quantities of the invariants are presented in Tables 1, 2. As can be seen in Table 1, 2, three invariants are 
almost constant as the time increases and we have found out that the quantity of the error norms 𝐿𝐿2 and 𝐿𝐿∞  are 
reasonably small. 
 

Table-1: Invariants and error norms for single solitary wave with 𝑝𝑝 = 2, amplitude = 0.25,∆𝑥𝑥 = 0.1, 
∆𝑡𝑡 = 0.2, 𝜀𝜀 = 3, 𝜇𝜇 = 1 and 0 ≤ 𝑥𝑥 ≤ 80. 

𝑡𝑡 𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 𝐿𝐿2 × 105 𝐿𝐿∞ × 105 
0 0.7853966199 0.1666662968 0.005208333331 0.000000000 0.00000 
5 0.7853966129 0.1666662138 0.005208328142 0.036593427 0.03523 
10 0.7853966027 0.1666661274 0.005208322719 0.073126604 0.07055 
15 0.7853965918 0.1666660402 0.005208317288 0.109768130 0.10597 
20 0.7853965730 0.1666659518 0.005208311746 0.146341818 0.14142 

 
Table-2: Invariants and error norms for single solitary wave with𝑝𝑝 = 2, amplitude = 1,∆𝑥𝑥 = 0.1, 

∆𝑡𝑡 = 0.2, 𝜀𝜀 = 3, 𝜇𝜇 = 1 and 0 ≤ 𝑥𝑥 ≤ 80. 
𝑡𝑡 𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 𝐿𝐿2 × 103 𝐿𝐿∞ × 103 
0 3.141586518 2.666660747 1.333333333 0.000000000 0.0000000 
5 3.141586479 2.666501571 1.333013988 0.099074261 0.1031408 
10 3.141586472 2.666022600 1.332694855 0.198280452 0.2065635 
15 3.141586474 2.665703797 1.332375906 0.297634570 0.3097387 
20 3.141586466 2.665385179 1.332057146 0.397150640 0.4121295 

  
Case-2: if 𝑝𝑝 = 3, 𝑐𝑐 =0.001 and 0.3, the solitary wave has amplitude 0.15 and 1. The obtained resultsare given in Tables 
3,4. It is observed from Table 3, 4 that three invariants are nearly unchanged as the time processes and the values of the 
error norms 𝐿𝐿2 and 𝐿𝐿∞are adequately small. 
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Table-3: Invariants and error norms for single solitary wave with 𝑝𝑝 = 3, amplitude = 0.15, ∆𝑥𝑥 = 0.1, 

∆𝑡𝑡 = 0.2, 𝜀𝜀 = 3, 𝜇𝜇 = 1 and 0 ≤ 𝑥𝑥 ≤ 80. 
𝑡𝑡 𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 𝐿𝐿2 × 107 𝐿𝐿∞ × 107 
0 0.4189155504 0.05497501959 0.00007330778 0.0000000000 0.000 
5 0.4189155480 0.05497501753 0.00007330777 0.1727595028 0.178 
10 0.4189155417 0.05497501594 0.00007330777 0.3343260913 0.340 
15 0.4189155392 0.05497501447 0.00007330776 0.5053116238 0.506 
20 0.4189155318 0.05497501238 0.00007330775 0.6821458112 0.691 

 
Table-4: Invariants and error norms for single solitary wave with𝑝𝑝 = 3, amplitude = 1,∆𝑥𝑥 = 0.1, 

∆𝑡𝑡 = 0.2, 𝜀𝜀 = 3, 𝜇𝜇 = 1 and 0 ≤ 𝑥𝑥 ≤ 80. 
𝑡𝑡 𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 𝐿𝐿2 × 103 𝐿𝐿∞ × 103 
0 2.804364205 2.463133856 0.9855655469 0.0000000000 0.0000000 
5 2.804364169 2.462970930 0.9854023227 0.0490037002 0.0611103 
10 2.804364161 2.462808123 0.9852392180 0.0981543350 0.1220840 
15 2.804364127 2.462645334 0.9850761297 0.1474675836 0.1827248 
20 2.804364080 2.462482607 0.9849131086 0.1969502601 0.2432723 

