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ABSTRACT 
In this short paper, we considered the concept “degree of a vertex with respect to a given vertex set” in simple graphs. 
We included the necessary fundamentals and examples. Finally we obtained a theorem “If A is a proper subset of a 
vertex set V(G) of a simple graph G, then the following two conditions are equivalent: (i) 𝑑𝑑𝐴𝐴(𝑣𝑣)=𝑑𝑑𝐺𝐺(𝑣𝑣) for all           
𝑣𝑣 ∈ V(G); and (ii) 𝑑𝑑𝐺𝐺(𝑤𝑤) = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤 ∈ 𝑉𝑉(𝐺𝐺) ∖ 𝐴𝐴, where 𝑑𝑑𝐴𝐴(𝑣𝑣) denotes the degree of v with respect to the given 
vertex set A”. 
 
Keywords: Graph, Degree of a vertex, Degree of any vertex of a graph with respect to a vertex set, Prime graph of a 
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1. INTRODUCTION 
 
Let G = (V, E) be a graph consist of a finite non-empty set V of vertices and finite set E of edges such that each edge ek 

is identified as an unordered pair of vertices {vi, vj}, where ,i jv v are called end points of ek. The edge ekis also denoted 

by either i jv v or i jv v . We also write ( ),G V E for the graph.  Vertex set and edge set of G are also denoted by ( )V G  

and ( )E G respectively. An edge associated with a vertex pair {vi, vi} is called a self-loop. The number of edges 
associated with the vertex is the degree of the vertex, and d(v) denotes the degree of the vertex v. If there is more than 
one edge associated with a given pair of vertices, then these edges are called parallel edges or multiple edges.  A graph 
that does not have self-loop or parallel edges is called a simple graph.  We consider simple graphs only. 
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1.1 Definitions:  

(i) A graph G (V, E) is said to be a star graph if there exists a fixed vertex v (called the center of the star graph) 
such that E = {vu / u ∈ V and u ≠ v}. A star graph is said to be an n-star graph if the number of vertices of 
the graph is n. 

(ii) In a graph G, a subset S of V(G) is said to be a dominating set if every vertex not in S has a neighbour in S.  
The domination number, denoted by γ(G) is defined as min {|S| / S is a dominating set in G}.  

 
For other preliminary results and notations we use [18], [20] or [21] 
 
SECTION -2: THE DEGREE OF VERTICES WITH RESPECT TO A VERTEX SET 
 
2.1 Definition (Rajesh kanna, Dharmendra, Sridhara and Pradeep kumar [2]): Let G be a simple graph and A⊆ 𝑉𝑉(𝐺𝐺). 
The degree of a vertex 𝒗𝒗 ∈V of a graph G with respect to A is the number of vertices of A that are adjacent to 𝑣𝑣. This 
degree is denoted by 𝑑𝑑𝐴𝐴(𝑣𝑣).  The degree of a vertex v in G is denoted by𝑑𝑑𝐺𝐺(𝑣𝑣). 
 
2.2 Example: Consider the graph given by Fig 2.2 where V(G) = {𝑣𝑣𝑖𝑖 ∕ 1 ≤ 𝑖𝑖 ≤ 5} 

 
 
Let A = {𝑣𝑣1, 𝑣𝑣3, 𝑣𝑣5}. Then by our definition𝑑𝑑𝐴𝐴(𝑣𝑣1) = 0, 𝑑𝑑𝐴𝐴(𝑣𝑣2) = 3, 𝑑𝑑𝐴𝐴(𝑣𝑣3) = 1, 𝑑𝑑𝐴𝐴(𝑣𝑣4) = 2, 𝑑𝑑𝐴𝐴(𝑣𝑣5) = 1. 
 
2.3 Example: Consider the graph G given by Fig 2.3 where V(G) = {𝑣𝑣𝑖𝑖 ∕ 0 ≤ 𝑖𝑖 ≤ 6} 

 
 
Write A = {𝑣𝑣0}, Then  𝑑𝑑𝐴𝐴(𝑣𝑣0) = 0 and 𝑑𝑑𝐴𝐴(𝑣𝑣𝑖𝑖) = 1 for 1 ≤ 𝑖𝑖 ≤ 6. 
 
