PRE*GENERALIZED CLOSED SETS IN TOPOLOGICAL SPACES

M. JEYACHITRA*1, K. BAGEERATHI2

1Department of Mathematics,
Sri Muthukumaran Arts and Science College, Chennai, Tamil Nadu, India.

2Department of Mathematics,
Aditanar College of Arts and Science, Tiruchendur, Tamil Nadu, India.

(Received On: 27-12-16; Revised & Accepted On: 21-01-17)

ABSTRACT

In this paper a new class of generalized closed sets, namely p*g-closed sets is introduced in topological spaces. We find some basic properties and characterizations of p*g-closed sets.

Mathematics Subject Classification: 54A05.

Key Words: g-closed sets, p*g-closed sets, g*p-closed sets, πgp-closed sets.

1. INTRODUCTION

In this paper we introduce a new class of sets called p*g-closed sets. We give characterizations of p*g-closed sets also investigate some fundamental properties of p*g-closed set.

2. PRELIMINARIES

Throughout this paper (X, τ) represents a topological space on which no separation axiom is assumed unless otherwise mentioned. For a subset A of a topological space X, cl(A) and int(A) denote the closure of A and the interior of A respectively. (X, τ) will be replaced by X if there is no changes of confusion. We recall the following definitions and results.

Definition 2.1: Let (X, τ) be a topological space. A subset A of X is said to be generalized closed [8] (briefly g-closed) if cl(A) ⊆ U whenever A ⊆ U and U is an open in (X, τ).

Definition 2.2: Let (X, τ) be a topological space and A ⊆ X. The generalized closure of A [6], denoted by clp(A) and is defined by the intersection of all g-closed sets containing A and generalized interior of A [6], denoted by intp(A) and is defined by union of all g-open sets contained in A.

Corresponding Author: M. Jeyachitra*1, 1Department of Mathematics,
Sri Muthukumaran Arts and Science College, Chennai, Tamil Nadu, India.
Definition 2.3: Let \((X, \tau)\) be a topological space and \(A \subseteq X\). Then

1. \(A\) is \(\alpha\)-open if \(A \subseteq \text{int}(\text{cl}(A))\) and \(\alpha\)-closed if \(\text{cl}(\text{int}(\text{cl}(A))) \subseteq A\) [15].
2. \(A\) is pre open if \(A \subseteq \text{int}(\text{cl}(A))\) and pre closed if \(\text{cl}(\text{int}(\text{cl}(A))) \subseteq A\) [11].
3. \(A\) is \(\alpha\)-pre open if \(A \subseteq \text{int}(\text{cl}(A))\) and \(\alpha\)-pre closed if \(\text{cl}(\text{int}(\text{cl}(A))) \subseteq A\) [20].
4. \(A\) is regular open if \(A = \text{int}(\text{cl}(A))\) and regular closed if \(A = \text{cl}(\text{int}(\text{cl}(A)))\) [21].
5. \(A\) is semi pre open if \(A \subseteq \text{int}(\text{cl}(A))\) and semi pre closed if \(\text{int}(\text{cl}(A)) \subseteq A\) [1].
6. \(\pi\)-closed set [26] if \(A\) is a finite intersection of regular closed sets. The complement of a \(\pi\)-closed set is called a \(\alpha\)-open set.

Remark 2.6:

\[
\text{regular closed} \rightarrow \pi\text{-closed} \rightarrow \text{closed} \rightarrow \text{g*-closed} \rightarrow \text{g-closed} \\
\alpha\text{-closed} \rightarrow \text{pre closed} \rightarrow \text{pre*closed} \\
\text{semi pre closed}
\]

Definition 2.4: Let \((X, \tau)\) be a topological space and \(A \subseteq X\). The pre closure of \(A\) [11], denoted by \(\text{pcl}(A)\), is defined by the intersection of all pre closed sets containing \(A\).

