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ABSTRACT 
In this paper, we investigate a generalization of CS-modules (or extending modules)  called weak CS-modules, study 
the nature of their interaction with other modules and find results to show their relationship with CS-modules, quasi-
continuous modules and other modules. We emphasize the study of finite direct sum of modules, their interaction with 
other modules namely, quasi-continuous modules, CS-modules and weak CS-modules. 
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1. INTRODUCTION 
 

A module M is called CS (or extending) if every submodule of M is essential in its direct summand.  Alternatively, a 
module M is called CS (or extending) if every compliment of M is a direct summand. It is well known that every CS 
module is CESS-module and every CESS-module is weak CS-modules [1]. Some properties of weak CS-modules 
behave like the of CS modules. It was drafted in [2], that a finite direct sum of relatively injective weak CS-modules is 
weak CS. In this paper, we discuss the properties of weak CS-modules and study the relationship between weak        
CS-modules, CS-modules, uniform modules, quasi-continuous (QC) modules and other modules.  
 
2. PRELIMINARIES 
 
Throughout this paper, R will denote a ring with identity and M a unitary right R- module. A right R-module M is said 
to be indecomposable if it is nonzero and cannot be expressed as a direct sum of two nonzero R-submodules of M. We 
consider the following conditions for a module M: 
(C1)  Every submodule of M is essential in a direct summand of M.  
(C2)  Every submodule isomorphic to a direct summand of M is itself a direct summand of M. 

(C3)  If A, B are direct summand of M with A∩B = 0, then A⊕ B is a direct summand of M. 
 
A module M is CS if it satisfies condition (C1). A module M is called a CESS-module if every complement in M with 
essential socle is a direct summand of M. 
 
Definition 2.1: A module M is called weak CS-module if every semisimple submodule of M is essential in a direct 
summand of M. Semisimple modules, (Quasi-) injective modules, (Quasi-) continuous modules are all examples of 
weak CS-modules. 
 
Definition 2.2: A module M is called weak quasi-continuous if M is a weak CS-module and satisfies the condition 
(C3). And a module M is called weak continuous if M is a weak CS-module and satisfies the condition (C2). 
 
Definition 2.3: A module is called a uniform module if the intersection of any two non-zero submodules is nonzero. 
Equivalently, M is uniform if every nonzero submodule of M is essential in M. 
 
Lemma 2.1: ([1], Lemma 1.1) Every CS-module is weak CS-module. 
 
Remark: The converse of the above lemma may not hold true in general. Consider the following example. 
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Example 2.1: The Z-module M = Z/pZ ⊕  Q , where p is prime, is a weak CS-module but not a CS-module. 
The Z-module Z/pZ is simple and hence CS and Q is an injective Z-module. Clearly, M is a weak CS-module but not a 
CS-module. As we see that M satisfies the condition (C2) but not (C1). Similarly, we can say that M is a weak 
continuous module but not a continuous module. 
 
Lemma 2.2: ([2] Corollary 1.5; [5]) 
2.2.1 Any direct summand of weak CS-module is weak CS. 
2.2.2 Any direct summand of weak QC-module is weak QC.  
 
Lemma 2.3: ([2], Theorem 1.9) 
If M = M1

⊕……⊕Mn is a finite direct sum of weak CS-modules Mi , where for each i, Mi is Mj-injective,  j≠ i, then 
M is a weak CS-module. 
 
We shall now proceed to the main findings of this paper. 
 
Theorem 3.1: Let M = M1

⊕……⊕Mn be a finite direct sum of modules. If M is a quasi-continuous module, then M 
is a weak CS-module.    
 
Proof:  If M = M1

⊕……⊕Mn is quasi-continuous module, then each Mi is quasi-continuous and Mj-injective  for all  
j>i, by ([5], Corollary 2.14 ) 
 
It is known that any quasi-continuous module is CS, which implies that Mi is CS and by Lemma 2.1, one can conclude 
that each Mi is weak CS-module. 
 
Then, for M=⊕ i=1,.,nMi , where each Mi is Mj-injective, j > i, M is weak CS-modules by Lemma 2.3. 
  

Corollary 3.2: A finite direct sum of relatively injective QC module is weak CS-module. 
 

Proof:  Let M = M1
⊕……⊕Mn , where each Mi  is relatively injective quasi-continuous module. Then, according to 

[5, Corollary 2.14], M is quasi-continuous and hence a CS-module.  
 
Now as we know, by lemma 2.1, that any CS-module is weak CS-module, we finally conclude that M is a weak CS-
module. 
 
Example 3.1: ([4], Example 3.2.5) 

Consider a Z-module M = Z2
⊕ Z8, where Z2 and Z8 are weak CS but not relatively injective and M being a weak CS-

module. 
 

Proof: An Z2 is simple, Z8 is uniform, clearly Z2 and Z8 are weak CS-modules. But Z2 is not Z8 injective. 
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