BIPOLAR VALUED MULTI FUZZY SUBSEMIGROUPS OF A SEMIGROUP

C. PALANICHAMY*
Associate Professor, Department of Mathematics,
SN College, Perungudi, Madurai -22, Tamil Nadu, India.

(Received On: 24-11-17; Revised & Accepted On: 02-02-17)

ABSTRACT
In this paper, we study some of the properties of bipolar valued multi fuzzy subsemigroup and prove some results on these.

Key Words: Bipolar valued fuzzy subset, bipolar valued multi fuzzy subset, bipolar valued multi fuzzy subsemigroup, product, pseudo bipolar valued multi fuzzy coset.

INTRODUCTION
In 1965, Zadeh [12] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of research in different domains, there have been a number of generalizations of this fundamental concept such as intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, soft sets etc [5]. Lee [7] introduced the notion of bipolar valued fuzzy sets. Bipolar valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to [−1, 1]. In a bipolar valued fuzzy subset, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degree (0, 1] indicates that elements somewhat satisfy the property and the membership degree [−1, 0) indicates that elements somewhat satisfy the implicit counter property. Bipolar valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other [7, 8]. We introduce the concept of bipolar valued multi fuzzy subsemigroup and established some results.

1. PRELIMINARIES

1.1 Definition: A bipolar valued fuzzy set (BVFS) A in X is defined as an object of the form A = \{< x, A^+(x), A^-(x) >/ x ∈ X\}, where A^+: X→ [0, 1] and A^-: X→ [−1, 0]. The positive membership degree A^+(x) denotes the satisfaction degree of an element x to the property corresponding to a bipolar valued fuzzy set A and the negative membership degree A^-(x) denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar valued fuzzy set A.

1.2 Example: A = {< a, 0.4, −0.7 >, < b, 0.8, −0.5 >, < c, 0.7, −0.4 >} is a bipolar valued fuzzy subset of X = {a, b, c}.

1.3 Definition: A bipolar valued multi fuzzy set (BVMFS) A in X is defined as an object of the form A = {< x, A^+_i(x), A^-_i(x) >/ x ∈ X}, where A^+_i: X→ [0, 1] and A^-_i: X→ [−1, 0]. The positive membership degrees A^+_i(x) denote the satisfaction degree of an element x to the property corresponding to a bipolar valued multi fuzzy set A and the negative membership degrees A^-_i(x) denote the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar valued multi fuzzy set A.

1.4 Example: A = {< a, 0.3, 0, 2, 0.3, −0.3, −0.7, −0.4 >, < b, 0.2, 0.5, 0.6, −0.7, −0.2, −0.6 >, < c, 0.5, 0.4, 0.7, −0.4, −0.2, −0.1 >} is a bipolar valued multi fuzzy subset with order three of X = {a, b, c}.

1.5 Definition: Let S be a semigroup. A bipolar valued multi fuzzy subset A of S is said to be a bipolar valued multi fuzzy subsemigroup of S if the following conditions are satisfied
(i) A^+_i(xy) ≥ min \{A^+_i(x), A^+_i(y)\}
(ii) A^-_i(xy) ≤ max \{A^-_i(x), A^-_i(y)\} for all x and y in S.

Corresponding Author: C. Palanichamy*
Associate Professor, Department of Mathematics,
SN College, Perungudi, Madurai -22, Tamil Nadu, India.
1.6 Example: Let \(S = \{1, -1, i, -i\} \) be a semigroup with respect to the ordinary multiplication. Then \(A = \{< 1, 0.6, 0.6, 0.5, -0.6, -0.7, -0.3>, < -1, 0.5, 0.5, 0.4, -0.5, -0.6, -0.2>, < i, 0.3, 0.2, 0.3, -0.4, -0.5, -0.1>, < -i, 0.3, 0.2, 0.3, -0.4, -0.5, -0.1> \} \) is a bipolar valued multi fuzzy subsemigroup of \(S \).

1.7 Definition: Let \(A = \langle A_i^+, A_i^- \rangle \) and \(B = \langle B_i^+, B_i^- \rangle \) be any two bipolar valued multi fuzzy subsets of sets \(G \) and \(H \), respectively. The product of \(A \) and \(B \), denoted by \(AB \), is defined as \(AB = \{ (x, y), (A_i^+, B_i^+) (x, y), (A_i^-, B_i^-) (x, y) \} / \) for all \(x \) in \(G \) and \(y \) in \(H \) where \((A_i^+, B_i^+) (x, y) = min \{ A_i^+(x), B_i^+(y) \} \) and \((A_i^-, B_i^-) (x, y) = max \{ A_i^-(x), B_i^-(y) \} \) for all \(x \) in \(G \) and \(y \) in \(H \).

