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ABSTRACT 

In this paper, a comparative study is carried out to investigate the forecasting capability of feed-forward neural 

networks model and Box-Jenkins methods, which are among those forecasting models most successfully applied in 

practice. This study investigates application of neural networks models and the results of which will be compared with 

those obtained by Box-Jenkins method. 
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1. INTRODUCTION 

 

Accurate models for electric power load forecasting are essential to the operation and planning of a utility company. 

Load forecasting helps an electric utility to make important decisions including decisions on purchasing and generating 

electric power, load switching, and infrastructure development. Load forecasts are extremely important for energy 

suppliers, financial institutions, and other participants in electric energy generation, transmission, distribution, and 

markets.  The total amount of electricity load [in GW] consumed in an electrical power system must be balanced with 

an equal amount of generated power. There is no efficient way of storing large amounts of electrical energy. To 

maintain this power balance between production and   consumption the power input to the power system must be 

controlled. The electric power production may be planned by using various methods to forecast future power needs. To 

plan the production in the power generation plants, it is therefore very important to have accurate forecasts of the power 

consumption. There are various methods to produce such forecasts. A method may be said to be good if it at most times 

is able to forecast the power load with good precision. 

 

The data used in this paper is collected from Andhra Pradesh Transmission Company (APTRANSCO), Hyderabad, 

India. In, practice, we require forecasts of electricity load for one day or one month or one year in advance, which is 

helpful in planning of the production of the electricity. The data set contains daily electricity load in Andhra Pradesh 

from April 01, 2005 to March 31, 2010 consisting of 1826 observations, in which 1796 daily observations used for 

estimation purposes (in-sample) and the remaining 30 daily observations left for forecast evaluation (out- of-sample).   

 

Table 1: Average Daily Electricity Load (GW) 

Average Daily Electricity Load (in GW) in Andhra Pradesh 

Sun Mon Tue Wed Thu Fri Sat 

164.51 167.33 168.71 169.51 169.55 169.71 168.20 

 

Various techniques have been developed during the past years for load forecasting, most of which are based on time 

series analysis. Statistical models are firstly adopted for the load forecasting problem, which include linear regression 

models, stochastic process and Box–Jenkins methods. Basically, most of the statistical methods are based on linear 

analysis. However, the load series are usually nonlinear functions of the exogenous variables. Therefore, to incorporate 

the nonlinearity, artificial neural networks (ANNs) have received much more attention recently. Neural networks have 

been shown to have the ability not only to learn the load series but also to model an unspecified nonlinear relationship.  
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In recent years, feed-forward artificial neural networks multilayer perceptron based methods have received 

considerable attention for load forecasting. The ANNs as supervised models have been used to deal with the 

nonlinearity and non-stationarity in electricity load prediction and have produced good and satisfactory results. 

 

2. REVIEW OF BOX-JENKINS METHODOLOGY 

 

The Box-Jenkins method is one of the most widely used time series forecasting methods in practice. It is also one of the 

most popular models in traditional time series forecasting and is often used as a benchmark model for comparison with 

any other forecasting method [1].  

 

Let{ }tZ  be a time series. Then { }tZ  is stationary if ( ) ( ) 2

ztt ZVandZE σµ ==  for all t. Otherwise it is non – 

stationary. Let NZZZ �,, 21  be an observed sample. If trend line is parallel to x-axis and variability is uniform for all 

values of t in the sample time series graph, then the time series is stationary. Alternatively, if the ACF of sample dies 

out for higher lag is an indication for stationary. The Box – Jenkins Methodology is valid for only stationary time series 

data. If the data is non – stationary, we convert it into stationary by stabilizing variance using logarithmic 

transformation and stabilizing mean using successive differencing. The Auto Regressive Integrated Moving Average 

model for the time series is denoted by ARIMA(p, d, q) and is defined by ( ) ( ) tt

d
aBZB θφ =∇  , where 

( ) p

p BBBB φφφφ −−−−= �
2

211  is polynomial in B of order p and is known as Auto Regressive (AR) operator, 

( ) q

q BBBB θθθθ −−−−= �
2

211  is a polynomial in B of order q and is known as Moving Average (MA) 

operator, B−=∇ 1 , B is the Backward shift operator ktt

k
ZZB −=  and d is the number of differences required to 

achieve stationarity. AR(p), MA(q) and ARMA(p, q) may be obtained as particular case of it with parameter values (p, 

0, 0), (0, 0, q) and (p, 0, q) respectively. 