Definition 2.5: Let \((X, \tau)\) be a topological space. A subset \(A\) of \(X\) is said to be

1. \(\alpha\)-generalized closed set (briefly \(\alpha g\)-closed) [9] if \(\text{acl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \((X, \tau)\).
2. generalized pre closed set (briefly \(gp\)-closed) [10] if \(\text{pcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \((X, \tau)\).
3. strongly generalized closed set (briefly \(g*\)-closed) [23] if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(g\)-open in \((X, \tau)\).
4. generalized \(\ast\) pre closed set (briefly \(g*\)-closed) [24] if \(\text{pcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(g\)-open in \((X, \tau)\).
5. regular generalized closed set (briefly \(rg\)-closed) [17] if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular open in \((X, \tau)\).
6. weakly generalized closed set (briefly \(wg\)-closed) [14] if \(\text{cl}(\text{int}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \((X, \tau)\).
7. generalized pre regular closed set (briefly \(gpr\)-closed) [7] if \(\text{pcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular open in \((X, \tau)\).
8. generalized semi preclosed set (briefly \(gsp\)-closed) [5] if \(\text{spcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \((X, \tau)\).
9. pre semi closed set [25] if \(\text{spcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(g\)-open in \((X, \tau)\).
10. \(\pi\)gp-closed set [18] if \(\text{pcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\pi\)-open in \((X, \tau)\).
11. regular weakly generalized closed set (briefly \(rwg\)-closed) [14] if \(\text{cl}(\text{int}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular open in \((X, \tau)\).
12. \(b\)-closed set [13] if \(\text{cl}(\text{int}(A)) \cap \text{int}(\text{cl}(A)) \subseteq A\).
13. \(b*)\)-closed set [13] if \(\text{int}(\text{cl}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(b\)-open in \((X, \tau)\).
14. \(\alpha*)\)-closed set [12] if \(\text{int}(\text{cl}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\alpha\)-open in \((X, \tau)\).
15. \(\pi\)-generalized semi pre closed set [19] (briefly \(\pi\)gp-closed) if \(\text{spcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\pi\)-open in \((X, \tau)\).

The complements of the above mentioned closed sets are their respective open sets.

Remark 2.7:

\[
\text{regular open} \rightarrow \pi\text{-open} \rightarrow \text{open} \rightarrow \text{g*-open} \rightarrow \text{g-open} \\
\alpha\text{-open} \rightarrow \text{pre open} \rightarrow \text{pre*open} \\
\text{semi pre open}
\]

Theorem 2.8: [3] Let \((X, \tau)\) be a topological space. Then \(\text{pcl}(A \cap B) \subseteq \text{pcl}(A) \cap \text{pcl}(B)\).
Lemma 2.9: [1] For any subset A of X, $\text{pcl}(A) = A \cup \text{cl}(\text{int}(A))$.

Lemma 2.10: [2] If A is semi closed in X, then $\text{pcl}(A \cup B) = \text{pcl}(A) \cup \text{pcl}(B)$.

Theorem 2.11: [20] Arbitrary union of pre-open sets is pre-open.

3. PRE-* GENERALIZED CLOSED SETS

Definition 3.1: A subset A of a topological space (X, τ) is called pre-*generalized closed (briefly p^*g-closed) if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is pre-open in (X, τ).

Theorem 3.2: Let (X, τ) be a topological space. Then every closed set is p^*g-closed.

Proof: Let A be a closed set. Let $A \subseteq U$, U is pre-open. Since A is closed, $\text{cl}(A) = A \subseteq U$. But $\text{pcl}(A) \subseteq \text{cl}(A)$. Thus we have $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is pre-open. Therefore, A is p^*g-closed.

Remark 3.3: The converse of the above theorem need not be true, as seen from the following example.

Example 3.4: Consider the space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{c\}, X\}$. Then $\{a\}$ and $\{b\}$ are p^*g-closed but not closed.

Theorem 3.5: Let (X, τ) be a topological space. Then every regular closed set is p^*g-closed.

Proof: Let A be a regular closed set. Let $A \subseteq U$, U is pre-open. By Remark 2.6, $\text{pcl}(A) \subseteq \text{rcl}(A) = A \subseteq U$. Thus we have $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is pre-open. Therefore, A is p^*g-closed.

Remark 3.6: The converse of the above theorem need not be true, as seen from the following example.

Example 3.7: Consider the space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, \{c\}, X\}$. Then $\{b, c\}$ and $\{a\}$ are p^*g-closed but not regular closed.

Theorem 3.8: Let (X, τ) be a topological space. Then every α-closed set is p^*g-closed.