1.8 Definition: Let \(A = \langle A_i^+, A_i^- \rangle \) be a bipolar valued multi fuzzy subset in a set \(S \), the strongest bipolar valued multi fuzzy relation on \(S \), that is a bipolar valued multi fuzzy relation on \(A \) is \(V = \{(x, y), V_i^+(x, y), V_i^-(x, y)\} / x \) and \(y \) in \(S \) given by \(V_i^+(x, y) = min \{ A_i^+(x), A_i^+(y) \} \) and \(V_i^-(x, y) = max \{ A_i^-(x), A_i^-(y) \} \) for all \(x \) and \(y \) in \(S \).

1.9 Definition: Let \(A = \langle A_i^+, A_i^- \rangle \) be a bipolar valued multi fuzzy subsemigroup of a semigroup \(S \) and \(a \) in \(S \). Then the pseudo bipolar valued multi fuzzy coset \((aA)^p = \langle (aA_i^+, aA_i^-) \rangle \) is defined by \((aA_i^+, aA_i^-) (x) = p(a) A_i^+(x) \) and \((aA_i^-, aA_i^-) (x) = p(a)A_i^-(x) \), for every \(x \) in \(S \) and for some \(p \) in \(P \).

2. PROPERTIES

2.1 Theorem: Let \(A = \langle A_i^+, A_i^- \rangle \) be a bipolar valued multi fuzzy subsemigroup of a semigroup \(S \).

(i) If \(A_i^+(xy) = 0 \), then either \(A_i^+(x) = 0 \) or \(A_i^+(y) = 0 \) for \(x \) and \(y \) in \(S \).

(ii) If \(A_i^-(xy) = 0 \), then either \(A_i^-(x) = 0 \) or \(A_i^-(y) = 0 \) for \(x \) and \(y \) in \(S \).

Proof: Let \(x \) and \(y \) in \(S \).

(i) By the definition \(A_i^+(xy) \geq \min \{ A_i^+(x), A_i^+(y) \} \) which implies that \(0 \geq \min \{ A_i^+(x), A_i^+(y) \} \). Therefore either \(A_i^+(x) = 0 \) or \(A_i^+(y) = 0 \).

(ii) By the definition \(A_i^-(xy) \leq \max \{ A_i^-(x), A_i^-(y) \} \) which implies that \(0 \leq \max \{ A_i^-(x), A_i^-(y) \} \). Therefore either \(A_i^-(x) = 0 \) or \(A_i^-(y) = 0 \).

2.2 Theorem: If \(A = \langle A_i^+, A_i^- \rangle \) is a bipolar valued multi fuzzy subsemigroup of a semigroup \(S \), then \(H = \{ x \in S | A_i^+(x) = 1, A_i^-(x) = -1 \} \) is either empty or a subsemigroup of \(S \).

Proof: If no element satisfies this condition, then \(H \) is empty. If \(x \) and \(y \) in \(H \), then \(A_i^+(xy) \geq \min \{ A_i^+(x), A_i^+(y) \} = \min \{ 1, 1 \} = 1 \). Therefore \(A_i^+(x) = 1 \). And \(A_i^-(xy) \leq \max \{ A_i^-(x), A_i^-(y) \} = \max \{ -1, -1 \} = -1 \). Therefore \(A_i^-(x) = -1 \). That is \(xy \in H \). Hence \(H \) is a subsemigroup of \(S \). Hence \(H \) is either empty or a subsemigroup of \(S \).

2.3 Theorem: If \(A = \langle A_i^+, A_i^- \rangle \) is a bipolar valued multi fuzzy subsemigroup of \(S \), then \(H = \{ x \in S | A_i^+(x) = H(A_i^+) \) and \(A_i^-(x) = H(A_i^-) \} \) is a subsemigroup of \(S \).

Proof: Here \(H = \{ x \in S | A_i^+(x) = H(A_i^+) \) and \(A_i^-(x) = H(A_i^-) \} \). Let \(x, y \) in \(H \). Then \(A_i^+(xy) \geq \min \{ A_i^+(x), A_i^+(y) \} \geq \min \{ H(A_i^+), H(A_i^+) \} = H(A_i^+) \). Hence \(A_i^+(xy) = H(A_i^+) \). Also \(A_i^-(xy) \leq \max \{ A_i^-(x), A_i^-(y) \} = \max \{ H(A_i^-), H(A_i^-) \} = H(A_i^-) \). Hence \(A_i^-(xy) = H(A_i^-) \). Therefore \(xy \in H \). Hence \(H \) is a subsemigroup of \(S \).

2.4 Theorem: If \(A = \langle A_i^+, A_i^- \rangle \) and \(B = \langle B_i^+, B_i^- \rangle \) are two bipolar valued multi fuzzy subsemigroups of a semigroup \(S \), then their intersection \(A \cap B \) is a bipolar valued multi fuzzy subsemigroup of \(S \).

