ON SUPRA T-CLOSED SETS

¹M. Trinita Pricilla* and ²I. Arockiarani

¹Department of Mathematics, Jansons Institute of Technology Karumathampatti, India

²Department of Mathematics, Nirmala College for Women, Coimbatore – 641 046, India

*E-mail: abishai_kennet@yahoo.in

(Received on: 16-07-11: Accepted on: 02-08-11)

ABSTRACT

In this paper we introduce a new class of set namely T^μ -closed set in supra topological space. We further discuss the concept of T^{μ} -continuity and obtained their applications.

1. INTRODUCTION

In 1970, Levine [6] introduced the concept of generalized closed sets in topological space and a class of topological spaces called $T_{1/2}$ spaces. Extensive research on generalizing closedness was done in recent years by many Mathematicians [3, 4, 6, 7, 8]. Andrijevic [1] introduced a new class of generalized open sets in a topological space, the so-called b-open sets. This type of sets was discussed by Ekici and Caldas [5] under the name of γ - open sets.

In 1983, A. S. Mashhour et al [8] introduced the notion of supra topological spaces and studied S-S continuous functions and S* - continuous functions. In 2010, O. R. Sayed and Takashi Noiri [9] introduced supra b - open sets and supra b - continuity on topological spaces. In this paper we introduce the concept of T^{μ} -closed set and also studied some of their basic properties. Further the notion of T^{μ} -continuity is also studied. We also note that the class of T^{μ} closed sets is properly placed between supra closed sets and g^{μ} b – closed sets.

2. PRELIMINARIES

Definition: 2.1 [8] A subclass $\tau^* \subset P(X)$ is called a supra topology on X if $X \in \tau^*$ and τ^* is closed under arbitrary union. (X, τ^*) is called a supra topological space (or supra space). The members of τ^* are called supra open sets.

Definition: 2.2 [8] The supra closure of a set A is defined as $Cl^{\mu}(A) = \bigcap \{B: B \text{ is supra closed and } A \subseteq B\}$

The supra interior of a set A is defined as Int $^{\mu}(A) = \cup \{B: B \text{ is supra open and } A \supseteq B\}$

Definition 2.3 [9] Let (X,μ) be a supra topological space. A set A is called a supra b - open set if $A \subseteq Cl^{\mu} (Int^{\mu}(A)) \cup Int^{\mu}(Cl^{\mu}(A))$. The complement of a supra b - open set is called a supra b - closed set.

Definition: 2.4 [2] Let (X,μ) be a supra topological space. A set A of X is called supra generalized b - closed set (simply g^{μ} b - closed) if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open. The complement of supra generalized b - closed set is supra generalized b - open set.

Definition: 2.5 A Subset A of (X,μ) is said to be supra regular open if $A = Int^{\mu}(Cl^{\mu}(A))$ and supra regular closed if $A = Int^{\mu}(Cl^{\mu}(A))$ $cl^{\mu}(Int^{\mu}(A))$.

3. BASIC PROPERTIES OF T^{μ} -CLOSED SETS

Definition: 3.1 A subset A of (X,τ) is called T^{μ} -closed set if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is $g^{\mu}b$ -open in (X,τ) .

Theorem: 3.2

(a) Every supra-closed set is T^{μ} -closed.

¹M. Trinita Pricilla* and ²I. Arockiarani / On Supra T^μ -closed sets / IJMA- 2(8), August-2011, Page: 1376-1380

- (b)Every regular μ -closed set is T^{μ} -closed.
- (c)Every T^{μ} -closed set is $g^{\mu}b$ -closed.
- (d) Every b^{μ} -closed set is T^{μ} -closed.

Proof: It is obvious.

Remark: 3.3 The converse of the above theorem is not true and it is shown by the following example.

Example: 3.4 Let $X = \{a, b, c\}$; $\tau = \{\phi, X, \{a\}\}$ (a) $\{c\}$ is T^{μ} -closed but it is not supra closed. (b) $\{a, b\}$ is $g^{\mu}b$ -closed but it is not T^{μ} -closed.