  
Case-3: we take the parameters𝑝𝑝 = 4, 𝑐𝑐 =0.02. This leads to amplitude1. The obtained results are listed in Table 5 
which clearly shows that the change of the invariants from their initial count are small. Also, we observed that the 
quantity of the error norms𝐿𝐿2 and 𝐿𝐿∞  is sensibly small. 
 

Table-5: Invariants and error norms for single solitary wave with𝑝𝑝 = 4, amplitude = 1,∆𝑥𝑥 = 0.1, 
∆𝑡𝑡 = 0.2, 𝜀𝜀 = 3, 𝜇𝜇 = 1 and 0 ≤ 𝑥𝑥 ≤ 80. 

𝑡𝑡 𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 𝐿𝐿2 × 103 𝐿𝐿∞ × 103 
0 2.622052433 2.355649252 0.7853981633 0.000000000 0.0000000 
5 2.622052366 2.355555685 0.7853043758 0.030041836 0.0430082 
10 2.622052330 2.355462162 0.7852106141 0.060207252 0.0857518 
15 2.622052332 2.355368741 0.7851169641 0.090498118 0.1281052 
20 2.622052336 2.355275363 0.7850233414 0.120915385 0.1713846 

  
The comparison of our results with the ones obtained by Petrov-Galerkin method [4] and cubic B-splines Galerkin [7] 
at𝑡𝑡 = 20 is given in Table 6. From this table, we can conclude that the values of three invariants are to be close to each 
other. The magnitude of our error norms is smaller than the ones given by [4, 7] for p = 2, 3 and 4. 
 

Table-6: For𝑝𝑝 = 2, 3 and 4, Comparisons of result for the single solitary wave with ∆𝑥𝑥 = 0.1, ∆𝑡𝑡 = 0.2, 
𝜀𝜀 = 3, 𝜇𝜇 = 1 and 0 ≤ 𝑥𝑥 ≤ 80. 

𝑝𝑝 2 3 4 

𝐼𝐼1 
Petrov-Galerkin (quadratic)[4] 

Galerkin (cubic) [7] 
Present method 

0.7853980 
0.7853968 
0.7853965 

0.4189160 
0.4189154 
0.4189155 

2.6220600 
2.6327833 
2.6220523 

𝐼𝐼2 
Petrov-Galerkin (quadratic)[4] 

Galerkin (cubic) [7] 
Present method 

0.1666690 
0.1666663 
0.1666659 

0.0549783 
0.0549805 
0.0549750 

2.3561500 
2.3730032 
2.3552753 

𝐼𝐼3 
Petrov-Galerkin (quadratic)[4] 

Galerkin (cubic) [7] 
Present method 

0.0052082 
0.0052082 
0.0052083 

0.0000733 
0.0000733 
0.0000733 

0.7853440 
0.8023383 
0.7850233 

𝐿𝐿2 × 103 
Petrov-Galerkin (quadratic)[4] 

Galerkin (cubic) [7] 
Present method 

0.0025017 
0.0783378 
0.0014634 

0.0000640 
0.0028248 
0.0000682 

2.3049900 
8.9061700 
0.1209153 

𝐿𝐿∞ × 103 
Petrov-Galerkin (quadratic)[4] 

Galerkin (cubic) [7] 
Present method 

0.0027516 
0.0444850 
0.0014142 

0.0000820 
0.0018329 
0.0000691 

1.8828500 
8.2199100 
0.1713846 

 
3.2 Interaction of Two Solitary Waves 
 
We use the initial condition 

𝑢𝑢(𝑥𝑥, 0) = � �
𝑐𝑐𝑖𝑖(𝑝𝑝 + 1)(𝑝𝑝 + 2)

