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ABSTRACT 
In this paper, we introduce a new class of sets called (𝛼𝛼𝛼𝛼)∗ -closed sets and a new class of generalized function called 
(𝛼𝛼𝛼𝛼)∗ -continuous maps and  (𝛼𝛼𝛼𝛼)∗ -irresolute maps in topological spaces. Also we discuss some basic properties and 
applications of  (𝛼𝛼𝛼𝛼)∗ -closed sets, which define a new class of  space 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ spaces. 
 
Key words: (𝛼𝛼𝛼𝛼)∗ -closed sets, (𝛼𝛼𝛼𝛼)∗ -continuous, (𝛼𝛼𝛼𝛼)∗- irresolute and 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ spaces. 
 
 
1. INTRODUCTION 
 
In 1970 Levine [12] first introduced the concept of generalized closed (briefly g-closed) sets in topological spaces. 
S.P.Arya and T.Nour [2] defined gs-closed sets in 1990. Dontchev [9] introduced gsp-closed sets. Maki et al. [15] 
defined 𝛼𝛼 g-closed sets in 1994. Levine [13], Mashhour et al. [14] introduced semi-open sets, pre-open sets 
respectively. Maki et al. [16] introduced   g𝛼𝛼-closed sets. The purpose of this paper is to introduce the concept of (𝛼𝛼𝛼𝛼)∗ 
- closed sets,  (𝛼𝛼𝛼𝛼)∗ -continuous maps, (𝛼𝛼𝛼𝛼)∗-irresolute and 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ spaces and investigate some of their properties. 
 
2. PRELIMINARIES 
 
Throughout this paper (X, 𝜏𝜏) represents a non-empty topological spaces on which no separation axioms are assumed 
unless otherwise mentioned. For a subset A of a topological space (X, 𝜏𝜏), cl(A) and int(A) denote the closure and  
interior of the subset A 
 
Definition: 2.1 A subset A of a topological space (X,𝜏𝜏) is called, 

i. a pre- open set[14] if A⊆ int (cl(A)) and pre- closed set if cl (int(A))⊆A. 
ii. a semi-open set[13] if A⊆ cl (int(A)) and a semi -closed set if int (cl(A))⊆A. 

iii. an 𝛼𝛼-open set[17] if A⊆ int (cl (int(A))) and if an 𝛼𝛼-closed if cl (int (cl(A)))⊆A. 
iv. a semi-preopen set[1] if A⊆ cl (int (cl(A))) and a semi-preclosed set if int (cl (int(A)))⊆A.  

 
Definition: 2.2 A subset A of a topological space (X, 𝜏𝜏) is called, 

i. a generalized closed set [12] (briefly g-closed) if cl(A)⊆U whenever A⊆U and U is open in (X, 𝜏𝜏). 
ii. a generalized semi-preclosed set [9] (briefly gsp-closed) if spcl(A)⊆U whenever A⊆U and U is open in      

(X, 𝜏𝜏). 
iii. a 𝛼𝛼-generalized closed set [15] (briefly 𝛼𝛼𝛼𝛼-closed) if 𝛼𝛼cl(A)⊆U whenever A⊆U and U is open in (X, 𝜏𝜏). 
iv. a generalized 𝛼𝛼-closed set [16] (briefly g𝛼𝛼-closed ) if 𝛼𝛼cl(A)⊆U whenever A⊆U and U is 𝛼𝛼-open in (X, 𝜏𝜏). 
v. a semi-generalized closed set [4] (briefly sg-closed) if scl(A)⊆U whenever A⊆U and U is semi-open in     

(X, 𝜏𝜏). 
vi. a semi-pregeneralized closed set [21] (briefly spg-closed) if spcl(A)⊆U whenever A⊆U and U is semi-open 

in (X, 𝜏𝜏). 
vii. a generalized semiclosed set [2] (briefly gs-closed) if 𝑠𝑠cl(A)⊆U whenever A⊆U and U is open in (X , 𝜏𝜏). 