Example: 3.5 Let $X=\{a,b\}$; $\tau=\{\phi,X,\{a\}\}(c)$ $\{a\}$ is T^{μ} -closed but it is not $regular^{\mu}$ -closed.

Example: 3.6 Let $X=\{a, b, c\}$; $\tau=\{\phi, X, \{a\}, \{b\}, \{a,b\}\}(d)\}(c)$ is T^{μ} -closed but it is not b^{μ} - closed.

Remark: 3.7

- 1. The sets T^{μ} -closed and g^{μ} -closed are independent of each other.
- 2. The sets T^{μ} -closed and sg^{μ} -closed are independent of each other.
- 3. The sets T^{μ} -closed and gs^{μ} -closed are independent of each other.
- 4. The sets T^{μ} -closed and αg^{μ} -closed are independent of each other.
- 5. The sets T^{μ} -closed and $g\alpha^{\mu}$ -closed are independent of each other.

The above remark is shown by the following examples.

Example: 3.8 Let $X = \{a, b, c\}; \tau = \{\phi, X, \{a\}\}\$

- 1. {a, b} is g^{μ} -closed and sg^{μ} -closed but not T^{μ} -closed.
- 2. {a, c} is αg^{μ} -closed but not T^{μ} -closed.

Example: 3.9 Let $X = \{a, b, c, d\}; \tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$

- 1. {a} is T^{μ} -closed but not g^{μ} -closed and αg^{μ} -closed.
- 2. {a, c, d} is T^{μ} -closed but not sg^{μ} -closed.

Theorem: 3.10 The union of two T^{μ} -closed sets is T^{μ} -closed.

Proof: Let A and B be two T^{μ} -closed sets. Let $A \cup B \subseteq G$, where G is $g^{\mu}b$ -open. Since A and B are T^{μ} -closed sets, $bcl^{\mu}(A) \cup bcl^{\mu}(B) \subseteq G$. Thus $bcl^{\mu}(A \cup B) \subseteq G$. Hence $A \cup B$ is T^{μ} -closed set.

Theorem: 3.11 Let A be T^{μ} -closed set of (X,τ) , then $bcl^{\mu}(A) - A$ does not contain any non-empty $g^{\mu}b$ -closed set.

Proof: Let A be T^{μ} -closed set. Suppose $F \neq \phi$ is a $g^{\mu}b$ -closed set of $bcl^{\mu}(A) - A$, then $F \subseteq bcl^{\mu}(A) - A$. This implies that $F \subseteq bcl^{\mu}(A)$ and $F \subseteq A^{C}$. This implies $A \subseteq F^{C}$. Since A is T^{μ} -closed, $bcl^{\mu}(A) \subseteq F^{C}$. Then $F \subseteq [bcl^{\mu}(A)]^{C}$. Therefore $F \subseteq bcl^{\mu}(A) \cap [bcl^{\mu}(A)]^{C} = \phi$.

Theorem: 3.12 If A is T^{μ} -closed set in a supra topological space (X,τ) and $A \subset B \subset bcl^{\mu}(A)$ then B is also T^{μ} -closed set.

Proof: Let U be $g^{\mu}b$ -open in (X,τ) such that $B \subseteq U$. Since $A \subseteq B$ implies $A \subseteq U$ and since A is T^{μ} -closed set in (X,τ) , $bcl^{\mu}(A) \subseteq U$. Since $B \subset bcl^{\mu}(A)$ then $bcl^{\mu}(B) \subseteq U$. Therefore B is also T^{μ} -closed in (X,τ) .

Theorem: 3.13 Let A be T^{μ} -closed set then A is b^{μ} -closed iff $bcl^{\mu}(A) - A$ is $g^{\mu}b$ -closed.