 

SARIMA (p, d, q)X(P, D, Q) Model: 

 

In practice many Time series contain seasonal periodic component, which repeats every ‘S’ observation. For example 

electrical power demand, which forms Time series, does contain a periodic component, which repeats every ‘S’ 

observations. 

 

Box –Jenkins have generalized the ARIMA model to deal with seasonality and define a general multiplicative 

SARIMA model as  

 

( ) ( ) ( ) ( ) t

s

t

s
aBBwBB Θ=Φ θφ   

                                       

where
 

( ) p

p BBBB φφφφ −−−−= ...1 2

21 , 
 ( ) Ps

P

sss
BBBB Φ−−Φ−Φ−=Φ ...1 2

21 ,  

( ) q

q BBBB θθθθ −−−−= ...1 2

21 , ( ) Qs

Q

sss BBBB Θ−−Θ−Θ−=Θ ...1 2

21  

( )DsD
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B−=∇ 1

,     t

dD

st Zw ∇∇=
 

  

and ΘΦ and,,θφ   are polynomials of order p, P, q, Q respectively and at denotes purely random process. The 

variables  are formed from the original series { } not only by simple differencing to remove trend but also by 

seasonal differencing 
s∇   to remove seasonality. When fitting a seasonal model to data the first task is to assess the 

values of d and S which reduce the series to stationary    and remove most of the seasonality. Then the values of p, P, q, 

Q need to be assessed by looking at the ACF and PACF of differenced series. 

 

Box – Jenkins methodology consists of the following four steps: 

 

(i) Model identification: We note that the following general qualitative properties provide hints about the structure of 

the ARIMA. 

1. Non stationary: The sample autocorrelation function (ACF), decays very slowly and sample partial 

autocorrelation function (PACF), , has large positive or negative value of lag 1. This can possibly be 

reduced to a stationary series by differencing, that     usually   d  

2. Seasonal non stationary: The sample autocorrelation function (ACF), is zero except at lags s, 2s, 3s, 4s, …and 

decay very slowly. This can be made stationary by seasonal differencing. That is, usually D=1. 
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3. Autoregressive behavior: The sample partial autocorrelation (PACF), , is non-zero for lags k=1,2,3,…,p, 

and is zero thereafter. Fit an autoregressive of order p. 

4. Seasonal autoregressive: The sample partial autocorrelation function (PACF), , is zero except at lags m = 

s, 2s,3s,…Ps and is zero for m>Ps. Fit seasonal autoregressive of order P. 

5. Moving averages behavior: The sample autocorrelation function (ACF),   is non zero for lags k=1, 2, 3… q 

and is zero thereafter. Fit moving averages of order q. 

6. Seasonal moving average behavior: The sample autocorrelation function (ACF)    is zero except at lags M = s, 

2s, 3s….Qs and is zero lags M>Qs. Fit season moving averages of order Q. 

7. The model is ARMA (p,q), if both sample autocorrelations and partial autocorrelations dies out for higher lags 

where q is the number of significant autocorrelations and p is the number of significant partial 

autocorrelations. 

 

(ii) Estimation of parameters: Maximum Likelihood method is used for estimation of parameters with their 

significance. 

 

(iii) Diagnostic checking: We test for the adequacy of the model identified in step1 using Ljung-Box Statistic. If the 

model is inadequate then repeat the steps (i) to (iii) until an adequate model is observed. 

 

(iv) Forecasting: The future values are forecasted using minimum mean squared error forecasting method. 

 

If tZ  is the actual load for period t and tẐ  is the forecast, then the error is defined as ttt ZZe ˆ−= .  The following 

measures may be considered 
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The index of agreement(dw) was proposed by Willmott (1981) to overcome the insensitivity of   to differences in the 

observed and predicted means and variances .The index of agreement represents the ratio of the mean square error and 

the potential error (Willmot,1982) and is defined as  
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The potential error in the denominator represents the largest value that the squared difference of each pair can attain 

with the mean square error in the numerator. Index of agreement dw is also very sensitive to peak load and insensitive 

for low load. The range of dw is similar to that of   and lies between 0 (no agreement) and 1 (perfect agreement). 