viii. a 𝛼𝛼-generalized semiclosed set [19] (briefly 𝛼𝛼𝛼𝛼𝑠𝑠-closed) if 𝛼𝛼cl(A)⊆U whenever A⊆U and U is semi open in 
(X, 𝜏𝜏). 
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ix. a ψ -closed set [22] if 𝑠𝑠cl(A)⊆U whenever  A⊆U and U is sg-open in (X,𝜏𝜏). 
x. a (𝑠𝑠𝛼𝛼)∗-closed set [10] cl(A)⊆U whenever A⊆U and U is semi-pre open in(X, 𝜏𝜏). 

xi. a (𝛼𝛼𝑠𝑠𝛼𝛼)∗-closed set [18] cl(A)⊆U whenever  A⊆U and U is gsp-open in (X, 𝜏𝜏). 
 
Definition: 2.3 A function f: (X, 𝜏𝜏) →  (Y, σ ) is called 

i. an 𝛼𝛼-contiuous [17] if 𝑓𝑓−1(𝑉𝑉) is an 𝛼𝛼-closed set of (X, 𝜏𝜏) for every closed set V of  (Y,σ ). 
ii. a g-continuous [3] if 𝑓𝑓−1(𝑉𝑉) is a g-closed set of (X, 𝜏𝜏) for every closed set  V of   (Y,σ ). 

iii. a sg-continuous [4] if 𝑓𝑓−1(𝑉𝑉) is a sg-closed set of (X, 𝜏𝜏) for every closed set  V of  (Y,σ ). 
iv. a gs-continuous [6] if 𝑓𝑓−1(𝑉𝑉) is a gs-closed set of (X, 𝜏𝜏) for every closed set  V of  (Y,σ ). 
v. an 𝛼𝛼𝛼𝛼-contiuous [11] if 𝑓𝑓−1(𝑉𝑉) is an 𝛼𝛼𝛼𝛼-closed set of (X, 𝜏𝜏) for every closed set  V of  (Y,σ ). 

vi. a g𝛼𝛼-contiuous [16] if 𝑓𝑓−1(𝑉𝑉) is an 𝛼𝛼𝛼𝛼-closed set of (X, 𝜏𝜏) for every closed set  V of  (Y,σ ). 
vii. a gsp-continuous [9] if 𝑓𝑓−1(𝑉𝑉) is a gsp-closed set of (X, 𝜏𝜏) for every closed set  V of  (Y,σ ). 

viii. a spg-continuous [21] if 𝑓𝑓−1(𝑉𝑉)  is a spg-closed set of (X, 𝜏𝜏) for every closed set V of  (Y,σ ). 
ix. an 𝛼𝛼𝛼𝛼𝑠𝑠-contiuous [20] if 𝑓𝑓−1(𝑉𝑉) is an 𝛼𝛼𝛼𝛼𝑠𝑠-closed set of (X, 𝜏𝜏) for every closed set V of  (Y,σ ). 
x. a ψ -continuous [22] if 𝑓𝑓−1(𝑉𝑉)  is a ψ -closed set of (X, 𝜏𝜏) for every closed set  V of  (Y,σ ). 

xi. 𝑎𝑎 (𝑠𝑠𝛼𝛼)∗-continuous [10] if 𝑓𝑓−1(𝑉𝑉) is a (𝑠𝑠𝛼𝛼)∗-closed set of (X, 𝜏𝜏) for every closed set V of  (Y,σ ). 
xii. (𝛼𝛼𝑠𝑠𝛼𝛼)∗-continuous [18] if 𝑓𝑓−1(𝑉𝑉) is a (𝛼𝛼𝑠𝑠𝛼𝛼)∗-closed set of (X, 𝜏𝜏) for every closed set V of  (Y,σ ). 

