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ABSTRACT 
In this paper, we investigate the uniqueness problem of q-shift difference polynomials sharing a small functions. With 
the notion of weakly weighted sharing and relaxed weighted sharing we extend some well known previous results. 
 
 
1. INTRODUCTION, DEFINITIONS AND RESULTS 

 
By a meromorphic function we shall always mean a meromorphic function in the complex plane. Let k be a positive 
integer or infinity and 𝑎𝑎 ∈ 𝐶𝐶 ∪ {∞}. Set 𝐸𝐸(𝑎𝑎, 𝑓𝑓) = {𝑧𝑧: 𝑓𝑓(𝑧𝑧) − 𝑎𝑎 = 0}, where a zero point with multiplicity 𝑘𝑘 is counted  
k times in the set. If these zeros points are only counted once, then we denote the set by 𝐸𝐸�(𝑎𝑎, 𝑓𝑓).  Let 𝑓𝑓 and 𝑔𝑔 be two 
nonconstant meromorphic functions. If 𝐸𝐸(𝑎𝑎, 𝑓𝑓) =  𝐸𝐸(𝑎𝑎,𝑔𝑔), then we say that 𝑓𝑓 and 𝑔𝑔 share the value a CM; if           
𝐸𝐸�(𝑎𝑎, 𝑓𝑓) = 𝐸𝐸�(𝑎𝑎, 𝑔𝑔), then we say that 𝑓𝑓 and 𝑔𝑔 share the value a IM. We denote by 𝐸𝐸𝑘𝑘)(𝑎𝑎, 𝑓𝑓) the set of all a-points of     
𝑓𝑓 with multiplicities not exceeding 𝑘𝑘, where an a-point is counted according to its multiplicity. Also we denote by 
𝐸𝐸�𝑘𝑘)(𝑎𝑎, 𝑓𝑓) the set of distinct a-points of 𝑓𝑓 with multiplicities not greater than 𝑘𝑘. It is assumed that the reader is familiar 
with the notations of Nevanlinna theory such as 𝑇𝑇(𝑟𝑟, 𝑓𝑓),𝑚𝑚(𝑟𝑟, 𝑓𝑓),𝑁𝑁(𝑟𝑟, 𝑓𝑓),𝑁𝑁�(𝑟𝑟, 𝑓𝑓), 𝑆𝑆(𝑟𝑟, 𝑓𝑓) and so on, that can be found, 
for instance, in [4], [12]. We denote by 𝑁𝑁𝑘𝑘)(𝑟𝑟, 1

(𝑓𝑓−𝑎𝑎)
) the counting function for zeros of 𝑓𝑓 − 𝑎𝑎 with multiplicity less or 

equal to 𝑘𝑘, and by 𝑁𝑁�𝑘𝑘)(𝑟𝑟, 1
(𝑓𝑓−𝑎𝑎)

) the corresponding one for which multiplicity is not counted. Let 𝑁𝑁(𝑘𝑘(𝑟𝑟, 1
(𝑓𝑓−𝑎𝑎)

) be the 

counting function for zeros of 𝑓𝑓 − 𝑎𝑎 with multiplicity atleast 𝑘𝑘 and 𝑁𝑁�(𝑘𝑘(𝑟𝑟, 1
(𝑓𝑓−𝑎𝑎)

) the corresponding one for which 
multiplicity is not counted. 

 
Set 

𝑁𝑁𝑘𝑘 �𝑟𝑟, 1
(𝑓𝑓−𝑎𝑎)

� = 𝑁𝑁� �𝑟𝑟, 1
𝑓𝑓−𝑎𝑎

� + 𝑁𝑁�(2 �𝑟𝑟, 1
𝑓𝑓−𝑎𝑎

� + ⋯+ 𝑁𝑁�(𝑘𝑘 �𝑟𝑟, 1
𝑓𝑓−𝑎𝑎

�. 
 
Let 𝑁𝑁𝐸𝐸(𝑟𝑟, 𝑎𝑎;  𝑓𝑓,𝑔𝑔)�𝑁𝑁�𝐸𝐸(𝑟𝑟, 𝑎𝑎;  𝑓𝑓,𝑔𝑔)�be the counting function (reduced counting function) of all common zeros of 𝑓𝑓 − 𝑎𝑎 
and 𝑔𝑔 − 𝑎𝑎 with the same multiplicities and 𝑁𝑁0(𝑟𝑟, 𝑎𝑎;  𝑓𝑓,𝑔𝑔) (𝑁𝑁�0(𝑟𝑟, 𝑎𝑎;  𝑓𝑓,𝑔𝑔)) the counting function (reduced counting 
function) of all common zeros of 𝑓𝑓 − 𝑎𝑎 and 𝑔𝑔 − 𝑎𝑎 ignoring multiplicities. If 

𝑁𝑁� �𝑟𝑟,
1

𝑓𝑓 − 𝑎𝑎
� + 𝑁𝑁� �𝑟𝑟,

1
𝑔𝑔 − 𝑎𝑎

� − 2𝑁𝑁𝐸𝐸(𝑟𝑟, 𝑎𝑎;  𝑓𝑓,𝑔𝑔) = 𝑆𝑆(𝑟𝑟, 𝑓𝑓) + 𝑆𝑆(𝑟𝑟,𝑔𝑔), 

 
then we say that 𝑓𝑓 and 𝑔𝑔 share 𝑎𝑎 "CM". On the other hand, if 

𝑁𝑁� �𝑟𝑟,
1

𝑓𝑓 − 𝑎𝑎
� + 𝑁𝑁� �𝑟𝑟,

1
𝑔𝑔 − 𝑎𝑎

� − 2𝑁𝑁�0(𝑟𝑟, 𝑎𝑎;  𝑓𝑓,𝑔𝑔) = 𝑆𝑆(𝑟𝑟, 𝑓𝑓) + 𝑆𝑆(𝑟𝑟,𝑔𝑔), 

then we say that 𝑓𝑓and 𝑔𝑔 share 𝑎𝑎 "𝐼𝐼𝐼𝐼". 
 