Proof: Let A be T^{μ} -closed set. If A is b^{μ} -closed we have $bcl^{\mu}(A) - A = \phi$ which is $g^{\mu}b$ -closed. Conversely, Let $bcl^{\mu}(A) - A$ is $g^{\mu}b$ -closed. Then by theorem 3.11, $bcl^{\mu}(A) - A$ does not contain any non-empty $g^{\mu}b$ -closed set then $bcl^{\mu}(A) - A = \phi$. This implies that A is b^{μ} -closed.

Theorem: 3.14 A subset $A \subseteq X$ is T^{μ} -open iff $F \subseteq bInt^{\mu}(A)$ whenever F is $g^{\mu}b$ -closed set and $F \subseteq A$.

Proof: Let A be T^{μ} -open set and suppose $F \subseteq A$ where F is $g^{\mu}b$ -closed set. Then X-A is T^{μ} -closed set contained in the $g^{\mu}b$ -open set X-F. Hence $bcl^{\mu}(X-A) \subseteq X-F$.

Thus $F \subseteq bInt^{\mu}(A)$. Conversely, if F is $g^{\mu}b$ -closed set with $F \subseteq bInt^{\mu}(A)$ and $F \subseteq A$, then $X - bInt^{\mu}(A) \subseteq X - F$. This implies that $bcl^{\mu}(X - A) \subseteq X - F$. Hence X - A is T^{μ} -closed. Therefore A is T^{μ} -open.

¹M. Trinita Pricilla* and ²I. Arockiarani / On Supra T^{μ} -closed sets / IJMA- 2(8), August-2011, Page: 1376-1380 **Theorem: 3.15** If B is $g^{\mu}b$ -open and T^{μ} -closed set in X,then B is b^{μ} -closed.

Proof: Since B is $g^{\mu}b$ -open and T^{μ} -closed then $bcl^{\mu}(B) \subseteq B$, but $B \subseteq bcl^{\mu}(B)$.

Thus, $B = bcl^{\mu}(B)$. Therefore B is b^{μ} -closed.

Corollary: 3.16 If B is supra open and T^{μ} -closed set in X, then B is b^{μ} -closed.

Theorem: 3.17 Let A be supra open and T^{μ} -closed set. Then $A \cap F$ is g^{μ} b - closed whenever $F \in \mathbb{C}[X]$.

Proof: Let A be supra open and T^{μ} -closed set then bc1^{μ} (A) \subseteq A and also A \subseteq bc1^{μ} (A). Therefore bc1^{μ} (A) = A. Hence A is supra b - closed. Since F is supra b - closed.

Therefore $A \cap F$ is supra b - closed in X. Therefore $A \cap F$ is g^{μ} b - closed in X.

4. T^{μ} -Continuous Functions

Definition: 4.1 A function $f:(X,\tau) \to (Y,\sigma)$ is said to be T^{μ} -continuous if $f^{-1}(V)$ is T^{μ} - closed in (X,τ) for every supra closed set V of (Y,σ) .

Definition: 4.2 A function $f:(X,\tau) \to (Y,\sigma)$ is said to be T^{μ} –irresolute if $f^{-1}(V)$ is T^{μ} - closed in (X,τ) for every T^{μ} – closed V of (Y,σ) .

Definition: 4.3 A function $f:(X,\tau) \to (Y,\sigma)$ is said to be regular μ –continuous if $f^{-1}(V)$ is regular μ – closed in (X,τ) for every supra closed V of (Y,σ) .

Definition: 4.4 A function $f:(X,\tau) \to (Y,\sigma)$ is said to be b^{μ} –continuous if $f^{-1}(V)$ is b^{μ} - closed in (X,τ) for every supra closed V of (Y,σ) .

Theorem: 4.5

- (a) Every supra continuous function is T^{μ} continuous.
- (b) Every T^{μ} –irresolte function is T^{μ} continuous.
- (c) Every regular μ –continuous function is T^{μ} continuous.
- (d) Every b^{μ} –continuous function is T^{μ} continuous.

Proof: It is obvious.

Remark: 4.6 The converse of the above theorem is not true and shown by the following examples.

Example: 4.7 Let $X = \{a, b, c, d\}$; $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$. Let $f: (X, \tau) \to (X, \tau)$ be the function defined by f(a) = b, f(b) = f(c) = d and f(d) = a.