2𝜀𝜀
𝑠𝑠𝑠𝑠𝑠𝑠ℎ2 �

𝑝𝑝
2√𝜇𝜇

(𝑥𝑥 − 𝑥𝑥𝑖𝑖)�
𝑝𝑝

2

𝑖𝑖=1

,                                                                        (15) 
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which produces two positive solitary waves having different amplitudes of magnitudes 1 and 0.5 at the samedirection, 
where 𝑐𝑐𝑖𝑖  and 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1, 2 are arbitrary constants. 
 
Three sets of parameters have been constructed by taking the values of first parameters 𝑝𝑝 = 2, 𝑐𝑐1 = 0.5 and𝑐𝑐2 = 0.125, 
second parameters𝑝𝑝 = 3, 𝑐𝑐1 = 0.3 and 𝑐𝑐2 = 0.0375 and third parameters 𝑝𝑝 = 4, 𝑐𝑐1 = 0.2 and 𝑐𝑐2 = 1

80
. The computer 

program is run until time𝑡𝑡 = 60, 100 and 120, respectively. The other parameters are considered as ∆𝑥𝑥 = 0.1, ∆𝑡𝑡 =
0.25, 𝜀𝜀 = 3, 𝜇𝜇 = 1, 𝑥𝑥1 = 15, 𝑥𝑥2 = 30 and 0 ≤ 𝑥𝑥 ≤ 80 to coincide with papers [4, 7]. To prove the conserved quantities 
of the invariants𝐼𝐼1, 𝐼𝐼2 and𝐼𝐼3, the calculated values are given in Table 7, 8, 9 which show that the invariant quantities are 
compatible with [7]. 

 
Table-7: The invariants for interaction of two solitary wave with 𝑝𝑝 = 2, 𝑐𝑐1 = 0.5, 𝑐𝑐2 = 0.125, 𝑥𝑥1 = 15, 𝑥𝑥2 = 30, 

∆𝑥𝑥 = 0.1,∆𝑡𝑡 = 0.2, 𝜀𝜀 = 3, 𝜇𝜇 = 1 and 0 ≤ 𝑥𝑥 ≤ 80. 
𝐼𝐼1  𝐼𝐼2  𝐼𝐼3 

𝑡𝑡 Present method [7]  Present method [7]  Present method [7] 
0 4.712379141 4-71237  3.333328363 3.33332  1.416669724 1.41666 
10 4.712378516 4.71236  3.333075144 3.33331  1.416419291 1.41665 
20 4.712378540 4.71235  3.332822114 3.33332  1.416169063 1.41666 
30 4.712378509 4.71260  3.332569134 3.33416  1.415918898 1.41758 
40 4.712378494 4.71234  3.332316258 3.33345  1.415668856 1.41699 
50 4.712378491 4.71210  3.332063495 3.33290  1.415418902 1.41652 
60 4.712378530 4.71213  3.331810916 3.33296  1.415169155 1.41651 

 
Table-8: The invariants for interaction of two solitary wave with𝑝𝑝 = 3, 𝑐𝑐1 = 0.3, 𝑐𝑐2 = 0.0375,  𝑥𝑥1 = 15, 𝑥𝑥2 = 30, 