 
Definition: 2.4 A topological space (X, 𝜏𝜏) is said to be, 

i. a 𝑇𝑇1/2 space [12] if every g-closed set in it is closed. 
ii. a 𝑇𝑇𝑏𝑏  space [7] if every gs-closed set in it is closed. 

iii. a 𝑇𝑇𝑑𝑑  space [7] if every gs-closed set in it is g-closed. 
iv. a 𝛼𝛼𝑇𝑇𝑑𝑑  space [8] if every 𝛼𝛼𝛼𝛼-closed set in it is g-closed.  
v. a  𝛼𝛼𝑇𝑇𝑏𝑏  space [8] if every 𝛼𝛼𝛼𝛼-closed set in it is closed. 

vi. a 𝑇𝑇𝛼𝛼𝛼𝛼  space [5] if every g𝛼𝛼-closed set in it is 𝛼𝛼𝛼𝛼-closed. 
vii. 𝑇𝑇𝛼𝛼𝑠𝑠𝛼𝛼  space [23] if every g𝑠𝑠𝛼𝛼-closed set in it is 𝛼𝛼𝑠𝑠-closed. 

 
3. BASIC PROPERTIES OF (𝜶𝜶𝜶𝜶)∗-CLOSED SETS 
 
We introduce the following definition 
 
Definition 3.1: A subset A of a topological space (X, 𝜏𝜏) is called a (𝛼𝛼𝛼𝛼)∗-closed set if 𝛼𝛼cl(A)⊆U whenever A⊆U and 
U is semi-preopen in X. 
 
Theorem 3.2:  Every closed set is (𝛼𝛼𝛼𝛼)∗- closed set.  
 
Proof follows from the definition. 
 
The following example supports that an (𝛼𝛼𝛼𝛼)∗-closed set need not be true in general. 
 
Example 3.3:  Let X = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐} � , 𝜏𝜏 = {φ ,X,{ �𝑎𝑎}�,{ �𝑎𝑎, 𝑏𝑏}�}. Let A = {�𝑏𝑏}  �is (𝛼𝛼𝛼𝛼)∗ -closed but not closed in (X,𝜏𝜏). 
 
Theorem 3.4:  Every (𝛼𝛼𝛼𝛼) ∗-closed set is gsp-closed set. 
 
Proof: Let A be (𝛼𝛼𝛼𝛼)∗ -closed. Let A ⊆  U and U be open. Then U is semi-preopen. Since A is (𝛼𝛼𝛼𝛼)∗- closed, then 
𝑠𝑠𝛼𝛼cl(A)⊆ 𝛼𝛼cl(A) ⊆  U. Hence A is gsp-closed set. 
 
The converse of the above theorem is not true in general as it can be seen from the following example. 
 
Example 3.5: Let X = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}�, 𝜏𝜏 = {φ , X, {�𝑎𝑎} �, {�𝑏𝑏},� { �𝑎𝑎, 𝑏𝑏} }�. Let A= {�𝑎𝑎} �  is gsp-closed  but not  (𝛼𝛼𝛼𝛼)∗ -closed in (X,𝜏𝜏). 
 
Theorem 3.6: Every (𝛼𝛼𝛼𝛼)∗ -closed set is gs-closed set. 
 
Proof follows from the definition. 
 
The reverse implication does not hold as it can be seen from the following example. 
 
Example 3.7:  Let X = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐} �, 𝜏𝜏 = {φ ,X,{�𝑎𝑎} �,{�𝑏𝑏}�, { �𝑎𝑎, 𝑏𝑏} } �. Let A = {�𝑎𝑎} �  is gs- closed but not (𝛼𝛼𝛼𝛼)∗-closed in (X,𝜏𝜏). 
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Theorem 3.8 Every (𝛼𝛼𝛼𝛼)∗-closed set is a spg-closed set. 
 
Proof: Let A be (𝛼𝛼𝛼𝛼)∗ -closed set. Let A ⊆  U and U be open. Then U is semi-preopen. Since A is (𝛼𝛼𝛼𝛼)∗- closed, then 
𝑠𝑠𝛼𝛼cl(A)⊆ 𝛼𝛼cl(A) ⊆  U. Hence A is spg-closed set. 
 
The reverse implication does not hold as it can be seen from the following example. 
 
Example 3.9: Let X = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}�, 𝜏𝜏 = {φ , X, {�𝑎𝑎} �, {�𝑏𝑏}�, {�𝑎𝑎, 𝑏𝑏} }�. Let A= { �𝑎𝑎}�  is spg-closed but not (𝛼𝛼𝛼𝛼)∗-closed in (X,𝜏𝜏). 
 