- (a) $f^{-1}\{c,d\} = \{b,c\}$ Which is T^{μ} continuous but not supra continuous.
- (b) $f^{-1}\{b,c\} = \{a,b\}$ Which is T^{μ} continuous but not T^{μ} irresolute.

Example: 4.8 Let $X = \{a, b, c\}$; $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$. Let $f: (X, \tau) \to (X, \tau)$ be an identity function. (a) $f^{-1}\{b\} = \{b\}$ Which is T^{μ} —continuous but not regular —continuous.

From the above theorem and examples we have the following diagram

Here the numbers 1-5 represent the following:

1. T^{μ} - continuous 2. Supra continuous 3. regular - continuous 4. T^{μ} - irresolute 5. b^{μ} - continuous

I M. Trinita Pricilla * and 2 I. Arockiarani / On Supra T $^\mu$ -closed sets / IJMA- 2(8), August-2011, Page: 1376-1380

Theorem: 4.9 Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\gamma)$ be any two functions then

- (i) $g \circ f$ is T^{μ} continuous if g is supra continuous and f is T^{μ} continuous.
- (ii) $g \circ f$ is T^{μ} irresolute if g is T^{μ} irresolute and f is T^{μ} irresolute.
- (iii) $g \circ f$ is T^{μ} continuous if g is T^{μ} continuous and f is T^{μ} irresolute.

Proof: It is obvious.

Remark: 4.10 The composition of two T^{μ} – continuous functions need not be T^{μ} – continuous and it is shown by the following example.

Example: 4.11 Let $X = \{a, b, c\}$; $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\} \text{ and } \sigma = \{\phi, X, \{a\}, \{c\}, \{a, c\}\} \}$. Define $f: (X, \tau) \to (X, \tau)$ by f(a) = b, f(b) = c, f(c) = d and f(d) = a.

Define $g:(X,\tau)\to (X,\sigma)by$ g(a)=b, g(b)=c, g(c)=d and g(d)=a. Then f and g are T^μ – continuous. Since {b, c, d} is Supra closed in (X, σ) , $(g \circ f)^{-1}\{b, c, d\} = \{a, b, d\}$ which is not T^{μ} -closed in (X, τ) . Therefore $g \circ f$ is not T^{μ} – continuous.

5. APPLICATIONS

Definition: 5.1 A space (X,τ) is called T^{μ}_{ab} -space if every $g^{\mu}b$ -closed set is T^{μ} -closed.

Theorem: 5.2 Let (X,τ) be a supra topological space then

- (i) $T^{\mu}O(\tau) \subset G^{\mu}bO(\tau)$ (ii) A space (X,τ) is T^{μ}_{gb} -space iff $T^{\mu}O(\tau) = G^{\mu}bO(\tau)$.

- (i) Let A be T^{μ} -open. Then X A is T^{μ} -closed and so $g^{\mu}b$ -closed. This implies that A is $g^{\mu}b$ -open. Hence $T^{\mu}O(\tau) \subset G^{\mu}bO(\tau)$.
- (ii) Let (X,τ) be T^{μ}_{ab} -space. Let $A \in G^{\mu}bO(\tau)$ then X-A is $g^{\mu}b$ -closed. By hypothesis, X-A is T^{μ} -closed and thus $A \in T^{\mu}O(\tau)$. Hence $T^{\mu}O(\tau) = G^{\mu}bO(\tau)$. Conversely, Let $T^{\mu}O(\tau) = G^{\mu}bO(\tau)$. Let A be $g^{\mu}b$ -closed then X – A is $g^{\mu}b$ -open. Hence X— A is T^{μ} -open. Thus X is T^{μ} -closed .This implies that (X,τ) is T^{μ}_{ab} -space.

Theorem: 5.3 If (X,τ) is T_{ab}^{μ} -space then for each $x \in X$, $\{x\}$ is either $g^{\mu}b$ -closed set or T^{μ} -open.