We now explain in the following definition the notion of weakly weighted sharing which was introduced by Lin and 
Lin [8]. 
 
Definition 1 ([8]): Let 𝑓𝑓 and 𝑔𝑔 share 𝑎𝑎 "𝐼𝐼𝐼𝐼" and 𝑘𝑘 be a positive integer or ∞. 𝑁𝑁�𝑘𝑘)

𝐸𝐸 (𝑟𝑟, 𝑎𝑎; 𝑓𝑓,𝑔𝑔) denotes the reduced 
counting function of those 𝑎𝑎 −points of 𝑓𝑓 whose multiplicities are equal to the corresponging a-points of 𝑔𝑔, and both of 
their multiplicities are not greater than 𝑘𝑘. 
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𝑁𝑁�(𝑘𝑘

0 (𝑟𝑟, 𝑎𝑎; 𝑓𝑓,𝑔𝑔) denotes the reduced counting function of those a-points of 𝑓𝑓 which are a-points of 𝑔𝑔, and both of their 
multiplicities are not less than 𝑘𝑘. 
 
Definition 2 ([8]): For 𝑎𝑎 ∈ 𝐶𝐶 ∪ {∞}, if 𝑘𝑘 is a positive integer or ∞ and 

𝑁𝑁�𝑘𝑘) �𝑟𝑟,
1

(𝑓𝑓 − 𝑎𝑎)� − 𝑁𝑁�𝑘𝑘)
𝐸𝐸 (𝑟𝑟, 𝑎𝑎; 𝑓𝑓,𝑔𝑔) = 𝑆𝑆(𝑟𝑟, 𝑓𝑓), 

𝑁𝑁�𝑘𝑘) �𝑟𝑟,
1

(𝑔𝑔 − 𝑎𝑎)� − 𝑁𝑁�𝑘𝑘)
𝐸𝐸 (𝑟𝑟, 𝑎𝑎; 𝑓𝑓,𝑔𝑔) = 𝑆𝑆(𝑟𝑟,𝑔𝑔), 

𝑁𝑁�(𝑘𝑘+1 �𝑟𝑟,
1

(𝑓𝑓 − 𝑎𝑎)� − 𝑁𝑁�(𝑘𝑘+1
0 (𝑟𝑟, 𝑎𝑎;𝑓𝑓,𝑔𝑔) = 𝑆𝑆(𝑟𝑟, 𝑓𝑓), 

𝑁𝑁�(𝑘𝑘+1 �𝑟𝑟,
1

(𝑔𝑔 − 𝑎𝑎)� − 𝑁𝑁�(𝑘𝑘+1
0 (𝑟𝑟, 𝑎𝑎; 𝑓𝑓,𝑔𝑔) = 𝑆𝑆(𝑟𝑟,𝑔𝑔), 

or of 𝑘𝑘 = 0 and  𝑁𝑁� �𝑟𝑟, 1
𝑓𝑓−𝑎𝑎

� − 𝑁𝑁�0(𝑟𝑟, 𝑎𝑎;  𝑓𝑓,𝑔𝑔) = 𝑆𝑆(𝑟𝑟, 𝑓𝑓),         𝑁𝑁� �𝑟𝑟, 1
𝑔𝑔−𝑎𝑎

� − 𝑁𝑁�0(𝑟𝑟, 𝑎𝑎;  𝑓𝑓,𝑔𝑔) = 𝑆𝑆(𝑟𝑟,𝑔𝑔), 
then we say 𝑓𝑓 and 𝑔𝑔 weakly share 𝑎𝑎 with weight 𝑘𝑘.  Here we write 𝑓𝑓,𝑔𝑔 share "(a,k)"  to mean that 𝑓𝑓,𝑔𝑔 weakly share 𝑎𝑎 
with weight 𝑘𝑘. 
 
Now it is clear from Definition 2 that weakly weighted sharing is a scaling between IM and CM. 
 
Recently, A. Banerjee and S. Mukherjee [1] introduced another sharing notion which is also a scaling between IM and 
CM but weaker than weakly weighted sharing. 
 
Definition 3 ([1]): We denote by 𝑁𝑁�(𝑟𝑟, 𝑎𝑎; 𝑓𝑓|= 𝑝𝑝;𝑔𝑔| = 𝑞𝑞) the reduced counting function of common a-points of 𝑓𝑓 and 𝑔𝑔 
with multiplicities 𝑝𝑝 and 𝑞𝑞, respectively. 
 
Definition 4 ([1]): Let 𝑓𝑓,𝑔𝑔 share 𝑎𝑎 "𝐼𝐼𝐼𝐼". Also let 𝑘𝑘 be a positive integer or ∞ and 𝑎𝑎 ∈ 𝐶𝐶 ∪ {∞}. If 

� 𝑁𝑁�(𝑟𝑟, 𝑎𝑎; 𝑓𝑓|= 𝑝𝑝;𝑔𝑔| = 𝑞𝑞) = 𝑆𝑆(𝑟𝑟),
𝑝𝑝 ,𝑞𝑞≤𝐾𝐾

 

then we say 𝑓𝑓 and 𝑔𝑔 share a with weight 𝑘𝑘 in a relaxed manner. Here we write 𝑓𝑓 and 𝑔𝑔 share (𝑎𝑎, 𝑘𝑘)∗ to mean that 𝑓𝑓 and 
𝑔𝑔 share a with weight 𝑘𝑘 in a relaxed manner. 
 
W.K Hayman proposed the following well-known conjecture in [5]. 
 
Hayman’s conjecture: If an entire function 𝑓𝑓 satisfies 𝑓𝑓𝑛𝑛𝑓𝑓′ ≠ 1 for all positive integers 𝑛𝑛 ∈ 𝑁𝑁, then 𝑓𝑓  is a constant. 
 
It has been verified by Hayman himself in [6] for the case 𝑛𝑛 > 1 and Clunie in [3] for the case 𝑛𝑛 ≥ 1, respectively. 
 