∆𝑥𝑥 = 0.1,∆𝑡𝑡 = 0.2, 𝜀𝜀 = 3, 𝜇𝜇 = 1 and 0 ≤ 𝑥𝑥 ≤ 80. 
𝐼𝐼1  𝐼𝐼2  𝐼𝐼3 

𝑡𝑡 Present method [7]  Present method [7]  Present method [7] 
0 4.206537586 4.20653  3.079567950 3.07987  1.016366206 1.01634 
10 4.206537036 4.20653  3.079440079 3.07989  1.016238629 1.01634 
20 4.206537063 4.20652  3.079312391 3.07988  1.016111204 1.01634 
30 4.206537080 4.20653  3.079184721 3.07991  1.015983819 1.01634 
40 4.206537125 4.20677  3.079057141 3.07050  1.015856513 1.01634 
50 4.206537123 4.20793  3.078929536 3.07362  1.015729168 1.01633 
60 4.206537137 4.20616  3.078802008 3.07947  1.015601922 1.01633 
70 4.206537185 4.20558  3.078674537 3.07863  1.015474709 1.01634 
80 4.206537175 4.20509  3.078547045 3.07800  1.015347499 1.01633 
90 4.206537170 4.20490  3.078419573 3.07777  1.015220316 1.01633 

100 4.206537204 4.20503  3.078292202 3.07797  1.015093215 1.01634 
 

Table-9: Theinvariants for interaction of two solitary wave with𝑝𝑝 = 4, 𝑐𝑐1 = 0.2, 𝑐𝑐2 = 1
80

, 𝑥𝑥1 = 15, 𝑥𝑥2 = 30, 
∆𝑥𝑥 = 0.1,∆𝑡𝑡 = 0.2, 𝜀𝜀 = 3, 𝜇𝜇 = 1 and 0 ≤ 𝑥𝑥 ≤ 80. 

𝐼𝐼1  𝐼𝐼2  𝐼𝐼3 
𝑡𝑡 Present method [7]  Present method [7]  Present method [7] 
0 3.933078206 3.93307  2.944562781 2.94521  0.7976713094 0.79766 
10 3.933077741 3.93310  2.944489638 2.94529  0.7975980766 0.79773 
20 3.933077729 3.93309  2.944416562 2.94527  0.7975248961 0.79771 
30 3.933077759 3.93309  2.944343551 2.94527  0.7974517703 0.79770 
40 3.933077788 3.93310  2.944270522 2.94529  0.7973786281 0.79773 
50 3.93307770 3.93320  2.944197494 2.94553  0.7973054617 0.79795 
60 3.933077768 3.93388  2.944124470 2.94703  0.7972323156 0.79942 
70 3.933077796 3.93601  2.944051552 2.94212  0.7971592672 0.79505 
80 3.933077795 3.93285  2.943978608 2.94529  0.7970862078 0.79862 
90 3.933077870 3.93222  2.943905767 2.94436  0.7970132516 0.79812 

100 3.933077870 3.93161  2.943832843 2.94366  0.7969402008 0.79805 
110 3.933077872 3.93095  2.943805678 2.94291  0.7968864548 0.79799 
120 3.933077871 3.93026  2.943798537 2.94212  0.7967767656 0.79794 
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3.3 The Maxwellian Initial Condition 
 
Evolution of a train of solitary waves of the GEW equation has been studied using the Maxwellian initial condition 

𝑢𝑢(𝑥𝑥, 0) = 𝑒𝑒−(𝑥𝑥−20)2 ,                                                                                                                                           (16) 
and the boundary conditions 𝑢𝑢(0, 𝑡𝑡) = 𝑢𝑢𝑥𝑥(0, 𝑡𝑡) = 𝑢𝑢(40, 𝑡𝑡) = 𝑢𝑢𝑥𝑥(40, 𝑡𝑡) = 0. 
 
It is known that the behaviour of the solution with the Maxwellian condition (16) depends on the values of 𝜇𝜇. So we 
have considered various values for 𝜇𝜇. The computations are carried out for the cases 𝜇𝜇 = 0.1, 0.05, 0.025 and 0.01 
which are used in the earlier papers [3, 4]. The numerical conserved quantities with 𝜇𝜇 = 0.1, 0.05, 0.025  and 0.01are 
given in Table 10, 11, 12.  It is observed that the obtained values of the invariants remain almost constant during the 
computer run. 
 