Proof: Suppose (X,τ) is T_{qb}^{μ} -space. Let $x \in X$ and assume that $\{x\}$ is not T^{μ} -open then $X-\{x\}$ is not T^{μ} -closed set. Then X-{ x } is $g^{\mu}b$ -closed. Since (X,τ) is called T^{μ}_{gb} -space then X-{ x } is T^{μ} -closed or equivalently { x } is T^{μ} -

Definition: 5.4 A space (X,τ) is called T^{μ}_{C} -space if every T^{μ} -closed set is supra closed.

Theorem: 5.5 Let (X,τ) be a supra topological space then

- (i) $O^{\mu}(\tau) \subset T^{\mu}O(\tau)$
- (ii) A space (X,τ) is T_C^{μ} -space iff $O^{\mu}(\tau) = T^{\mu}O(\tau)$.

Proof: It is obvious.

Theorem: 5.6 If (X,τ) is T^{μ}_{C} -space then for each $x \in X$, $\{x\}$ is either T^{μ} -closed or supra open.

Proof: It is obvious.

Definition: 5.7 A space (X,τ) is called T_R^{μ} -space if every T^{μ} -closed set is $regular^{\mu}$ -closed.

Theorem: 5.8 Let (X,τ) be a supra topological space then

- (i) $R^{\mu}O(\tau) \subset T^{\mu}O(\tau)$
- (ii) A space (X,τ) is T_R^{μ} -space iff $R^{\mu}O(\tau) = T^{\mu}O(\tau)$.

Proof: It is obvious.

Theorem: 5.9 If (X,τ) is T_R^{μ} -space then for each $x \in X$, $\{x\}$ is either T^{μ} -closed or $regular^{\mu}$ -open.

Proof: It is obvious.

 I M. Trinita Pricilla * and 2 I. Arockiarani / On Supra T $^\mu$ -closed sets / IJMA- 2(8), August-2011, Page: 1376-1380 **Definition:** 5.10 A space (X,τ) is called T_R^{μ} -space if every T^{μ} -closed set is b^{μ} -closed.

Theorem: 5.11 Let (X,τ) be a supra topological space then

- (i) $B^{\mu}O(\tau) \subset T^{\mu}O(\tau)$
- (ii) A space (X,τ) is T_B^{μ} -space iff $B^{\mu}O(\tau) = T^{\mu}O(\tau)$.

Proof: It is obvious.

Theorem: 5.12 If (X,τ) is T_R^{μ} -space then for each $x \in X$, $\{x\}$ is either T^{μ} -closed or b^{μ} -open.

Proof: It is obvious.

Theorem: 5.13

- (a) Every T_R^{μ} -space is T_C^{μ} -space. (b) Every T_C^{μ} -space is T_B^{μ} -space. (c) Every T_R^{μ} -space is T_B^{μ} -space.

Proof: It is obvious.

REFERENCES:

- [1] D. Andrijevic, on b-open sets, Mat. Vesnik 48(1996), no.1-2, 59-64.
- [2] I. Arockiarani and M. Trinita Pricilla, On Supra generalized b-closed sets, Antarctica Journal of Mathematics, Volume 8(2011) [To appear].
- [3] S. P. Arya and T. M. Nour, characreizations of s-normal spaces, Indian J. Pure Appl.Math.21(1990), no.8,717-719.
- [4] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math.16(1995),35-48.
- [5] E. Ekici and M. Caldas, Slightly γ continuous functions, Bol. Soc. Parana. Mat. (3) 22(2004), no.2, 63-74.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2)19(1970), 89-96.
- [7] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 15(1994), 51-63.
- [8] A. S. Mashhour, A. A. Allam, F. S. Mahamoud and F. H. Khedr, On supra topological spaces, Indian J. Pure and Appl. Math. No. 4, 14 (1983), 502 – 510.
- [9] O. R. Sayed and Takashi Noiri, on supra b open sets and supra b Continuity on topological spaces, European Journal of pure and applied Mathematics, 3(2) (2010), 295 – 302.