Theorem 3.10: Every (𝛼𝛼𝛼𝛼)∗-closed set is sg-closed set. 
 
Proof: Let A be (𝛼𝛼𝛼𝛼)∗ -closed set. Let A ⊆  U and U be open. Then U is semi-preopen. Since A is (𝛼𝛼𝛼𝛼)∗- closed, then 
𝑠𝑠cl(A)⊆𝛼𝛼cl(A) ⊆  U. Hence A is sg-closed set. 
 
The converse of the above theorem is not true  in general as it can be seen from the following example. 
 
Example 3.11:  Let X = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}�, 𝜏𝜏 = {φ , X, {�𝑏𝑏, 𝑐𝑐} }.� Let A= {�𝑎𝑎, 𝑏𝑏}� is a  sg-closed  but not  (𝛼𝛼𝛼𝛼)∗-closed  in (X,𝜏𝜏). 
 
Theorem 3.12:  Every (𝛼𝛼𝛼𝛼)∗-closed set is 𝛼𝛼g-closed set. 
 
Proof: Let A be (𝛼𝛼𝛼𝛼)∗ -closed set. Let A ⊆  U and U be open. Then U is semi-preopen. Since A is (𝛼𝛼𝛼𝛼)∗- closed, then 
𝛼𝛼cl(A) ⊆  U. Hence A is 𝛼𝛼g-closed set. 
 
The reverse implication does not hold as it can be seen from the following example. 
 
Example 3.13: Let X = {�𝑎𝑎,𝑏𝑏, 𝑐𝑐}�, 𝜏𝜏 = {φ , X, {�𝑏𝑏, 𝑐𝑐} }�. Let A= {�𝑎𝑎, 𝑏𝑏}� is 𝛼𝛼g-closed but not  (𝛼𝛼𝛼𝛼)∗-closed  in (X,𝜏𝜏). 
 
Theorem 3.14: Every (𝛼𝛼𝛼𝛼)∗ -closed set is  𝛼𝛼𝛼𝛼-closed set. 
 
Proof follows from the definition. 
 
The converse of the above theorem is not true  in general as it can be seen from the following example. 
 
Example 3.15:  Let X = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}�, 𝜏𝜏 = {φ , X, {�𝑏𝑏, 𝑐𝑐} }�. LetA= {�𝑎𝑎, 𝑏𝑏}� is  𝛼𝛼𝛼𝛼-closed  but not  (𝛼𝛼𝛼𝛼)∗-closed  in (X,𝜏𝜏). 
 
Theorem 3.16:  Every (𝛼𝛼𝛼𝛼)∗-closed set is a ψ -closed set. 
 
Proof: Let A be (𝛼𝛼𝛼𝛼)∗ -closed set. Let A ⊆  U and U be open. Then U is semi-preopen. Since A is (𝛼𝛼𝛼𝛼)∗- closed, then 
𝑠𝑠cl(A)⊆𝛼𝛼cl(A) ⊆  U. Hence A is ψ − closed set. 
 
The converse of the above theorem is not true  in general as it can be seen from the following example. 
 
Example 3.17:  Let X = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}�, 𝜏𝜏 = {φ , X, {�𝑏𝑏, 𝑐𝑐} }�. Let A= { �𝑎𝑎, 𝑏𝑏}�  is ψ -closed but not  (𝛼𝛼𝛼𝛼)∗-closed in (X,𝜏𝜏). 
 
Theorem 3.18: Every (𝑠𝑠𝛼𝛼)∗  -closed set is a (𝛼𝛼𝛼𝛼)∗-closed set. 
 
Proof: Let A be (𝑠𝑠𝛼𝛼)∗ -closed set. Let A ⊆  U and U be semi-preopen. Since A is (𝑠𝑠𝛼𝛼)∗ -closed,  then  
𝛼𝛼𝑐𝑐𝛼𝛼(𝐴𝐴)⊆𝐶𝐶𝛼𝛼( 𝐴𝐴 )⊆U. Hence A is (𝛼𝛼𝛼𝛼)∗- closed.  
 