It is well-known that if  𝑓𝑓 and 𝑔𝑔 share four distinct values CM, then 𝑓𝑓 is Mobius transformation of 𝑔𝑔. In 2011, Liu and 
Cao [10], have obtained results on the uniqueness and value distribution of q-shift difference polynomials. Some of 
them are stated below. 
 
Theorem A. [10, Theorem 1.1]: Let 𝑓𝑓(𝑧𝑧) be a transcendental meromorphic (resp. entire) function with zero order, and 
let 𝑚𝑚,𝑛𝑛 be positive integers and 𝑎𝑎, 𝑞𝑞 be non-zero complex constants. If 𝑛𝑛 ≥ 6(𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝.𝑛𝑛 ≥ 2), then             
𝑓𝑓𝑛𝑛(𝑧𝑧)(𝑓𝑓𝑚𝑚 (𝑧𝑧) − 𝑎𝑎)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐) − 𝛼𝛼(𝑧𝑧) has infinitely many zeros, where 𝛼𝛼(𝑧𝑧)  is a non-zero small function with respect 
to 𝑓𝑓. In particular, if 𝑓𝑓(𝑧𝑧) is a transcendental entire function and 𝛼𝛼(𝑧𝑧) is a non-zero rational function, then 𝑚𝑚 and 𝑛𝑛 can 
be any positive integers. 
 
Theorem B [10, Theorem 1.5]: Let 𝑓𝑓(𝑧𝑧) and 𝑔𝑔(𝑧𝑧) be a transcendental entire functions with zero order. If 𝑛𝑛 ≥ 𝑚𝑚 + 5, 
and 𝑓𝑓𝑛𝑛(𝑧𝑧)(𝑓𝑓𝑚𝑚 (𝑧𝑧) − 𝑎𝑎)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐)and 𝑔𝑔𝑛𝑛(𝑧𝑧)(𝑔𝑔𝑚𝑚 (𝑧𝑧) − 𝑎𝑎)𝑔𝑔(𝑞𝑞𝑧𝑧 + 𝑐𝑐) share a non-zero polynomial 𝑝𝑝(𝑧𝑧) CM, then 
𝑓𝑓(𝑧𝑧) ≡ 𝑔𝑔(𝑧𝑧). 
 
In 2015, on the basis of Theorems A and B, Q. Zhao and J. Zhang [14] study the k-th derivative of q-shift difference 
polynomials and proved the following results. 
 
Theorem C: Let 𝑓𝑓(𝑧𝑧) be a transcendental meromorphic function with zero order, and let 𝑛𝑛, 𝑘𝑘 be positive integers. If 
𝑛𝑛 > 𝑘𝑘 + 5, then  (𝑓𝑓𝑛𝑛(𝑧𝑧)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐))(𝑘𝑘) − 1 has infinitely many zeros. 
 
Theorem D: Let 𝑓𝑓(𝑧𝑧) be a transcendental entire function with zero order, and let 𝑛𝑛, 𝑘𝑘 be positive integers, then 
 (𝑓𝑓𝑛𝑛(𝑧𝑧)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐))(𝑘𝑘) − 1 has infinitely many zeros. 
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Theorem E: Let 𝑓𝑓(𝑧𝑧) be a transcendental entire functions with zero order, and let 𝑛𝑛, 𝑘𝑘 be positive integers. If            
𝑛𝑛 > 2𝑘𝑘 + 5, and  (𝑓𝑓𝑛𝑛(𝑧𝑧)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐))(𝑘𝑘) and  𝑔𝑔𝑛𝑛(𝑧𝑧)𝑔𝑔(𝑞𝑞𝑧𝑧 + 𝑐𝑐))(𝑘𝑘) share z CM, then 𝑓𝑓 = 𝑡𝑡𝑔𝑔 for a constant 𝑡𝑡 with 
𝑡𝑡𝑛𝑛+1 = 1. 
 
Theorem F: Let 𝑓𝑓(𝑧𝑧) be a transcendental entire functions with zero order, and let 𝑛𝑛, 𝑘𝑘 be positive integers. If             
𝑛𝑛 > 2𝑘𝑘 + 5, and  (𝑓𝑓𝑛𝑛(𝑧𝑧)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐))(𝑘𝑘) and  𝑔𝑔𝑛𝑛(𝑧𝑧)𝑔𝑔(𝑞𝑞𝑧𝑧 + 𝑐𝑐))(𝑘𝑘) share 1 CM, then 𝑓𝑓 = 𝑡𝑡𝑔𝑔 for a constant 𝑡𝑡 with 
𝑡𝑡𝑛𝑛+1 = 1. 
 
When sharing a single value IM, and obtain the following theorems. 
 
Theorem G:  Let 𝑓𝑓(𝑧𝑧) and 𝑔𝑔(𝑧𝑧) be transcendental entire functions with zero order, and let 𝑛𝑛, 𝑘𝑘 be positive integer. If 
𝑛𝑛 > 5𝑘𝑘 + 11, and  (𝑓𝑓𝑛𝑛(𝑧𝑧)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐))(𝑘𝑘) and  𝑔𝑔𝑛𝑛(𝑧𝑧)𝑔𝑔(𝑞𝑞𝑧𝑧 + 𝑐𝑐))(𝑘𝑘) share z IM, then 𝑓𝑓 = 𝑡𝑡𝑔𝑔 for a constant 𝑡𝑡 with 
𝑡𝑡𝑛𝑛+1 = 1. 
 
Theorem H: Let 𝑓𝑓(𝑧𝑧) and 𝑔𝑔(𝑧𝑧) be transcendental entire functions with zero order, and let 𝑛𝑛, 𝑘𝑘 be positive integer. If 
𝑛𝑛 > 5𝑘𝑘 + 11, and  (𝑓𝑓𝑛𝑛(𝑧𝑧)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐))(𝑘𝑘) and  𝑔𝑔𝑛𝑛(𝑧𝑧)𝑔𝑔(𝑞𝑞𝑧𝑧 + 𝑐𝑐))(𝑘𝑘) share 1 IM, then 𝑓𝑓 = 𝑡𝑡𝑔𝑔 for a constant 𝑡𝑡 with 
𝑡𝑡𝑛𝑛+1 = 1. 
In this paper by introducing the small function 𝛼𝛼(𝑧𝑧), we prove the following results. 
 