2.4 Example: Consider the graph G given by Fig 2.4 where V(G) = �𝑥𝑥1 ,𝑥𝑥2 , 𝑥𝑥3,𝑦𝑦1 ,𝑦𝑦2 ,   𝑦𝑦3 , 𝑦𝑦4�. 

 
 

(i) If A = �𝑥𝑥1 ,𝑥𝑥2 , 𝑥𝑥3� then 𝑑𝑑𝐴𝐴(𝑥𝑥𝑖𝑖) = 𝑑𝑑𝐺𝐺(𝑥𝑥𝑖𝑖) for 1 ≤ 𝑖𝑖 ≤ 3; and 𝑑𝑑𝐴𝐴(𝑦𝑦𝑖𝑖) = 0  for 1 ≤ 𝑖𝑖 ≤ 4. 
(i) If B = �𝑦𝑦1 ,𝑦𝑦2 ,   𝑦𝑦3 , 𝑦𝑦4� then 𝑑𝑑𝐵𝐵(𝑦𝑦𝑖𝑖) = 𝑑𝑑𝐺𝐺(𝑦𝑦𝑖𝑖) for 1 ≤ 𝑖𝑖 ≤ 4; and 𝑑𝑑𝐵𝐵(𝑥𝑥𝑖𝑖) = 0   for 1 ≤ 𝑖𝑖 ≤ 3. 

 
2.5 Example: Consider the prime graph PG(R) where R =ℤ2 × ℤ2= {(0, 0), (0, 1), (1, 0), (1, 1)} (Considered in the 
Note 1.2(ii) of Satyanarayana, Srinivasulu[8]). The graph PG(R) is given by Fig. 2.5 
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Write A = {(0,0)}, 
 
Then  𝑑𝑑𝐴𝐴((0,0)) = 0, 𝑑𝑑𝐴𝐴((0,1) = 𝑑𝑑𝐴𝐴((1,0) = 𝑑𝑑𝐴𝐴((1,1) = 1. 
 
3. A THEOREM 
 
3.1 Lemma: If A⊊V(G) and 𝑑𝑑𝐴𝐴(𝑣𝑣) = 𝑑𝑑𝐺𝐺(𝑣𝑣) for all 𝑣𝑣 ∈ V(G), then 𝑑𝑑𝐺𝐺(𝑤𝑤) = 0 for all 𝑤𝑤 ∈ 𝑉𝑉(𝐺𝐺) ∖ 𝐴𝐴. 
 
Proof: Suppose that A⊊V(G) and 𝑑𝑑𝐴𝐴(𝑣𝑣) = 𝑑𝑑𝐺𝐺(𝑣𝑣) for all 𝑣𝑣 ∈ V(G). 
 
In a contrary way, suppose 𝑤𝑤 ∈ 𝑉𝑉(𝐺𝐺) ∖ 𝐴𝐴 and 𝑑𝑑𝐺𝐺(𝑤𝑤) = k> 0. 
 
Now 𝑑𝑑𝐴𝐴(𝑤𝑤)=𝑑𝑑𝐺𝐺(𝑤𝑤) = k ≥ 1. So there exist a vertex 𝑢𝑢 ∈ 𝐴𝐴 with𝑤𝑤𝑢𝑢���� ∈ 𝐸𝐸(𝐺𝐺). 
 
Now consider𝑑𝑑𝐴𝐴(𝑢𝑢). Since 𝑤𝑤 ∈ 𝑉𝑉(𝐺𝐺) ∖ 𝐴𝐴 we have that 

𝑤𝑤𝑢𝑢���� ∈ {𝑥𝑥𝑢𝑢���� 𝑥𝑥⁄ ∈ 𝑉𝑉(𝐺𝐺)} ∖ {𝑥𝑥𝑢𝑢���� 𝑥𝑥⁄ ∈ 𝐴𝐴}.  
 