The converse of the above theorem is not true in general as it can be seen from the following example. 
 
Example 3.19: Let X = {�𝑎𝑎,𝑏𝑏, 𝑐𝑐}� , 𝜏𝜏 = {φ ,X,{ �𝑎𝑎}�,{�𝑎𝑎, 𝑏𝑏}� }.Let A = { �𝑏𝑏}  �is (𝛼𝛼𝛼𝛼)∗ -closed  but not (𝑠𝑠𝛼𝛼)∗-closed  in (X,𝜏𝜏). 
 
Theorem 3.20:  Every (𝛼𝛼𝛼𝛼)∗ -closed set is 𝛼𝛼𝛼𝛼𝑠𝑠-closed set. 
 
Proof follows from the definition. 
 
The converse of the above theorem is not true  in general as it can be seen from the following example. 
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Example 3.21:  Let X = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}�, 𝜏𝜏 = {φ , X, {�𝑏𝑏, 𝑐𝑐} }�. Let A= {�𝑎𝑎, 𝑏𝑏}�  is  𝛼𝛼𝛼𝛼𝑠𝑠 -closed but not (𝛼𝛼𝛼𝛼)∗-closed in (X,𝜏𝜏). 
 
Theorem 3.22:  Every (𝛼𝛼𝑠𝑠𝛼𝛼)∗ -closed set is a (𝛼𝛼𝛼𝛼)∗-closed set. 
 
Proof follows from the definition. 
 
Example 3.23:  Let X = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}�, 𝜏𝜏 = {φ , X, {�𝑎𝑎} } �. Let A= {�𝑏𝑏}  �is (𝛼𝛼𝛼𝛼)∗ -closed but not (𝛼𝛼𝑠𝑠𝛼𝛼)∗-closed in (X,𝜏𝜏). 
 
Theorem 3.24: A is  (𝛼𝛼𝛼𝛼)∗-closed set of (X ,𝜏𝜏 ) if and only if 𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 )\𝐴𝐴 does not contain any nonempty semi-pre 
closed set 
 
Proof: Necessity: Let F be a semi-pre closed set of (X, 𝜏𝜏) such that F⊆  𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 )\𝐴𝐴. Then  A⊆  X\F.A is (𝛼𝛼𝛼𝛼)∗-closed 
and X\F is semi-preopen,𝛼𝛼𝑐𝑐𝛼𝛼(𝐴𝐴)⊆X\F. Since F⊆  𝑋𝑋\𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 )So, F⊆  ((𝑋𝑋/𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 ))∩ 𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 )/𝐴𝐴) = φ . Therefore  
F = φ                                                       
 
Sufficiency: Let A be a subset of (X ,𝜏𝜏 ) such that 𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 )\𝐴𝐴 does not contain any non-empty semi-pre closed set.Let 
U be a semi-pre open set of  (X ,𝜏𝜏) such that A⊆U. If  𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 )⊄𝑈𝑈, then 𝛼𝛼𝑐𝑐𝛼𝛼(𝐴𝐴)∩ 𝑈𝑈𝑐𝑐 ≠ φ . and 𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 )∩𝑈𝑈𝑐𝑐  is 

semi-pre closed.∴ ∩≠ )(Aclαφ cU ⊆  𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 )\A.∴  𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 )\𝐴𝐴 contains a non-empty semi-pre closed set, which 
is a contradiction.∴ 𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 )⊆U ∴A is  (𝛼𝛼𝛼𝛼)∗-closed set. 
 