Theorem 1: Let 𝑓𝑓(𝑧𝑧) and 𝑔𝑔(𝑧𝑧) be a transcendental entire functions of finite order, and 𝛼𝛼(𝑧𝑧) be a small function with 
respect to both 𝑓𝑓(𝑧𝑧) and 𝑔𝑔(𝑧𝑧). Suppose that 𝑐𝑐 is a non-zero complex constant and  𝑛𝑛 ≥ 4𝑘𝑘 + 𝑚𝑚 + 6 is an integer. If 
 (𝑓𝑓𝑛𝑛(𝑧𝑧)(𝑓𝑓𝑚𝑚 (𝑧𝑧) − 1)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐))(𝑘𝑘) and  (𝑔𝑔𝑛𝑛(𝑧𝑧)(𝑔𝑔𝑚𝑚 (𝑧𝑧) − 1)𝑔𝑔(𝑞𝑞𝑧𝑧 + 𝑐𝑐))(𝑘𝑘) share "(𝛼𝛼(𝑧𝑧), 2)", then 𝑓𝑓(𝑧𝑧) ≡ 𝑔𝑔(𝑧𝑧).  
 
Theorem 2: Let 𝑓𝑓(𝑧𝑧) and 𝑔𝑔(𝑧𝑧) be a transcendental entire functions of finite order, and 𝛼𝛼(𝑧𝑧) be a small function with 
respect to both 𝑓𝑓(𝑧𝑧) and 𝑔𝑔(𝑧𝑧). Suppose that 𝑐𝑐 is a non-zero complex constant and  𝑛𝑛 > 6𝑘𝑘 + 3𝑚𝑚 + 8 is an integer. If 
 (𝑓𝑓𝑛𝑛(𝑧𝑧)(𝑓𝑓𝑚𝑚 (𝑧𝑧) − 1)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐))(𝑘𝑘) and  (𝑔𝑔𝑛𝑛(𝑧𝑧)(𝑔𝑔𝑚𝑚 (𝑧𝑧) − 1)𝑔𝑔(𝑞𝑞𝑧𝑧 + 𝑐𝑐))(𝑘𝑘) share (𝛼𝛼(𝑧𝑧), 2)∗, then 𝑓𝑓(𝑧𝑧) ≡ 𝑔𝑔(𝑧𝑧).  
 
Without the notions of weakly weighted sharing and relaxed weighted sharing we prove the following theorem. 
 
Theorem 3: Let 𝑓𝑓(𝑧𝑧) and 𝑔𝑔(𝑧𝑧) be a transcendental entire functions of finite order, and 𝛼𝛼(𝑧𝑧) be a small function with 
respect to both 𝑓𝑓(𝑧𝑧) and 𝑔𝑔(𝑧𝑧). Suppose that 𝑐𝑐 is a non-zero complex constant and  𝑛𝑛 > 10𝑘𝑘 + 5𝑚𝑚 + 12 is an integer. If 
E�2)�𝛼𝛼(𝑧𝑧), 𝑓𝑓𝑛𝑛(𝑧𝑧)(𝑓𝑓𝑚𝑚 (𝑧𝑧) − 1)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐)� = E�2)(𝛼𝛼(𝑧𝑧),𝑔𝑔𝑛𝑛(𝑧𝑧)(𝑔𝑔𝑚𝑚 (𝑧𝑧) − 1)𝑔𝑔(𝑞𝑞𝑧𝑧 + 𝑐𝑐)) then 𝑓𝑓(𝑧𝑧) ≡ 𝑔𝑔(𝑧𝑧).  
 
2. LEMMAS 

 
In this section, we present some lemmas which play an important role in the proof of the main results. We will denote 
by 𝐻𝐻 the following function; 

𝐻𝐻 = �
𝐹𝐹"
𝐹𝐹′
−

2𝐹𝐹′

𝐹𝐹 − 1
� − �

𝐺𝐺"
𝐺𝐺′
−

2𝐺𝐺′

𝐺𝐺 − 1
� 

 
Lemma 1 ([1]): 𝐻𝐻 be defined as above. If 𝐹𝐹 and 𝐺𝐺 share "(1,2)" and 𝐻𝐻 ≢ 0, then  

𝑇𝑇(𝑟𝑟,𝐹𝐹) ≤ 𝑁𝑁2 �𝑟𝑟,
1
𝐹𝐹
� + 𝑁𝑁2 �𝑟𝑟,

1
𝐺𝐺
� + 𝑁𝑁2(𝑟𝑟,𝐹𝐹) + 𝑁𝑁2(𝑟𝑟,𝐺𝐺) −�𝑁𝑁�(𝑝𝑝 �𝑟𝑟,

𝐺𝐺
𝐺𝐺′
� + 𝑆𝑆(𝑟𝑟,𝐹𝐹) + 𝑆𝑆(𝑟𝑟,𝐺𝐺),

∞

𝑝𝑝=3

 

and the same inequality holds for 𝑇𝑇(𝑟𝑟,𝐺𝐺). 
 
Lemma 2 ([1]): Let 𝐻𝐻 be defined as above. If 𝐹𝐹 and 𝐺𝐺 share (1,2)∗ and 𝐻𝐻 ≢ 0, then  

𝑇𝑇(𝑟𝑟,𝐹𝐹) ≤ 𝑁𝑁2 �𝑟𝑟,
1
𝐹𝐹
� + 𝑁𝑁2 �𝑟𝑟,

1
𝐺𝐺
� + 𝑁𝑁2(𝑟𝑟,𝐹𝐹) + 𝑁𝑁2(𝑟𝑟,𝐺𝐺) + 𝑁𝑁� �𝑟𝑟,

1
𝐹𝐹
� + 𝑁𝑁�(𝑟𝑟,𝐹𝐹) −𝑚𝑚 �𝑟𝑟,

1
𝐺𝐺 − 1

� + 𝑆𝑆(𝑟𝑟,𝐹𝐹) + 𝑆𝑆(𝑟𝑟,𝐺𝐺), 
 
and the same inequality holds for 𝑇𝑇(𝑟𝑟,𝐺𝐺). 
 