Table-10: Invariants of GEW equation using the Maxwellian condition,𝑝𝑝 = 2, 𝜇𝜇 = 0.1, 0.05, 0.025, 0.01. 
𝑡𝑡 𝜇𝜇 𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 𝜇𝜇 𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 
0 

0.1 

1.7724503 1.3786858 0.88622692 

0.025 

1.7724503 1.2846570 0.88622692 
4 1.7724503 1.3770924 0.88460963 1.7724503 1.2835450 0.88287632 
8 1.7724503 1.3755023 0.88300024 1.7724503 1.2824399 0.87957135 
12 1.7724503 1.3739073 0.88139732 1.7724504 1.2813364 0.87629839 
0 

0.05 

1.7724503 1.3159999 0.88622692 

0.01 

1.7724503 1.2658513 0.88622692 
4 1.7724503 1.3150250 0.88373231 1.7724503 1.2646271 0.88203137 
8 1.7724503 1.3140541 0.88125940 1.7724503 1.2634136 0.87792085 
12 1.7724503 1.3130844 0.87880282 1.7724503 1.2622013 0.87386607 

 
Table-11: Invariants of GEW equation using the Maxwellian condition,  𝑝𝑝 = 3, 𝜇𝜇 = 0.1, 0.05, 0.025, 0.01. 

𝑡𝑡 𝜇𝜇 𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 𝜇𝜇 𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 
0 

0.1 

1.7724503 1.3786858 0.79266545 

0.025 

1.7724503 1.2846570 0.79266545 
4 1.7724503 1.3782203 0.79135853 1.7724503 1.2839697 0.78959818 
8 1.7724503 1.3777554 0.79005758 1.7724503 1.2832853 0.78657424 
12 1.7724503 1.3772901 0.78876131 1.7724503 1.2826000 0.78357877 
0 

0.05 

1.7724503 1.3159999 0.79266545 

0.01 

1.7724503 1.2658513 0.79266545 
4 1.7724503 1.3154128 0.79050965 1.7724503 1.2650769 0.78861198 
8 1.7724503 1.3148271 0.78837224 1.7724503 1.2643080 0.78464973 
12 1.7724503 1.3142410 0.78624809 1.7724503 1.2635366 0.78074216 

 
Table-12: Invariants of GEW equation using the Maxwellian condition,  𝑝𝑝 = 4, 𝜇𝜇 = 0.1, 0.05, 0.025, 0.01. 

𝑡𝑡 𝜇𝜇 𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 𝜇𝜇 𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 
0 

0.1 

1.7724503 1.3786858 0.72360125 

0.025 

1.7724503 1.2846570 0.72360125 
4 1.7724503 1.3783822 0.72249261 1.7724503 1.2841870 0.72072800 
8 1.7724503 1.3780785 0.72138878 1.7724503 1.2837184 0.71789629 
12 1.7724503 1.3777744 0.72028866 1.7724503 1.2832480 0.71509097 
0 

0.05 

1.7724503 1.3159999 0.72360125 

0.01 

1.7724503 1.2658513 0.72360125 
4 1.7724503 1.3156072 0.72167451 1.7724503 1.2653109 0.71962366 
8 1.7724503 1.3152148 0.71976393 1.7724503 1.2647734 0.71574262 
12 1.7724503 1.3148216 0.71786476 1.7724503 1.2642325 0.71191641 

 
4. CONCLUSION 
 
In this paper, we adapted the use of multigrid technique to study the GEW problem. We investigated our scheme 
through single solitary wave in which the analytic solution is known. The interaction of two solitary waves and 
Maxwellian initial condition where the analytic solutions are unknown during the interaction were studied by extending 
our scheme. By calculating the error norms𝐿𝐿2, 𝐿𝐿∞  and conservative properties of mass, momentum and energy the 
performance and accuracy of the method were illustrated. The computed results showed that our scheme is a successful 
numerical technique for solving the GEW problem and can be also efficiently applied for solving a large number of 
physically important non-linear problems. 
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