Theorem 3.25: If A is  (𝛼𝛼𝛼𝛼)∗-closed set in X and A⊆B⊆  𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 ) then B is also(𝛼𝛼𝛼𝛼)∗-closed set in X.                                                                                                                                         
 
Proof: It is given that A is (𝛼𝛼𝛼𝛼)∗-closed set in X.To prove B is also (𝛼𝛼𝛼𝛼)∗-closed set of X.Let U be semi-preopen set of 
X such that B ⊆ U. Since A ⊆ B, we have A ⊆ U. Since A is (𝛼𝛼𝛼𝛼)∗ -closed and 𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 )⊆ U. Now 
𝛼𝛼𝑐𝑐𝛼𝛼( 𝐵𝐵 )⊆  𝛼𝛼𝑐𝑐𝛼𝛼(  𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 ) ) = 𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 )⊆U.So that 𝛼𝛼𝑐𝑐𝛼𝛼( 𝐵𝐵 )⊆U. Hence B is  (𝛼𝛼𝛼𝛼)∗-closed set in X. 
 
Theorem 3.26: If A is both semi-preopen and  (𝛼𝛼𝛼𝛼)∗-closed, then A is 𝛼𝛼-closed. 
 
Proof: Let A be both semi-preopen and  (𝛼𝛼𝛼𝛼)∗-closed. Let A⊆A, Where A is semi-preopen. Then 𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 )⊆  A as A 
is  (𝛼𝛼𝛼𝛼)∗-closed in  (X ,𝜏𝜏).But A⊆  𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 ) is always true. ∴A= 𝛼𝛼𝑐𝑐𝛼𝛼( 𝐴𝐴 )Hence A is 𝛼𝛼-closed set in (X ,𝜏𝜏)      
                                                                                                                                           
The above result can be represented as the following diagram 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Where A        B  represents A implies B  and   A         B  represents A does not imply B 
 
 
 
 

(𝛼𝛼𝛼𝛼)∗-closed 

 

𝛼𝛼𝛼𝛼-closed 

 

𝛼𝛼gs-closed 

 

gs-closed 

 

(𝛼𝛼𝑠𝑠𝛼𝛼)∗-closed 

 

 

ψ -closed 

 

spg-closed 

 
𝛼𝛼g-closed 

 

sg-closed 

 

(𝑠𝑠𝛼𝛼)∗-closed 

 

gsp-closed 

 

closed 
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4. (𝜶𝜶𝜶𝜶)∗-CONTINUOUS AND (𝜶𝜶𝜶𝜶)∗-IRRESOLUTE MAPS 
 
We introduce the following definition 
 
Definition 4.1: A function f: (X, 𝜏𝜏) →  (Y, σ ) is called (𝛼𝛼𝛼𝛼)∗-continuous if 𝑓𝑓−1(𝑉𝑉) is a (𝛼𝛼𝛼𝛼)∗-closed set of (X, 𝜏𝜏) for 
every closed set V of  (Y, σ ). 
 
Theorem 4.2:  Every continuous map is (𝛼𝛼𝛼𝛼)∗- continuous. 
 
The following example supports that the converse of the above theorem is not true. 
 
Example 4.3: Let X = 𝑌𝑌 = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐} �, 𝜏𝜏 = {φ , X, { �𝑎𝑎}�, {�𝑎𝑎, 𝑏𝑏} }� and σ  = {φ , Y, {�𝑎𝑎, 𝑐𝑐}�}. Let   f: (X, 𝜏𝜏) →  (Y, σ ) be 
defined by an identity mapping . 𝑓𝑓−1{ �𝑏𝑏} = {𝑏𝑏} �is (𝛼𝛼𝛼𝛼)∗-closed but not closed  in ( X, 𝜏𝜏). 
 
Theorem 4.4: Every (𝛼𝛼𝛼𝛼)∗-continuous map is gsp-continuous. 
 
Proof: Let f: (X, 𝜏𝜏) →  (Y, σ ) be (𝛼𝛼𝛼𝛼)∗-continuous map. Let V be a closed set in (Y, σ ), then 𝑓𝑓−1(𝑉𝑉) is (𝛼𝛼𝛼𝛼)∗-
closed in (X, 𝜏𝜏 ). Since every (𝛼𝛼𝛼𝛼)∗ -closed set is gsp-closed, 𝑓𝑓−1(𝑉𝑉)  is gsp-closed in (X, 𝜏𝜏 ).                               
Therefore f is gsp-continuous in (X, 𝜏𝜏).  
 