Proof: Let \(A = \langle < x, A_i^+(x), A_i^-(x) > / x \in S \rangle \) and \(B = \langle < x, B_i^+(x), B_i^-(x) > / x \in S \rangle \). Let \(C = A \cap B \) and \(C = \langle < x, C_i^+(x), C_i^-(x) > / x \in S \rangle \). Now \(C_i^+(x) = \min \{ A_i^+(x), B_i^+(x) \} \geq \min \{ A_i^+(x), A_i^-(y) \} \), \(\min \{ B_i^+(x), B_i^-(y) \} \) \geq \(\min \{ A_i^+(x), B_i^+(x) \} \), \(\min \{ A_i^-(y), B_i^-(y) \} \) \geq \(\min \{ C_i^+(x), C_i^-(y) \} \). Therefore \(C_i^+(x) \geq \min \{ C_i^+(x), C_i^+(y) \} \). Also \(C_i^-(x) \leq \max \{ A_i^-(x), B_i^-(x) \} \leq \max \{ A_i^-(x), A_i^-(y) \} \), \(\max \{ B_i^-(x), B_i^-(y) \} \). Therefore \(C_i^-(x) \leq \max \{ C_i^-(x), C_i^-(y) \} \). Hence \(A \cap B \) is a bipolar valued multi fuzzy subsemigroup of \(S \).

2.5 Theorem: The intersection of a family of bipolar valued multi fuzzy subsemigroups of a semigroup \(S \) is a bipolar valued multi fuzzy subsemigroup of \(S \).

Proof: The Theorem is true by Theorem 2.4.

2.6 Theorem: If \(A = \langle A_i^+, A_i^- \rangle \) and \(B = \langle B_i^+, B_i^- \rangle \) are any two bipolar valued multi fuzzy subsemigroups of the semigroups \(S_1 \) and \(S_2 \) respectively, then \(A \times B = \langle (A_i^+ \times B_i^+), (A_i^- \times B_i^-) \rangle \) is a bipolar valued multi fuzzy subsemigroup of \(S_1 \times S_2 \).
Proof: Let A and B be two bipolar-valued multi fuzzy subsemigroups of the semigroups S_1 and S_2 respectively. Let x_1 and x_2 in S_1, y_1 and y_2 in S_2. Then (x_1, y_1) and (x_2, y_2) are in $S_1 \times S_2$. Now, $(A \times B)^+(x_1, y_1, x_2, y_2) = (A^+ \times B^+)(x_1, y_1)+ (A^- \times B^-)(x_2, y_2)$.

2.7 Theorem: Let $A = \langle A^+, A^- \rangle$ be a bipolar valued multi fuzzy subset of a semigroup $(S, \cdot, 1)$ and $V = \langle V^+, V^- \rangle$ be the strongest bipolar valued multi fuzzy relation of S. If A is a bipolar valued multi fuzzy subsemigroup of S, then V is a bipolar valued multi fuzzy subsemigroup of $S \times S$.

Proof: Suppose that A is a bipolar valued multi fuzzy subsemigroup of S. Then for any (x_1, x_2) and (y_1, y_2) are in $S \times S$. We have $V^+_i((x_1, x_2)(y_1, y_2)) = \max \{V^+_i(x_1, y_1), A^+_i \times B^+_i(x_2, y_2)\} \geq \max \{A^+_i(x_1, y_1), A^+_i(x_2, y_2)\} \geq \max \{A^+_i(x_1, y_1), A^+_i(x_2, y_2)\}$. Also we have $V^-_i((x_1, x_2)(y_1, y_2)) = \max \{V^-_i(x_1, y_1), A^-_i \times B^-_i(x_2, y_2)\} = \max \{A^-_i(x_1, y_1), A^-_i(x_2, y_2)\}$. Therefore $(A^+_i \times B^+_i)(x_1, y_1) \times (A^-_i \times B^-_i)(x_2, y_2)$.

2.8 Theorem: Let $A = \langle A^+, A^- \rangle$ be a bipolar valued multi fuzzy subsemigroup of a semigroup S. Then the pseudo bipolar valued multi fuzzy coset $(aA)^p = \langle (a A^-)^p, (a A^+)^p \rangle$ is a bipolar valued multi fuzzy subsemigroup of the semigroup S, for every a in S and p in P.

Proof: Let A be a bipolar valued multi fuzzy subsemigroup of the semigroup S. For every x and y in S, we have $(aA)^p(x, y) = p(a)A^p(x, y)$ and $(aA)^p(x, y) = p(a)A^-p(x, y)$ for x and y in S. And $(aA)^p(x, y) = p(a)A^p(x, y) \leq p(a) \max \{A^-(x, y)\}$. Therefore $(aA)^p(x, y) \leq \max \{aA^-(x, y), (aA^+)^p(x, y)\}$ for x and y in S. Hence $(aA)^p$ is a bipolar valued multi fuzzy subsemigroup of the semigroup S.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared.