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ABSTRACT 
The non-linear steady state boundary layer flow, heat transfer of an incompressible non-Newtonian Jeffery’s fluid 
from an inclined vertical plate is considered in this study. The transformed conservation equations are solved 
numerically subject to physically appropriate boundary conditions using a versatile, implicit, finite-difference 
technique.  The influence of non-dimensional parameters, namely Deborah number (De), Prandtl number (Pr), ratio of 
relaxation to retardation times (λ ) and dimensionless tangential coordinate (ξ ) on velocity, temperature evolution in 
the boundary layer region are examined in details. It is observed that the velocity is reduced when Deborah number 
increases. where as temperature is enhanced. Increasing λ enhances the velocity, but temperature reduced. 
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I. INTRODUCTION 
 
In the recent years, the investigation of the flow of heat and mass transfer of a non-Newtonian fluid has gained 
considerable attention because of its extensive engineering applications. As a sub class of a non-Newtonian fluid, 
Casson fluid model is found to be good in representing the pseudo-plastic and rheological behaviour of the fluid. 
Several fluids in chemical engineering, multiphase mixtures, pharmaceutical formulations, paints, synthetic lubricants, 
jams, soups, jellies, sewage sludge etc. are non-Newtonian. During the last few years, there has been an increasing 
interest of non-Newtonian fluids due to the applications in science and engineering including thermal oil recovery, the 
plastic manufacture, food and slurry transportation, performance of lubricants, polymer and food processing etc. A 
variety of non-Newtonian fluid models have been proposed in the literature keeping in view of their several rheological 
features. In these fluids, the constitution relationships between stress and rate of strain are much complicated in 
comparison to the Navier-stokes equations. There is one subclass of non-Newtonian fluids known as the Jeffery fluid 
[1-6] which has investigated considerably in recent years in view of its simplicity. This fluid model is capable of 
describing the characteristics of relaxation and retardation times. 
 
Recently, Zeeshan and Majeed [7] performed of the flow and heat transfer of Jeffery fluid past a linearly stretching 
sheet with the presence of a magnetic dipole. Unsteady natural convection flow through a fluid-saturated porous 
medium of a viscous, incompressible, fluid past an impulsively moving semi-infinite vertical plate with MHD and 
convective surface boundary condition is carried out by Seth [8]. Most of the studies are related to vertical plate, the 
articles on the heat transfer in non-Newtonian Jeffrey’s flow from an inclined vertical plate are very limited. Boundary 
Layer Flows of non-Newtonian fluid from an inclined vertical plate in the presence of hydrodynamic and thermal slip 
was the base of investigation by Subba Rao et.al. [9] and he has used the Keller Box finite difference method. One 
subclass of non-Newtonian fluids known as the Jeffery fluid [10] is particularly useful owing to its simplicity. This fluid 
model is capable of describing the characteristics of relaxation and retardation times which arise in complex polymeric 
flows. Furthermore the Jeffrey type model utilizes time derivatives rather than convected derivatives, which make it 
more amenable for numerical simulations. Recently the Jeffery model has received considerable attention. Interesting 
studies employing this model include peristaltic magnetohydrodynamic non-Newtonian flow [11], variable-viscosity 
peristaltic flow [12], convective-radiative flow in porous media [13] and stretching sheet flows [14, 15]. 
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In the present paper, we investigate analytical solution for two dimensional incompressible viscoelastic Jeffrey’s non- 
Newtonian fluid flow from an inclined vertical plate. Numerical solutions for the velocity and the temperature 
distributions are obtained using a powerful technique namely Keller-Box finite difference method. The graphs are 
plotted and discussed for the variations of different involved parameters. 
 
II. MATHEMATICAL FLOW MODEL 
 
We considered the steady, two-dimensional, incompressible boundary layer flow, heat transfer of a Jeffrey’s fluid from 
an inclined vertical plate and as illustrated in Figure 1. Both the plate and the Jeffrey’s fluid are maintained at a 
constant temperature. Instantaneously they are raised to a temperature wT ,T∞>  the ambient temperature of the fluid 
which remains unchanged. The x -coordinate (tangential) is measured from the leading edge of the plate and y -
coordinate (radial) is measured normal to the plate. 
 

 
 

The corresponding velocities in the x and y  directions are u and v  respectively. The governing conservation equations 
can be written as follows: 
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The boundary conditions are prescribed at the surface and the edge of the boundary layer regime, respectively as 
follows: 

0, 0, , 0wu v T T at y= = = =                                                                     (4) 
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, and therefore, the continuity equation is automatically 

satisfied. In order to write the governing equations and the boundary conditions in dimensionless 
form, the following non-dimensional quantities are introduced. 
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Where u  and v  are the velocity components in the x  - and y - directions respectively, 
µν
ρ

=  - the kinematic 

viscosity of the conducting fluid, β - is the coefficient of thermal expansion,α  - the thermal diffusivity, k - the 
thermal conductivity,  γ - inclination of the plate to the vertical, ρ - is the density of the fluid, pc  – the specific heat at  

 
 

 
Figure 1: Physical model and coordinate 
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constant pressure, λ - the ratio of relaxation to retardation times, 1λ - the retardation time. Pr  - Prandtl number, Gr - 

Grashof number, De - Deborah number, T∞ - the free stream temperature, iR - Mixed convection parameter, Rex - 
Local Reynolds number respectively.  
 