 

The above measures are used in the following ways: 

 

(1) The comparison of the accuracy of two different techniques. 

(2) The measurement of a techniques usefulness or reliability. 

(3) The search for an optimal technique. 

 

3. FEEDFORWARD NEURAL NETWORKS 

 

The recent upsurge in research activities into artificial neural networks (ANNs) has proven that neural networks have 

powerful pattern classification and prediction capabilities. One of the major application areas of ANNs is forecasting. 

There is an increasing interest in forecasting using ANNs in recent years. Forecasting has a long history and the 

importance of this old subject is reflected by the diversity of its applications in different disciplines ranging from 

business to engineering. The ability to accurately predict the future is fundamental to many decision processes in 

planning, scheduling, purchasing, strategy formulation, policy making, and supply chain operations. As such, 

forecasting is an area where a lot of efforts have been invested in the past. Yet, it is still an important and active field of 
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human activity at the present time and will continue to be in the future. Forecasting has been dominated by linear 

methods for many decades. ANNs provide a promising alternative tool for forecasters. The inherently nonlinear 

structure of neural networks is particularly useful for capturing the complex underlying relationship in many real world 

problems. Neural networks are perhaps more versatile methods for forecasting applications in that not only can they 

find nonlinear structures in a problem, they can also model linear processes. 

 

ANNs are data-driven non-parametric methods that do not require many restrictive assumptions on the underlying 

process from which data are generated. As such, they are less susceptible to the model misspecification problem than 

parametric methods. This “learn from data or experience” feature of ANNs is highly desirable in various forecasting 

situations where data are usually easy to collect, but the underlying data-generating mechanism is not known or pre-

specifiable. Neural networks have been mathematically shown to have the universal functional approximating 

capability in that they can accurately approximate many types of complex functional relationships. This is an important 

and powerful characteristic, as any forecasting model aims to accurately capture the functional relationship between the 

variable to be predicted and other relevant factors or variables. The combination of the above-mentioned characteristics 

makes ANNs a very general and flexible modeling tool for forecasting. 

 

Before a neural network can be used for forecasting, it must be trained. Neural network training refers to the estimation 

of connection weights. Although the estimation process is very similar to that in linear regression where we minimize 

the sum of squared errors (SSE), the ANN training process is more difficult and complicated due to the nature of 

nonlinear optimization involved. There are many training algorithms developed in the literature and the most influential 

one is the backpropagation algorithm by Werbos (1974) and Rumelhart et al. (1986). The basic idea of backpropagation 

training is to use a gradient-descent approach to adjust and determine weights such that an overall error function such 

as SSE can be minimized. 

 

ANNs have achieved remarkable successes in the field of business forecasting. It is, however, important to note that 

they may not be a panacea for every forecasting task under all circumstances. Forecasting competitions suggest that no 

single method, including neural networks, is universally the best for all types of problems in every situation. Thus, it 

may be beneficial to combine several different models in improving forecasting performance. Indeed, efforts to find 

better ways to use ANNs for forecasting should never cease. 

 

4. SARIMA Model 

 

In this Section, we discuss the modeling of daily electricity load in Andhra Pradesh using Box-Jenkins methodology. 

The data is daily peak load of electricity from 1st April, 2005 to 31st March, 2010 consisting of 1826 observations in 

which 1796 daily observations used for modeling and 30 daily observations are used for forecasting.  As we have 

earlier stated that development of SARIMA model for any variable involves mainly four steps: Identification, 

Estimation, Diagnostic checking and Forecasting. 

 

Model Identification: 

 

Time plot of the daily electricity load (figure 1) reveals that the data is seasonal and non stationary. 
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Figure: 1 Time plot of daily electricity load in Andhra Pradesh 
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The sample ACF for the daily electricity load in Andhra Pradesh is given below. 

Daily Electricity Load in Andhra Pradesh
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Figure: 2 Sample autocorrelation function for the daily electricity load in Andhra Pradesh 

 

From the above time plot and ACF plot, one can observe that the given electricity load is seasonal and a seasonal 

autoregressive integrated moving average (SARIMA) model can fit the given data well. First we apply the seasonal 

difference to the given electricity load and observed the following sample ACF and PACF plots of the daily electricity 

load in Andhra Pradesh. 