Proof: Let A be an α-closed set. Let $A \subseteq U$, U is pre-open. By Remark 2.6, $\text{pcl}(A) \subseteq \text{cl}(A) = A \subseteq U$. Thus we have $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is pre-open. Therefore, A is p^*g-closed.

Remark 3.9: The converse of the above theorem need not be true, as seen from the following example.

Example 3.10: Consider the space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$. Then $\{a\}$, $\{b\}$ are p^*g-closed but not α-closed.

Theorem 3.11: Let (X, τ) be a topological space. Then every p^*g-closed set is gp-closed.

Proof: Let A be a p^*g-closed set. Let $A \subseteq U$, U is open. Then by Remark 2.7, U is pre-open. Since A is p^*g-closed, $\text{pcl}(A) \subseteq U$. Thus we have $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open. Therefore, A is gp-closed.

Remark 3.12: The converse of the above theorem need not be true, as seen from the following example.

Example 3.13: Consider the space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$. Then $\{a, c\}$ and $\{b, c\}$ are gp-closed but not p^*g-closed.

Theorem 3.14: Let (X, τ) be a topological space. Then every p^*g-closed set is gpr-closed.

Proof: Let A be a p^*g-closed set. Let $A \subseteq U$, U is regular open. Then by Remark 2.7, U is pre-open. Since A is p^*g-closed, $\text{pcl}(A) \subseteq U$. Thus we have $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open. Therefore, A is gpr-closed.

Remark 3.15: The converse of the above theorem need not be true, as seen from the following example.

Example 3.16: Consider the space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$. Then $\{a, b\}$ is gpr-closed but not p^*g-closed.
Theorem 3.17: Let (X, τ) be a topological space. Then every $p*g$-closed set is wg-closed.

Proof: Let A be a $p*g$-closed set. Let $A \subseteq U$, U is open. Then by Remark 2.7, U is $pre*open$. Since A is $p*g$-closed, $pcl(A) \subseteq U$. By Lemma 2.9, $A \cup cl(int(A)) \subseteq U$. Thus we have $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open. Therefore, A is wg-closed.

Remark 3.18: The converse of the above theorem need not be true, as seen from the following example.

Example 3.19: Consider the space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{c\}, X\}$. Then $\{a, c\}$ and $\{b, c\}$ are wg-closed but not $p*g$-closed.

Theorem 3.20: Let (X, τ) be a topological space. Then every $p*g$-closed set is rwg-closed.

Proof: Let A be a $p*g$-closed set. Let $A \subseteq U$, U is regular open. Then by Remark 2.7, U is $pre*open$. Since A is $p*g$-closed, $pcl(A) \subseteq U$. By Lemma 2.9, $A \cup cl(int(A)) \subseteq U$. Thus we have $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular open. Therefore, A is rwg-closed.

Remark 3.21: The converse of the above theorem need not be true, as seen from the following example.

Example 3.22: Consider the space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\{a, b\}$ is rwg-closed but not $p*g$-closed.

Theorem 3.23: Let (X, τ) be a topological space. Then every $p*g$-closed set is πgp-closed.

Proof: Let A be a $p*g$-closed set. Let $A \subseteq U$, U is π-open. Then by Remark 2.7, U is $pre*open$. Since A is $p*g$-closed, $pcl(A) \subseteq U$. Thus we have $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is π-open. Therefore, A is πgp-closed.

Remark 3.24: The converse of the above theorem need not be true, as seen from the following example.

Example 3.25: Consider the space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then $\{a, b\}$ is πgp-closed but not $p*g$-closed.

Theorem 3.26: Let (X, τ) be a topological space. Then every $p*g$-closed set is gsp-closed.

Proof: Let A be a $p*g$-closed set. Let $A \subseteq U$, U is open. Then by Remark 2.7, U is $pre*open$. Since A is $p*g$-closed, $pcl(A) \subseteq U$. But $spcl(A) \subseteq pcl(A) \subseteq U$. Thus we have $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open. Therefore, A is gsp-closed.

Remark 3.27: The converse of the above theorem need not be true, as seen from the following example.

Example 3.28: Consider the space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then $\{a, b\}$ is gsp-closed but not $p*g$-closed.

Theorem 3.29: Let (X, τ) be a topological space. Then every $p*g$-closed set is πgsp-closed.