Lemma 3 ([13]): Let 𝐻𝐻 be defined as above. If 𝐻𝐻 ≡ 0 and 

limsup
𝑟𝑟→∞

𝑁𝑁� �𝑟𝑟, 1
𝐹𝐹� + 𝑁𝑁�(𝑟𝑟,𝐹𝐹) + 𝑁𝑁� �𝑟𝑟, 1

𝐺𝐺� + 𝑁𝑁�(𝑟𝑟,𝐺𝐺)

𝑇𝑇(𝑟𝑟)
< 1, 𝑟𝑟 ∈ 𝐼𝐼,  

where 𝑇𝑇(𝑟𝑟) = max{𝑇𝑇(𝑟𝑟,𝐹𝐹),𝑇𝑇(𝑟𝑟,𝐺𝐺)} and 𝐼𝐼 is a set with infinite linear measure then 𝐹𝐹 ≡ 𝐺𝐺 or 𝐹𝐹𝐺𝐺 ≡ 1. 
 
Lemma 4 ([2]): Let 𝑓𝑓(𝑧𝑧) be a meromorphic function in the complex plane of finite order 𝜎𝜎(𝑓𝑓), and let 𝜂𝜂 be a fixed 
non-zero complex number. Then for each 𝜖𝜖 > 0,  one had 

𝑇𝑇�𝑟𝑟, 𝑓𝑓(𝑧𝑧 + 𝜂𝜂)� = 𝑇𝑇�𝑟𝑟, 𝑓𝑓(𝑧𝑧)� + 𝑂𝑂�𝑟𝑟𝜎𝜎(𝑓𝑓)−1+𝜖𝜖� + 𝑂𝑂(log 𝑟𝑟) 
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Lemma 5 ([11]): Let 𝑓𝑓(𝑧𝑧) be an entire function of finite order 𝜎𝜎(𝑓𝑓), c is a fixed non-zero complex number, and 

𝑃𝑃(𝑧𝑧) = 𝑎𝑎𝑛𝑛𝑓𝑓𝑛𝑛(𝑧𝑧) + 𝑎𝑎𝑛𝑛−1𝑓𝑓𝑛𝑛−1(𝑧𝑧) + ⋯+ 𝑎𝑎1𝑓𝑓(𝑧𝑧) + 𝑎𝑎0 
 
where 𝑎𝑎𝑗𝑗 (𝑗𝑗 = 0,1, … ,𝑛𝑛) are constants. If 𝐹𝐹(𝑧𝑧) = 𝑃𝑃(𝑧𝑧)𝑓𝑓(𝑧𝑧 + 𝑐𝑐), then  

𝑇𝑇(𝑟𝑟,𝐹𝐹) = (𝑛𝑛 + 1)𝑇𝑇(𝑟𝑟, 𝑓𝑓) + 𝑂𝑂�𝑟𝑟𝜎𝜎(𝑓𝑓)−1+𝜖𝜖� + 𝑂𝑂(log 𝑟𝑟). 
 
Lemma 6 ([9]): Let 𝐹𝐹 and 𝐺𝐺 be two nonconstant entire functions, and 𝑝𝑝 ≥ 2 an integer. If 𝐸𝐸�𝑝𝑝)(1,𝐹𝐹) = 𝐸𝐸�𝑝𝑝)(1,𝐺𝐺) and 
𝐻𝐻 ≢ 0, then 

𝑇𝑇(𝑟𝑟,𝐹𝐹) = 𝑁𝑁2 �𝑟𝑟,
1
𝐹𝐹
� + 𝑁𝑁2 �𝑟𝑟,

1
𝐺𝐺
� + 2𝑁𝑁� �𝑟𝑟,

1
𝐹𝐹
� + 𝑁𝑁� �𝑟𝑟,

1
𝐺𝐺
� + 𝑆𝑆(𝑟𝑟,𝐹𝐹) + 𝑆𝑆(𝑟𝑟,𝐺𝐺). 

 
Lemma 7 ([7]): Let 𝑓𝑓(𝑧𝑧) be a nonconstant meromorphic function, and let s, k be two positive integers. Then 

𝑁𝑁𝑟𝑟 �𝑟𝑟,
1
𝑓𝑓(𝑘𝑘)� ≤ 𝑇𝑇�𝑟𝑟, 𝑓𝑓(𝑘𝑘)� − 𝑇𝑇(𝑟𝑟, 𝑓𝑓) + 𝑁𝑁𝑟𝑟+𝑘𝑘 �𝑟𝑟,

1
𝑓𝑓
� + 𝑆𝑆(𝑟𝑟, 𝑓𝑓), 

 

𝑁𝑁𝑟𝑟 �𝑟𝑟,
1
𝑓𝑓(𝑘𝑘)� ≤ 𝑘𝑘𝑁𝑁�(𝑟𝑟, 𝑓𝑓) + 𝑁𝑁𝑟𝑟+𝑘𝑘 �𝑟𝑟,

1
𝑓𝑓
� + 𝑆𝑆(𝑟𝑟, 𝑓𝑓). 

 
Clearly, 𝑁𝑁� �𝑟𝑟, 1

𝑓𝑓(𝑘𝑘)� = 𝑁𝑁1 �𝑟𝑟, 1
𝑓𝑓(𝑘𝑘)�. 