 

Non stationarity in variance is corrected through natural logarithm transformation and non stationarity in mean is 

corrected through appropriate differencing of the data. In this case, non seasonal difference of order 1 (i.e. d=1) and 

seasonal difference of order 1 (i.e. D=1) is sufficient to achieve stationary in mean and variance. The newly constructed 

variable tt ZW
~1

7

1∇∇=  can now be examined for stationary. 

 

Transforms: natural log, difference (1), seasonal difference (1, period 
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Figure: 3 Time plot of log transformed daily electricity load with non seasonal difference 1 and seasonal difference 1. 

 

The graph (figure 3) of Wt is stationary in mean and variance. The next step is to identify the values of p, q, P and Q. 

Autocorrelations and partial autocorrelations for 25 lags of Wt are computed for the identification of the parameters of 

SARIMA model.  

Daily Electricity Load in Andhra Pradesh
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Figure: 4 Sample autocorrelation function with non-seasonal difference 1 and seasonal difference 1 of period 7. 
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Daily Electricity Load in Andhra Pradesh

Transforms: natural log, difference (1), 

seasonal difference (1, period 7)
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Figure: 5 Sample partial autocorrelation function with non-seasonal difference 1 and seasonal difference 1 of period 7. 

 

From the above sample ACF and PACF, it is observed that the order of p is at most 2, d is at most 1 and q is at most 2, 

and the order of P is at most 3 and, D is at most 1 and Q is at most 2.We entertained the following tentative SARIMA 

models and chosen that the model, which has minimum BIC value. We considered the residual analysis of each model 

by computing MAPE, RMSE, MAE, Box-Ljung Q-Statistic and its significant probability for 25 lags are used to 

identifying a suitable model for the given time series on daily electricity load in Andhra Pradesh 

 

Table: 2 Tentative adequate SARIMA Models for forecasting daily electricity load 

 

SARIMA(p ,d ,q)X(P,D,Q)7  Model BIC MAPE RMSE MAE 

SARIMA(2,1,1)x(0,1,1)7 2.966 1.895 4.369 3.075 

SARIMA(2,1,1)x(0,1,2)7 2.973 1.895 4.376 3.075 

 

So the most suitable model is SARIMA (2, 1, 1) X (0, 1, 1)7 as this model has the lowest BIC and RMSE values.  

Model Estimation: 

 

Model parameters (without constant term in the model) are estimated using PASW18 for selected model. Results of 

estimation of parameters are given below. 

 

Table: 3 Model Parameters of the SARIMA (2, 1, 1) X (0, 1, 1)7 Model 

 

Parameters B S.E.(B) T-Ratio Prob. 

AR1 1.094 0.031 35.844 0.000 

AR2 -0.277 0.023 -11.976 0.000 

MA1 0.904 0.023 38.714 0.000 

SMA1 0.999 0.088 11.377 0.000 

 

So the fitted model for the daily electricity load in Andhra Pradesh is   

 

tt aBBZBB )999.01)(904.01(
~

)277.0094.11( 71

7

12 −−=∇∇+− . 

 

Diagnostic Checking: 

 

Diagnostic checking is done through examining the autocorrelations and partial autocorrelations of the residuals of 

various orders.  
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Figure: 6 Residual autocorrelations and partial autocorrelations up to the 25 lags. 

 

As the results indicate, none of these autocorrelations is significantly different from zero at 5% level.  This proves that 

the model is an appropriate model. 

Portmanteau Test: 

 

For this purpose, the various autocorrelations of residuals for 25 lags are computed and the same along with their 

significance which is tested by Box-Ljung Q- test statistic. Let the hypothesis on the model is 

Ho: The selected model is adequate. 

H1:  The selected model is inadequate. 

 

Table: 4 Portmanteau Test 

 

Ljung-Box Q-Test 

Statistics DF Sig. 

12.943 14 0.531 

 

Since the probability corresponding to Box-Ljung Q-statistic is greater than 0.05, therefore, we accept Ho and we may 

conclude that the selected seasonal autoregressive integrated moving average model is an adequate model for the given 

time series on daily electricity load in Andhra Pradesh.  

Forecasting: 

] 

One can forecast the future   daily electricity load in Andhra Pradesh by the equation (fitted model) by minimum mean 

square error method.  