In view of eqn. (5), eqns. (2) - (3) reduce to the following coupled, nonlinear, dimensionless partial differential 
equations for momentum and energy for the regime: 
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The dimensionless form of the boundary conditions are: 
At 0, 0, 0, 1f fη θ′= = = =  
As , 1, 0fη θ′→∞ = =                                                                 (8) 

 
The engineering design quantities of physical interest include the skin-friction coefficient and Nusselt number, which 
are given by: 

1
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III. NUMERICAL SOLUTION 
 
In this study, the efficient Keller-Box implicit difference method has been employed to solve the general flow model 
defined by equations (6) – (7) with boundary conditions (8).This method was originally developed for low speed 
aerodynamic boundary layers and this system is developed by Keller [16]. These include Casson slip boundary layer 
flows [17] and many other flows by [18-26]. This method remains among the most powerful, versatile and accurate 
computational finite difference schemes employed in modern viscous fluid dynamics simulations. This method has 
been used extensively and effectively for over three decades in a large spectrum of nonlinear fluid mechanics problems.  
Keller’s method provides unconditional stability and rapid convergence for strongly non-linear flows. It involves four 
key stages, summarized below. 

1) Reduction of the Nth order partial differential equation system to N first order equations 
2) Finite difference discretization of reduced equations 
3) Quasilinearization of non-linear Keller algebraic equations 
4) Block-tridiagonal elimination of linearized Keller algebraic equations  
 

IV. RESULTS AND DISCUSSIONS 
 
Comprehensive solutions have been obtain and are presented in Figs.2-5. The numerical problem comprises two 
independent variables (ξ,η), two dependent fluid dynamic variables ( ),f θ  and 5 thermo-physical and body force 

control parameters, namely Pr, , ,De λ ξ andγ . The following default parameter values  

i.e. 0Pr 0.71, 0.1, 0.2, 1.0, 70De λ ξ γ= = = = = are prescribed (unless otherwise stated).  
  
Figures 2(a)-2(b) illustrates the effect of the ratio of relaxation to retardation times i.e. λ on the velocity and 
temperature distributions through the boundary layer regime. Velocity is significantly decreased with increasing λ, in 
particular close to the plate surface. The polymer flow is therefore considerably decelerated with an increase in 
relaxation time (or decrease in retardation time). Conversely temperature is depressed slightly with increasing values of 
λ. The mathematical model reduces to the Newtonian viscous flow model as  λ→ 0 and De → 0, since this negates 
relaxation, retardation and elasticity effects. The thermal boundary layer equation (6) remains unchanged. Effectively 
with greater relaxation time of the polymer the thermal boundary layer thickness is reduced. However with greater 
relaxation times, the momentum boundary layer thickness is only decreased near the plate surface whereas further away 
it is enhanced since the flow is strongly accelerated there.   
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In Figures 3(a)–3(b), the evolution of velocity and temperature functions with a variation in Deborah number, De, is 
depicted. Dimensionless velocity component (fig. 3a) is considerably reduced with increasing De near the cylinder 
surface and for some distance into the boundary layer. De clearly arises in connection with some high order derivatives 

in the momentum boundary layer equation, (6) i.e. ][
1

2// ivfffDe
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It therefore is intimately associated with the shearing characteristics of the polymer flow. For polymers, larger De 
values imply that the polymer becomes highly oriented in one direction and stretched. Generally this arises when the 
polymer takes longer to relax in comparison with the rate at which the flow is deforming it. When such fluids are 
stretched there is a delay in their return to the unstressed state. For very large Deborah numbers, the fluid movement is 
too fast for elastic forces to relax and the material then acts like a purely elastic solid. Large Deborah numbers are 
therefore not relevant to the present simulations. For small Deborah numbers, the time scale of fluid movement is much  
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greater than the relaxation time of elastic forces in the polymer and the polymer then behaves as a simple viscous fluid, 
as elaborated by Bég and Makinde [27]. Vrentas et al. [28] have also indicated that the Deborah number can be utilized 
in characterizing diffusional transport in amorphous polymer-solvent systems. Further from the cylinder surface we 
observe that there is a slight increase in velocity i.e. the flow is accelerated with increasing Deborah number. With 
greater distance from the solid boundary, the polymer is therefore assisted in flowing even with higher elastic effects. 
Clearly the responses in the near-wall region and far-field region are very different. In fig. 3b, an increase in Deborah 
number is seen to considerably enhance temperatures throughout the boundary layer regime. This has also been 
observed by Hayat et al. [29]. Thermal boundary layer thickness is also elevated with increasing Deborah number.  

 
 

Figure 4 depict the profile for temperature distribution for various values of Prandtl number, Pr. It is observed that an 
increase in the Prandtl number the temperature reduced. 
 
Figures 5(a)-5(b) presents the influence of the plate inclination on the dimensionless velocity and temperature. When 

0γ <  i.e. negative plate inclination, in Figure 5a, the velocity is reduced. Conversely in Figure 5b, with negative plate 
inclination 0γ <  the temperature decreases slightly. Further temperatures are increased marginally with positive 
inclination of the plate. 
 
V. CONCLUSIONS 
 
A mathematical model has been developed for boundary layer flow of a Jeffrey’s non-Newtonian fluid from an inclined 
vertical plate. The transformed conservation equations have been solved with prescribed boundary conditions using 
implicit Keller-box finite difference method. The present simulations have shown that: 

1. Increasing the Deborah number (De), reduces the velocity, skin friction- ( ,0)f ξ′′ and heat transfer rate 

( )( ,0)θ ξ′−  whereas it enhances temperature. 

2. Increasing the parameter ratio of relaxation and retardation times ( ) ,λ  increases velocity, skin friction 

coefficient ( ,0)f ξ′′ , heat transfer rate ( )( ,0)θ ξ′−  it reduces whereas temperature for all values of radial 
coordinate. 
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