Proof: Let A be a $p*g$-closed set. Let $A \subseteq U$, U is π-open. Then by Remark 2.7, U is $pre*open$. Since A is $p*g$-closed, $pcl(A) \subseteq U$. But $spcl(A) \subseteq pcl(A) \subseteq U$. Thus we have $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is π-open. Therefore, A is πgsp-closed.

Remark 3.30: The converse of the above theorem need not be true, as seen from the following example.

Example 3.31: Consider the space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$. Then $\{a, b\}$ is πgsp-closed but not $p*g$-closed.

Theorem 3.32: Let (X, τ) be a topological space. Then every $p*g$-closed set is pre semi closed.

Proof: Let A be a $p*g$-closed set. Let $A \subseteq U$, U is g-open. Then by Remark 2.7, U is $pre*open$. Since A is $p*g$-closed, $pcl(A) \subseteq U$. But $spcl(A) \subseteq pcl(A) \subseteq U$. Thus we have $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open. Therefore, A is pre semi closed.

Remark 3.33: The converse of the above theorem need not be true, as seen from the following example.
Example 3.34: Consider the space \((X, \tau)\) where \(X = \{a, b, c\}\) and \(\tau = \{\emptyset, \{c\}, \{b, c\}, X\}\). Then \(\{a, c\}\) is pre semi closed but not \(p^*g\)-closed.

Theorem 3.35: Let \((X, \tau)\) be a topological space. Then every \(p^*g\)-closed set is \(g^*p\)-closed.

Proof: Let \(A\) be a \(p^*g\)-closed set. Let \(A \subseteq U\), \(U\) is \(g\)-open. Then by Remark 2.7, \(U\) is \(\pre^*\)open. Since \(A\) is \(p^*g\)-closed, \(\pcl(A) \subseteq U\). Thus we have \(\pcl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(g\)-open. Therefore, \(A\) is \(g^*p\)-closed.

Remark 3.36: The converse of the above theorem need not be true, as seen from the following example.

Example 3.37: Consider the space \((X, \tau)\) where \(X = \{a, b, c\}\) and \(\tau = \{\emptyset, \{c\}, \{b, c\}, X\}\). Then \(\{a, c\}\) is \(g^*p\)-closed but not \(p^*g\)-closed.

Theorem 3.38: Let \((X, \tau)\) be a topological space. If \(A\) and \(B\) are two \(p^*g\)-closed in \(X\), then \(A \cap B\) is \(p^*g\)-closed.

Proof: Let \(U\) be \(\pre^*\)open such that \(A \cap B \subseteq U\). Then by Theorem 2.11, \(U \cup (X-B)\) is \(\pre^*\)open containing \(A\). Since \(A\) is \(p^*g\)-closed, \(\pcl(A) \subseteq U \cup (X-B)\).

Now \(\pcl(A \cap B) \subseteq \pcl(A) \cap \pcl(B) \subseteq \pcl(A) \cap \cl(B) = \pcl(A) \cap B \subseteq (U \cup (X-B)) \cap B = U \cap B \subseteq U\). Thus we have \(\pcl(A \cap B) \subseteq U\), \(U\) is \(\pre^*\)open and \(A \cap B \subseteq U\). Therefore \(A \cap B\) is \(p^*g\)-closed.

Remark 3.39: In general, union of any two \(p^*g\)-closed sets in \((X, \tau)\) need not be a \(p^*g\)-closed set, as seen from the following example.

Example 3.40: Consider the space \((X, \tau)\) where \(X = \{a, b, c\}\) and \(\tau = \{\emptyset, \{a, b\}, X\}\). Here, \(\{a\}\) and \(\{b\}\) are \(p^*g\)-closed. But their union \(\{a, b\}\) is not \(p^*g\)-closed.