 
3. PROOF OF THEOREM 1 
 

Let    𝐹𝐹(𝑧𝑧) = [𝑓𝑓𝑛𝑛 (𝑓𝑓𝑚𝑚−1)𝑓𝑓(𝑞𝑞𝑧𝑧+𝑐𝑐)](𝑘𝑘)

𝛼𝛼(𝑧𝑧)
,    𝐺𝐺(𝑧𝑧) = [𝑔𝑔𝑛𝑛 (𝑔𝑔𝑚𝑚−1)𝑔𝑔(𝑞𝑞𝑧𝑧+𝑐𝑐)](𝑘𝑘)

𝛼𝛼(𝑧𝑧)
,  Then 𝐹𝐹(𝑧𝑧) and 𝐺𝐺(𝑧𝑧) share "(1,2)" except the zeros or 

poles of 𝛼𝛼(𝑧𝑧). By Lemma 5, we have 
𝑇𝑇�𝑟𝑟,𝐹𝐹(𝑧𝑧)� = 𝑇𝑇�𝑟𝑟, 𝑓𝑓𝑛𝑛(𝑓𝑓𝑚𝑚 − 1)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐)� + 𝑘𝑘𝑁𝑁�(𝑟𝑟, 𝑓𝑓) + 𝑆𝑆(𝑟𝑟, 𝑓𝑓).                                                     (1) 

 
𝑇𝑇�𝑟𝑟,𝐺𝐺(𝑧𝑧)� = 𝑇𝑇�𝑟𝑟,𝑔𝑔𝑛𝑛(𝑔𝑔𝑚𝑚 − 1)𝑔𝑔(𝑞𝑞𝑧𝑧 + 𝑐𝑐)� + 𝑘𝑘𝑁𝑁�(𝑟𝑟,𝑔𝑔) + 𝑆𝑆(𝑟𝑟,𝑔𝑔).                                                    (2) 

 
Also from Lemma 7, we obtain 
 

𝑁𝑁2 �𝑟𝑟, 1
𝐹𝐹
� ≤ 𝑁𝑁𝑘𝑘+2 �𝑟𝑟, 1

𝑓𝑓𝑛𝑛 (𝑓𝑓𝑚𝑚−1)𝑓𝑓(𝑞𝑞𝑧𝑧+𝑐𝑐)
� + 𝑆𝑆(𝑟𝑟, 𝑓𝑓)  

≤ (𝑘𝑘 + 2)𝑁𝑁 �𝑟𝑟, 1
𝑓𝑓
� + 𝑁𝑁 �𝑟𝑟, 1

𝑓𝑓𝑚𝑚−1
� + 𝑁𝑁 �𝑟𝑟, 1

𝑓𝑓(𝑞𝑞𝑧𝑧+𝑐𝑐)
� + 𝑘𝑘𝑁𝑁�(𝑟𝑟, 𝑓𝑓) + 𝑆𝑆(𝑟𝑟, 𝑓𝑓)                            (3) 

≤ (2𝑘𝑘 + 𝑚𝑚 + 3)𝑇𝑇(𝑟𝑟, 𝑓𝑓) + 𝑆𝑆(𝑟𝑟, 𝑓𝑓) 
and  

𝑁𝑁2 �𝑟𝑟, 1
𝐺𝐺
� ≤ (2𝑘𝑘 + 𝑚𝑚 + 3)𝑇𝑇(𝑟𝑟,𝑔𝑔) + 𝑆𝑆(𝑟𝑟,𝑔𝑔)                                                                                       (4) 

 
Suppose 𝐻𝐻 ≢ 0, then by Lemma 1 and Lemma 4, we have 

𝑇𝑇(𝑟𝑟,𝐹𝐹) + 𝑇𝑇(𝑟𝑟,𝐺𝐺) ≤ 2𝑁𝑁2 �𝑟𝑟,
1
𝐹𝐹
� + 2𝑁𝑁2 �𝑟𝑟,

1
𝐺𝐺
� + 𝑆𝑆(𝑟𝑟, 𝑓𝑓) + 𝑆𝑆(𝑟𝑟,𝑔𝑔) 

 
(𝑛𝑛 + 𝑚𝑚 + 1)[𝑇𝑇(𝑟𝑟, 𝑓𝑓) + 𝑇𝑇(𝑟𝑟,𝑔𝑔)] ≤ (4𝑘𝑘 + 2𝑚𝑚 + 6)[𝑇𝑇(𝑟𝑟, 𝑓𝑓) + 𝑇𝑇(𝑟𝑟,𝑔𝑔)] + 𝑆𝑆(𝑟𝑟, 𝑓𝑓) + 𝑆𝑆(𝑟𝑟,𝑔𝑔) 
 
(𝑛𝑛 − 4𝑘𝑘 − 𝑚𝑚 − 5)[𝑇𝑇(𝑟𝑟, 𝑓𝑓) + 𝑇𝑇(𝑟𝑟,𝑔𝑔)] ≤ 𝑂𝑂�𝑟𝑟𝜎𝜎(𝑓𝑓)−1+𝜖𝜖� + 𝑂𝑂�𝑟𝑟𝜎𝜎(𝑔𝑔)−1+𝜖𝜖� + 𝑆𝑆(𝑟𝑟, 𝑓𝑓) + 𝑆𝑆(𝑟𝑟,𝑔𝑔)           (5) 

 
which contradicts with 𝑛𝑛 > 4𝑘𝑘 + 𝑚𝑚 + 6. Thus we have 𝐻𝐻 ≡ 0.  Note that  

𝑁𝑁� �𝑟𝑟, 1
𝐹𝐹
� + 𝑁𝑁� �𝑟𝑟, 1

𝐺𝐺
� ≤ (2𝑘𝑘 + 𝑚𝑚 + 2)𝑇𝑇(𝑟𝑟, 𝑓𝑓) + (2𝑘𝑘 + 𝑚𝑚 + 2)𝑇𝑇(𝑟𝑟,𝑔𝑔) + 𝑆𝑆(𝑟𝑟, 𝑓𝑓) + 𝑆𝑆(𝑟𝑟,𝑔𝑔)          

     ≤ 𝑇𝑇(𝑟𝑟). 
 
Where 𝑇𝑇(𝑟𝑟) = max{𝑇𝑇(𝑟𝑟,𝐹𝐹),𝑇𝑇(𝑟𝑟,𝐺𝐺)}.  By Lemma 3, we deduce that either 𝐹𝐹 ≡ 𝐺𝐺 or 𝐹𝐹𝐺𝐺 ≡ 1. Next we will consider 
the following two cases, respectively. 
 