This implies that 

|{𝑥𝑥𝑢𝑢���� 𝑥𝑥⁄ ∈ 𝑉𝑉(𝐺𝐺)}| > |{𝑥𝑥𝑢𝑢���� 𝑥𝑥⁄ ∈ 𝐴𝐴}| (Since {𝑥𝑥𝑢𝑢���� 𝑥𝑥⁄ ∈ 𝐴𝐴} is a subset of {𝑥𝑥𝑢𝑢���� 𝑥𝑥⁄ ∈ 𝑉𝑉(𝐺𝐺)}) 
 
This implies that 𝑑𝑑𝐺𝐺(𝑢𝑢) > 𝑑𝑑𝐴𝐴(𝑢𝑢), a contradiction.   
 
Hence 𝑑𝑑𝐺𝐺(𝑤𝑤) = 0 for all w∈ 𝑉𝑉(𝐺𝐺) ∖ 𝐴𝐴. 
 
3.2 Lemma: If A ⊊ V(G) and 𝑑𝑑𝐺𝐺(𝑤𝑤) = 0 for all 𝑤𝑤 ∈ 𝑉𝑉(𝐺𝐺) ∖ 𝐴𝐴, then 𝑑𝑑𝐴𝐴(𝑣𝑣) = 𝑑𝑑𝐺𝐺(𝑣𝑣) for all 𝑣𝑣 ∈ V(G). 
 
Proof: Let 𝑣𝑣 ∈ V(G), Since {𝑥𝑥𝑣𝑣��� 𝑥𝑥⁄ ∈ 𝐴𝐴} ⊆ {𝑥𝑥𝑣𝑣��� 𝑥𝑥⁄ ∈ 𝑉𝑉(𝐺𝐺)} we have that 𝑑𝑑𝐴𝐴(𝑣𝑣) ≤ 𝑑𝑑𝐺𝐺(𝑣𝑣) (as mentioned on page 126 of 
Rajesh kanna et al. [2]). 
 
In a contrary way, suppose that there exists 𝑤𝑤 ∈ 𝑉𝑉(𝐺𝐺) such that 𝑑𝑑𝐴𝐴(𝑤𝑤) ≠ 𝑑𝑑𝐺𝐺(𝑤𝑤). 
⇒ |{𝑥𝑥𝑤𝑤���� 𝑥𝑥⁄ ∈ 𝐴𝐴}| ≨ |{𝑥𝑥𝑤𝑤���� 𝑥𝑥⁄ ∈ 𝑉𝑉(𝐺𝐺)}| 
⇒ {𝑥𝑥𝑤𝑤���� 𝑥𝑥⁄ ∈ 𝐴𝐴} ⊊ {𝑥𝑥𝑤𝑤���� 𝑥𝑥⁄ ∈ 𝑉𝑉(𝐺𝐺)} 
⇒ there exists𝑢𝑢 ∈ 𝑉𝑉(𝐺𝐺) such that𝑢𝑢𝑤𝑤���� ∈ {𝑥𝑥𝑤𝑤���� 𝑥𝑥⁄ ∈ 𝑉𝑉(𝐺𝐺)} ∖ {𝑥𝑥𝑤𝑤���� 𝑥𝑥⁄ ∈ 𝐴𝐴} 
⇒  𝑢𝑢 ∈ 𝑉𝑉(𝐺𝐺) ∖ 𝐴𝐴  and 𝑑𝑑(𝑢𝑢) ≥ 1, a contradiction. 
 
Combining lemmas 1 and 2, we have the following Theorem: 
 
3.3 Theorem: Suppose A⊊V(G), then the following two conditions are equivalent: 

(i) 𝑑𝑑𝐴𝐴(𝑣𝑣) = 𝑑𝑑𝐺𝐺(𝑣𝑣) for all 𝑣𝑣 ∈ V(G) 
(ii) 𝑑𝑑𝐺𝐺(𝑤𝑤)  =  0 for all 𝑤𝑤 ∈ 𝑉𝑉(𝐺𝐺) ∖ 𝐴𝐴 
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