Remark 3.41: The above discussions are summarized in the following implications.

```
 regular closed  
    ↓            ↓                ↓            ↓                ↓            ↓                ↓            ↓                ↓            ↓
 g*-closed     g-closed     g-closed     g-closed     g-closed     g-closed     g-closed     g-closed     g-closed
    ↓            ↓                ↓            ↓                ↓            ↓                ↓            ↓                ↓            ↓
 π-closed      closed        closed        closed        closed        closed        closed        closed        closed
    ↓            ↓                ↓            ↓                ↓            ↓                ↓            ↓                ↓            ↓
 α-closed      rgw-closed   rgw-closed   rgw-closed   rgw-closed   rgw-closed   rgw-closed   rgw-closed   rgw-closed
    ↓            ↓                ↓            ↓                ↓            ↓                ↓            ↓                ↓            ↓
 πgsp-closed   p*g-closed   p*g-closed   p*g-closed   p*g-closed   p*g-closed   p*g-closed   p*g-closed   p*g-closed
    ↓            ↓                ↓            ↓                ↓            ↓                ↓            ↓                ↓            ↓
 πgp-closed   g*p-closed   g*p-closed   g*p-closed   g*p-closed   g*p-closed   g*p-closed   g*p-closed   g*p-closed
    ↓            ↓                ↓            ↓                ↓            ↓                ↓            ↓                ↓            ↓
 gp-closed    gsp-closed   gsp-closed   gsp-closed   gsp-closed   gsp-closed   gsp-closed   gsp-closed   gsp-closed
    ↓            ↓                ↓            ↓                ↓            ↓                ↓            ↓                ↓            ↓
 gpr-closed
```

Remark 3.42: p*g-closedness and rg-closedness are independent concepts as we illustrate by means of the following example.

Example 3.43: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$. Then the set $\{c\}$ is p*g-closed but not rg-closed and also $\{a, b\}$ is rg-closed but not p*g-closed.

Remark 3.44: p*g-closedness and g-closedness are independent concepts as we illustrate by means of the following example.

Example 3.45: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then the set $\{c\}$ is p*g-closed but not g-closed and also $\{a, c\}$ is g-closed but not p*g-closed.

Remark 3.46: p*g-closedness and g*-closedness are independent concepts as we illustrate by means of the following example.

Example 3.47: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then the set $\{b\}$ is p*g-closed but not g*-closed and also $\{a, c\}$ is g*-closed but not p*g-closed.

Remark 3.48: p*g-closedness and αg-closedness are independent concepts as we illustrate by means of the following examples.

Example 3.49: i. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$. Then the set $\{a\}$ and $\{b\}$ are p*g-closed but not αg-closed.

Example 3.50: p*g-closedness and regular α-closedness are independent concepts as we illustrate by means of the following example.

Example 3.51: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then the set $\{c\}$ is p*g-closed but not regular α-closed and also $\{a\}$ and $\{b\}$ are regular α-closed but not p*g-closed.

Remark 3.52: p*g-closedness and b*-closedness are independent concepts as we illustrate by means of the following examples.

Example 3.53: i. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$. Then the set $\{a\}$ and $\{b\}$ are p*g-closed but not b*-closed.

Example 3.54: p*g-closedness and αm-closedness are independent concepts as we illustrate by means of the following examples.

Example 3.55: i. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$. Then the set $\{a\}$ and $\{b\}$ are p*g-closed but not αm-closed.

Example 3.56: p*g-closedness and αm-closedness are independent concepts as we illustrate by means of the following examples.

Example 3.57: i. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\{a\}$ and $\{b\}$ are αm-closed but not p*g-closed.

Remark 3.58: In this section, we investigate some basic characterization of p*g-closed set in topological spaces.

4. CHARACTERIZATION

In this section, we investigate some basic characterization of p*g-closed set in topological spaces.
Theorem 4.1: If A is g-closed and p*g-closed, then A is wg-closed.

Proof: Suppose A is g-closed and p*g-closed. By Remark 2.6, pcl(A) ⊆ cl(A) which implies pcl(A) ⊆ cl(A) ⊆ U. By Lemma 2.9, A ⊆ cl(int(A)) ⊆ U. Thus we have cl(int(A)) ⊆ U whenever A ⊆ U and U is open. Therefore, A is wg-closed.

Remark 4.2: The converse of the above theorem need not be true, as seen from the following example.

Example 4.3: Consider the space (X, τ) where X = {a, b, c} and τ = {∅, {c}, X}. Here, {a, c} and {b, c} are both g-closed and wg-closed but not p*g-closed.

Theorem 4.4: If A is g-closed and p*g-closed, then A is g*p-closed.

Proof: Suppose A is g-closed and p*g-closed. By Remark 2.6, pcl(A) ⊆ cl(A) which implies pcl(A) ⊆ cl(A) ⊆ U and by Remark 2.7, U is g-open. Thus we have pcl(A) ⊆ U whenever A ⊆ U and U is g-open. Therefore, A is g*p-closed.