Case-1: 𝐹𝐹 ≡ 𝐺𝐺, thus 𝑓𝑓𝑛𝑛(𝑓𝑓𝑚𝑚 − 1)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐) ≡ 𝑔𝑔𝑛𝑛(𝑔𝑔𝑚𝑚 − 1)𝑔𝑔(𝑞𝑞𝑧𝑧 + 𝑐𝑐). Let 𝜑𝜑(𝑧𝑧) = 𝑓𝑓(𝑧𝑧)

𝑔𝑔(𝑧𝑧)
. If 𝜑𝜑𝑛𝑛+𝑚𝑚 (𝑧𝑧)(𝑞𝑞𝑧𝑧 + 𝑐𝑐) ≢ 1, we 

have 
𝑔𝑔𝑚𝑚 (𝑧𝑧) = 𝜑𝜑𝑛𝑛 (𝑧𝑧)𝜑𝜑(𝑞𝑞𝑧𝑧+𝑐𝑐)−1

𝜑𝜑𝑛𝑛+𝑚𝑚 (𝑧𝑧)𝜑𝜑(𝑞𝑞𝑧𝑧+𝑐𝑐)−1
                                                                                                                   (6) 
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Then 𝜑𝜑(𝑧𝑧) is a transcendental meromorphic function of finite order since 𝑔𝑔(𝑧𝑧) is transcendental. By Lemma 4, we have 

𝑇𝑇�𝑟𝑟,𝜑𝜑(𝑞𝑞𝑧𝑧 + 𝑧𝑧)� = 𝑇𝑇�𝑟𝑟,𝜑𝜑(𝑧𝑧)� + 𝑆𝑆(𝑟𝑟,𝜑𝜑).                                                                                           (7) 
 
If 𝜑𝜑𝑛𝑛+𝑚𝑚 (𝑧𝑧)𝜑𝜑(𝑧𝑧 + 𝑐𝑐) = 𝑘𝑘(≠ 1), where 𝑘𝑘 is a constant, the Lemma 4 and (7) imply that 
  
(𝑛𝑛 + 𝑚𝑚)𝑇𝑇�𝑟𝑟,𝜑𝜑(𝑧𝑧)� = 𝑇𝑇�𝑟𝑟,𝜑𝜑(𝑧𝑧 + 𝑐𝑐)� + 𝑂𝑂(1) = 𝑇𝑇(𝑟𝑟,𝜑𝜑(𝑧𝑧))+ 𝑂𝑂�𝑟𝑟𝜎𝜎�𝜑𝜑(𝑧𝑧)�−1+𝜖𝜖� + 𝑂𝑂(𝑙𝑙𝑙𝑙𝑔𝑔𝑟𝑟) 
 
which contradicts with 𝑛𝑛 ≥ 4𝑘𝑘 + 𝑚𝑚 + 6. Thus 𝜑𝜑𝑛𝑛+𝑚𝑚 (𝑧𝑧)𝜑𝜑(𝑞𝑞𝑧𝑧 + 𝑐𝑐) is not a constant. 
 
Suppose that there exists a point 𝑧𝑧0 such that 𝜑𝜑𝑛𝑛+𝑚𝑚 (𝑧𝑧0)𝜑𝜑(𝑞𝑞𝑧𝑧0 + 𝑐𝑐) = 1. Then 𝜑𝜑𝑛𝑛(𝑧𝑧0)𝜑𝜑(𝑞𝑞𝑧𝑧0 + 𝑐𝑐) = 1 since 𝑔𝑔(𝑧𝑧) is an 
entire functions. Hence 𝜑𝜑𝑚𝑚 (𝑧𝑧0) = 1 and  

𝑁𝑁� �𝑟𝑟,
1

𝜑𝜑𝑛𝑛+𝑚𝑚 (𝑧𝑧)𝜑𝜑(𝑧𝑧 + 𝑐𝑐) − 1
� ≤ 𝑁𝑁� �𝑟𝑟,

1
𝜑𝜑𝑚𝑚 (𝑧𝑧) − 1

� ≤ 𝑚𝑚𝑇𝑇�𝑟𝑟,𝜑𝜑(𝑧𝑧)� + 𝑂𝑂(1). 

 
We apply the second Nevanlinna fundamental theorem to 𝜑𝜑𝑛𝑛+𝑚𝑚 (𝑧𝑧)𝜑𝜑(𝑞𝑞𝑧𝑧 + 𝑐𝑐): 

 𝑇𝑇�𝑟𝑟,𝜑𝜑𝑛𝑛+𝑚𝑚 (𝑧𝑧)𝜑𝜑(𝑞𝑞𝑧𝑧 + 𝑐𝑐)� ≤ 𝑁𝑁��𝑟𝑟,𝜑𝜑𝑛𝑛+𝑚𝑚 (𝑧𝑧)𝜑𝜑(𝑧𝑧 + 𝑐𝑐)� + 𝑁𝑁� �𝑟𝑟,
1

𝜑𝜑𝑛𝑛+𝑚𝑚 (𝑧𝑧)𝜑𝜑(𝑧𝑧 + 𝑐𝑐)� 

+𝑁𝑁� �𝑟𝑟,
1

𝜑𝜑𝑛𝑛+𝑚𝑚 (𝑧𝑧)𝜑𝜑(𝑞𝑞𝑧𝑧 + 𝑐𝑐) − 1
� + 𝑆𝑆(𝑟𝑟,𝜑𝜑). 

≤ (𝑚𝑚 + 5)𝑇𝑇�𝑟𝑟,𝜑𝜑(𝑧𝑧)� + 𝑆𝑆(𝑟𝑟,𝜑𝜑). 
 
By Lemma 5 we deduce 

(𝑛𝑛 − 𝑚𝑚 − 4)𝑇𝑇�𝑟𝑟,𝜑𝜑(𝑧𝑧)� ≤ 𝑂𝑂�𝑟𝑟𝜎𝜎�𝜑𝜑(𝑧𝑧)�−1+𝜖𝜖� + 𝑆𝑆(𝑟𝑟,𝜑𝜑),                                                                       (8) 
 
which contradicts with 𝑛𝑛 ≥ 4𝑘𝑘 + 𝑚𝑚 + 6. So 𝜑𝜑𝑛𝑛+𝑚𝑚 (𝑧𝑧)𝜑𝜑(𝑞𝑞𝑧𝑧 + 𝑐𝑐) ≡ 1. Thus 𝜑𝜑(𝑧𝑧) ≡ 1, that is 𝑓𝑓(𝑧𝑧) ≡ 𝑔𝑔(𝑧𝑧). 
 