 

Forecasts of Daily Electricity Load in Andhra Pradesh: 

 

We have forecasted the daily electricity load in Andhra Pradesh (in GW) for the out-of-sample set (2nd March, 2010 to 

31st March, 2010) and the forecasts using the selected SARIMA(2,1,1)X(0,1,1)7 model is tabulated in Section 6. 

 

5. FFNN Forecasting Model 

 

In this Section, we develop a Feed forward neural networks (FFNN) model for forecasting of daily electricity load 

(GW) in Andhra Pradesh State. PASW 18 software is used to build a feed forward neural network for the forecasting of 

electricity load in Andhra Pradesh State. 

 

Data: The data of daily electricity load in Giga Watts (GW) is collected from APTRANSCO, Hyderabad. This data 

contains total 1826 observations from Friday, April 01, 2005 to Wednesday, March 31, 2010.  
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Rescaling: 

 

Scale-dependent variables and covariates are rescaled to improve network training. In the present study, we use 

adjusted normalized method to rescale the variables. The adjusted normalized values fall between -1 and +1. The given 

data is partitioned into three samples namely training, testing and hold out samples. The training sample comprises the 

data records used to train the neural networks; the testing sample is an independent set of data records used to track 

errors during training in order to prevent over training. The hold out sample is another independent set of data records 

used to assess the final neural network; the error for the hold out sample gives an honest estimate of the predictive 

ability of the model because the hold out cases are not used to build the model.   

 

We have considered the following partitions of the data for searching of an optimal FFNN model. 

 

Table: 5 Partitions of the time series data 

 

Partition I II III IV V VI 

Training (%) 95 90 85 80 75 70 

Testing (%) 3 8 13 18 23 28 

Hold-out (%) 2 2 2 2 2 2 

Total (%) 100 100 100 100 100 100 

 

Structure of the Network: 

 

The model is a three layer feed forward neural network and it consists of an input layer, a hidden layer and an output 

layer. Total number of input neurons needed in this model is two, each representing the values of lag1 (previous day 

load in the same week) and lag7 (same day in the previous week). 

 

In this model only one output unit is needed and it indicates the forecasts of daily electricity load. There is no easy way 

to determine the optimum number of hidden units without training and testing. The best approach to find the optimal 

number of hidden units is trial and error. In practice, we can use either the forward selection or backward selection to 

determine the hidden layer units. We apply forward selection method, in which we select a small number of hidden 

neurons then record the network performance by computing the RMSE, MAE and MAPE. Next increase the hidden 

neurons one by one, train and test until the error is acceptably small or no significant improvement is noted. The 

following results are obtained for the each partition set.  

 

Table: 6 Results of forward selection method 

 

Partition set 

Number of neurons in the layer Error measures 

Input Hidden Output MAE RMSE MAPE 

I 

2 1 1 0.62 0.795 0.397 

2 2 1 0.752 1.041 0.474 

2 3 1 0.401 0.546 0.251 

2 4 1 0.515 0.753 0.325 

II 

2 1 1 0.625 1.025 0.437 

2 2 1 0.435 0.57 0.266 

2 3 1 0.757 0.994 0.494 

2 4 1 0.496 0.659 0.31 

III 

2 1 1 0.462 0.758 0.316 

2 2 1 0.472 0.642 0.293 

2 3 1 0.359 0.55 0.24 

2 4 1 0.374 0.56 0.245 

IV 

2 1 1 0.44 0.756 0.305 

2 2 1 0.418 0.583 0.275 

2 3 1 0.471 0.728 0.323 
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2 4 1 0.512 0.675 0.325 

V 

2 1 1 0.505 0.724 0.325 

2 2 1 0.383 0.55 0.248 

2 3 1 0.413 0.687 0.268 

2 4 1 0.431 0.625 0.277 

VI 

2 1 1 0.527 0.827 0.356 

2 2 1 0.309 0.416 0.195 

2 3 1 0.389 0.549 0.247 

2 4 1 0.357 0.516 0.229 

 

From the above table, we have obtained the optimum network is 2-2-1 and optimum number of hidden neurons are two 

in the hidden layer and the best partition is given below for which the error measures are minimum.  