Remark 4.5: The converse of the above theorem need not be true, as seen from the following example.

Example 4.6: Consider the space (X, τ) where X = {a, b, c} and τ = {∅, {c}, {b, c}, X}. Here, {a, c} is both g-closed and g*p-closed but not p*g-closed.

Theorem 4.7: Let A be any p*g-closed set in (X, τ). If A ⊆ B ⊆ pcl(A), then B is also a p*g-closed set.

Proof: Let B ⊆ U where U is pre*open in (X, τ). Then A ⊆ U. Also since A is p*g-closed, pcl(A) ⊆ U. Since B ⊆ pcl(A), pcl(B) ⊆ pcl(pcl(A)) = pcl(A) ⊆ U. This implies, pcl(B) ⊆ U. Thus B is a p*g-closed set.

Theorem 4.8: If a set A is p*g-closed in X, then pcl(A) - A contains no non empty pre*open set in X.

Proof: Suppose X - {x} is not pre*open. Then X is the only pre*open set containing X - {x}. This implies pcl(X - {x}) ⊆ U whenever A ⊆ U and U is pre*open. Therefore, A is closed.

Remark 4.9: The converse of the above theorem need not be true, as seen from the following example.

Example 4.10: If pcl(A) - A contains no non empty pre*open set in X, then A is not a p*g-closed set. Consider X = {a, b, c} with the topology τ = {∅, {a}, {b}, {a, b}, X} and A = {a, b}. Then pcl(A) - A = X - {a, b} = {c} contains no non empty pre*open set in X, but A is not a p*g-closed set in X.

Theorem 4.11: For every element x in a space X, the set X - {x} is p*g-closed or pre*open.

Proof: Suppose X - {x} is not pre*open. Then X is the only pre*open set containing X - {x}. This implies pcl(X - {x}) ⊆ U. Hence X - {x} is p*g-closed.

Theorem 4.12: Let A and B be p*g-closed sets in (X, τ) such that cl(A) = pcl(A) and cl(B) = pcl(B). Then A∪B is p*g-closed.

Proof: Let A∪B ⊆ U, where U is pre*open. Then A ⊆ U and B ⊆ U. Since A and B are p*g-closed, pcl(A) ⊆ U and pcl(B) ⊆ U. Now cl(A∪B) = cl(A) ∪ cl(B) = pcl(A) ∪ pcl(B) ⊆ U. But pcl(A∪B) ⊆ cl(A∪B). So, pcl(A∪B) ⊆ cl(A∪B) ⊆ U whenever A∪B ⊆ U, U is pre*open. Hence A∪B is p*g-closed.

Theorem 4.13: The union of two p*g-closed sets is p*g-closed if at least one of them is semi closed.

Proof: Let A and B be two p*g-closed sets in X. Suppose A is semi closed. To prove that A∪B is p*g-closed. Let A∪B ⊆ U and U is pre*open. Then A ⊆ U and B ⊆ U. Since A and B are p*g-closed, pcl(A) ⊆ U and pcl(B) ⊆ U. Therefore, pcl(A) ∪ pcl(B) ⊆ U. Since by Lemma 2.10, pcl(A∪B) ⊆ U. Thus we have pcl(A∪B) ⊆ U whenever A∪B ⊆ U and U is pre*open. Therefore A∪B is p*g-closed.

Theorem 4.14: If A ⊆ Y ⊆ X and A is p*g-closed in X then A is p*g-closed relative to Y.

Proof: Given that A ⊆ Y ⊆ X and A is p*g-closed set in X. To prove that A is p*g-closed set relative to Y. Let us assume that A ⊆ Y∩U, where U is pre*open in X. Since A is p*g-closed, A ⊆ U. This implies that pcl(A) ⊆ U. It follows that Y ∩ pcl(A) ⊆ Y ∩ U. That is, A is p*g-closed relative to Y.
5. CONCLUSION

The present paper has introduced a new concept of p*g-closed set in topological spaces. It also analyzed some of the properties. The implication shows the relationship between p*g-closed sets and the other existing sets.

6. REFERENCES

Source of support: Nil, Conflict of interest: None Declared.

[Copyright © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]