Case-2:  𝐹𝐹(𝑧𝑧)𝐺𝐺(𝑧𝑧) ≡ 1, that is  

𝑓𝑓𝑛𝑛(𝑓𝑓𝑚𝑚 − 1)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐)𝑔𝑔𝑛𝑛(𝑔𝑔𝑚𝑚 − 1)𝑔𝑔(𝑞𝑞𝑧𝑧 + 𝑐𝑐) ≡ 𝛼𝛼2(𝑧𝑧).                                                                     (9) 
Since 𝑓𝑓 and 𝑔𝑔 are transcendental entire functions, we can deduce from (9) that 𝑁𝑁 �𝑟𝑟, 1

𝑓𝑓
� = 𝑆𝑆(𝑟𝑟, 𝑓𝑓),𝑁𝑁(𝑟𝑟, 𝑓𝑓) = 𝑆𝑆(𝑟𝑟, 𝑓𝑓) 

and 𝑁𝑁 �𝑟𝑟, 1
𝑓𝑓−1

� = 𝑆𝑆(𝑟𝑟, 𝑓𝑓). Then 𝛿𝛿(0, 𝑓𝑓) + 𝛿𝛿(∞, 𝑓𝑓) + 𝛿𝛿(1, 𝑓𝑓) = 3, which contradicts the deficiency relation. This 
completes the proof of Theorem 1. 
 
4. PROOF OF THEOREM 2 
 

 Let    𝐹𝐹(𝑧𝑧) = [𝑓𝑓𝑛𝑛 (𝑓𝑓𝑚𝑚−1)𝑓𝑓(𝑞𝑞𝑧𝑧+𝑐𝑐)](𝑘𝑘)

𝛼𝛼(𝑧𝑧)
,   𝐺𝐺(𝑧𝑧) = [𝑔𝑔𝑛𝑛 (𝑔𝑔𝑚𝑚−1)𝑔𝑔(𝑞𝑞𝑧𝑧+𝑐𝑐)](𝑘𝑘)

𝛼𝛼(𝑧𝑧)
, 

 
Then 𝐹𝐹(𝑧𝑧) and 𝐺𝐺(𝑧𝑧) share (1,2)∗ except the zeros or poles of 𝛼𝛼(𝑧𝑧). Obviously    

2𝑁𝑁2 �𝑟𝑟,
1
𝐹𝐹
� + 2𝑁𝑁2 �𝑟𝑟,

1
𝐺𝐺
� + 𝑁𝑁� �𝑟𝑟,

1
𝐹𝐹
� + 𝑁𝑁� �𝑟𝑟,

1
𝐺𝐺
� + 𝑆𝑆(𝑟𝑟,𝐹𝐹) + 𝑆𝑆(𝑟𝑟,𝐺𝐺) 

≤ (6𝑘𝑘 + 3𝑚𝑚 + 8)𝑇𝑇(𝑟𝑟, 𝑓𝑓) + (6𝑘𝑘 + 3𝑚𝑚 + 8)𝑇𝑇(𝑟𝑟,𝑔𝑔) + 𝑆𝑆(𝑟𝑟, 𝑓𝑓) + 𝑆𝑆(𝑟𝑟,𝑔𝑔).                          (10) 
 
According to (10) and Lemma 2, we can prove Theorem 2 in a similar way as in Section 3. 
 
5. PROOF OF THEOREM 3 
 

Let    𝐹𝐹(𝑧𝑧) = [𝑓𝑓𝑛𝑛 (𝑓𝑓𝑚𝑚−1)𝑓𝑓(𝑞𝑞𝑧𝑧+𝑐𝑐)](𝑘𝑘)

𝛼𝛼(𝑧𝑧)
, 𝐺𝐺(𝑧𝑧) = [𝑔𝑔𝑛𝑛 (𝑔𝑔𝑚𝑚−1)𝑔𝑔(𝑞𝑞𝑧𝑧+𝑐𝑐)](𝑘𝑘)

𝛼𝛼(𝑧𝑧)
, 

 
Then E�2)�𝛼𝛼(𝑧𝑧), [𝑓𝑓𝑛𝑛(𝑓𝑓𝑚𝑚 − 1)𝑓𝑓(𝑞𝑞𝑧𝑧 + 𝑐𝑐)](𝑘𝑘)� = E�2)(𝛼𝛼(𝑧𝑧), [𝑔𝑔𝑛𝑛(𝑔𝑔𝑚𝑚 − 1)𝑔𝑔(𝑞𝑞𝑧𝑧 + 𝑐𝑐)](𝑘𝑘)) except the zeros or poles of 
𝛼𝛼(𝑧𝑧). Obviously 
 

2𝑁𝑁2 �𝑟𝑟,
1
𝐹𝐹
� + 2𝑁𝑁2 �𝑟𝑟,

1
𝐺𝐺
� + 3𝑁𝑁� �𝑟𝑟,

1
𝐹𝐹
� + 3𝑁𝑁� �𝑟𝑟,

1
𝐺𝐺
� + 𝑆𝑆(𝑟𝑟,𝐹𝐹) + 𝑆𝑆(𝑟𝑟,𝐺𝐺) 

≤ (10𝑘𝑘 + 5𝑚𝑚 + 12)𝑇𝑇(𝑟𝑟, 𝑓𝑓) + (10𝑘𝑘 + 5𝑚𝑚 + 12)𝑇𝑇(𝑟𝑟,𝑔𝑔) + 𝑆𝑆(𝑟𝑟, 𝑓𝑓) + 𝑆𝑆(𝑟𝑟,𝑔𝑔).                 (11) 
 
Using (11) and Lemma 6, we can prove Theorem 3 in a similar way as in Section 3. 
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