 

Table: 7 Optimum partition data for the FFNN(2-2-1) model 

 

Partition Percentage of data set Number of  observations 

Training Set 70% 1278 

Testing Set 28% 0511 

Hold-out Set 02% 0037 

Total 100% 1826 

 

Network Structure: 

 

A feed forward neural network consists with one input layer, one hidden layer and one output layer. An input layer 

consists of two neurons representing the lag1 and lag7 of the electricity load, hidden layer consists of two neurons and 

output layer consisting of one neuron representing the forecast values of the electricity load. The following figure of 

feed forward neural network gives clear idea about selected model for the given data. 

 
Figure: 7 Feed-forward neural network for forecasting daily electricity load. 

 

Network Information: 

 

The following table displays information about the neural network, including the dependent variable, number of input 

and output units, rescaling method, number of hidden layers and units, and activation functions. 

Learning method: Supervised Learning method 

Training Criteria: Online 

Optimization Algorithm: Gradient descent 

Initial learning rate: 0.3 

Lower boundary of learning rate: 0.001 

Momentum: 0.0001 

Learning rate reduction, in Epochs: 10 

Interval center: 0 

Interval offset: 5.0±  
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Synaptic Weights: 

 

The below table displays the coefficient estimates that show the relationship between the units in a given layer to the 

units in the following layer. The synaptic weights are based on the training sample even if the active data set is 

portioned into training, testing and holdout data. Note that the number of synaptic weights can become rather large and 

these weights are generally not used for interpreting network results.  

 

Table 8. Parameter Estimates 

Predictor Predicted 

Hidden Layer 1 Output Layer 

H(1:1) H(1:2) Daily Load 

Input Layer (Bias) 0.620 0.788  

lag1 -0.754 0.875  

lag7 -0.026 0.025  

Hidden Layer 1 (Bias)   0.699 

H(1:1)   -2.969 

H(1:2)   2.129 

 

Hidden activations:  

)
~

026.0
~

754.0620.0tanh( 711 −− −−= tt ZZh ,  )
~

025.0
~

875.0788.0tanh( 712 −− =+= tt ZZh  where ktZ −

~
 is 

the rescaled variable at lag k. 

Neural networks model: 

)129.2969.2699.0(
~

21 hhIZ t +−=  

 

The selected FFNN model is used to forecast the future daily electricity load and the forecasts are presented in Section 

6. 

 

6. CONCLUSION 

 

The forecasts obtained using two models presented in the following table. 

 

Table: 9 Forecasts of Electricity Load (in GW) using SARIMA and FFNN models 

 

Original Load SARIMA Forecasts FFNN Forecasts Original Load SARIMA Forecasts FFNN Forecasts 

243.47 236.24 243.65 251.33 238.55 251.63 

248.19 236.63 248.15 256.02 239.03 255.86 

252.17 237.04 251.86 254.12 239.32 253.94 

255.23 237.44 254.75 250.64 237.21 250.83 

254.72 235.49 254.2 244.21 231.93 244.79 

250.16 230.37 249.87 248.52 236.12 248.83 

252.57 234.63 252.32 249.34 238.08 249.56 

255.59 236.64 255.25 256.4 239.19 256.23 

260.09 237.8 259.46 257.58 239.68 257.25 

257.99 238.32 257.66 257.64 239.97 257.2 

254.86 238.63 254.79 249.79 237.85 249.76 

249.41 236.55 249.59 250.82 232.55 250.86 

252.92 231.29 252.93 251.4 236.75 251.42 

253.43 235.47 253.5 250.75 238.71 251.04 

252.29 237.43 252.59 248.3 239.83 248.79 

Here the results obtained by SARIMA and Neural networks forecasting models for daily electricity load in Andhra 

Pradesh State, are compared to see which the best is. 
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Table: 10 Performance of the SARIMA and FFNN models 

 

Forecasting Model Error Measusres In-Sample Set Out-of-Sample Set 

SARIMA Model 

MAPE 1.89 15.93 

RMSE 4.37 15.51 

MAE 3.07 6.13 

dw 0.96 0.29 

FFNN Model 

MAPE 0.19 0.1 

RMSE 0.42 0.31 

MAE 0.31 0.26 

dw 0.99 0.99 

 

From the above table, it is clear that neural networks model is the best to forecast the future values, because it has 

minimum measures of forecasting errors such as MAPE, RMSE, MAE and maximum index of agreement (dw). 

Therefore we can conclude that the forecasting of daily electricity load with feed forward neural networks is more 

efficient than the Box-Jenkins methods. 
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