The following example support that the converse of the above theorem need not be true in general. 
 
Example 4.5: Let X = Y = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐} � , 𝜏𝜏 = {φ , X, {�𝑎𝑎} �, {b,c}} and σ  = {φ , Y, {�𝑏𝑏}� } Let f : (X , 𝜏𝜏) →  ( Y, σ ) be 
defined by an  identity mapping. 𝑓𝑓−1{ 𝑎𝑎 , 𝑐𝑐 } = {𝑎𝑎, 𝑐𝑐}  is gsp-closed but  not  (𝛼𝛼𝛼𝛼)∗-closed in ( X, 𝜏𝜏). 
 
Theorem 4.6: Every (𝛼𝛼𝛼𝛼)∗-continuous map is gs-continuous. 
 
Proof: Let f: (X, 𝜏𝜏) →  (Y, σ ) be (𝛼𝛼𝛼𝛼)∗-continuous map. Let V be a closed set in (Y, σ ), then 𝑓𝑓−1(𝑉𝑉) is (𝛼𝛼𝛼𝛼)∗-
closed in (X,𝜏𝜏) Since every (𝛼𝛼𝛼𝛼)∗-closed set is gs-closed,𝑓𝑓−1(𝑉𝑉) is gs-closed in (X,𝜏𝜏).  Therefore f is gs-continuous in 
(X, 𝜏𝜏). 
 
The following example support that the converse of the above theorem need not be true in general. 
 
Example 4.7: Let X = Y = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐} � , 𝜏𝜏 = {φ , X, {�𝑎𝑎} �, {�𝑏𝑏, 𝑐𝑐}}� and σ  ={φ , Y, {�𝑏𝑏}� }. Let f: (X, 𝜏𝜏 ) →  (Y, σ ) be 
defined by an  identity mapping 𝑓𝑓−1{𝑎𝑎, 𝑐𝑐} = {𝑎𝑎, 𝑐𝑐}  is gs-closed but not (𝛼𝛼𝛼𝛼)∗- closed in ( X, 𝜏𝜏).  
 
Theorem 4.8: Every (𝛼𝛼𝛼𝛼)∗-continuous map is spg-continuous. 
 
Proof: Let f: (X, 𝜏𝜏) →  (Y, σ ) be (𝛼𝛼𝛼𝛼)∗-continuous map. Let V be a closed set in (Y, σ ), then 𝑓𝑓−1(𝑉𝑉) is (𝛼𝛼𝛼𝛼)∗-
closed in (X, 𝜏𝜏) . Since every (𝛼𝛼𝛼𝛼)∗ -closed set is spg-closed, 𝑓𝑓−1(𝑉𝑉)  is spg-closed in (X, 𝜏𝜏 ).                                        
Therefore f is spg-continuous in (X, 𝜏𝜏). 
 
The following example support that the converse of the above theorem need not be true in general. 
 
Example 4.9: Let X = Y = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐} � , 𝜏𝜏 = {φ , X, { �𝑎𝑎}�, { �𝑏𝑏, 𝑐𝑐} }� and σ  ={φ , Y, {�𝑏𝑏}�}. Let f  (X , 𝜏𝜏 ) →  (Y , σ ) be 
defined by an  identity mapping 𝑓𝑓−1{𝑎𝑎, 𝑐𝑐} = {𝑎𝑎, 𝑐𝑐}  is spg-closed but  not  (𝛼𝛼𝛼𝛼)∗-closed in ( X, 𝜏𝜏). 
 
Theorem 4.10: Every (𝛼𝛼𝛼𝛼)∗-continuous map is sg-continuous. 
 
Proof: Let f: (X, 𝜏𝜏) →  (Y, σ ) be (𝛼𝛼𝛼𝛼)∗-continuous map. Let V be a closed set in (Y, σ ), then 𝑓𝑓−1(𝑉𝑉) is (𝛼𝛼𝛼𝛼)∗-
closed in (X, 𝜏𝜏 ). Since every (𝛼𝛼𝛼𝛼)∗ -closed set is sg-closed, 𝑓𝑓−1(𝑉𝑉)  is sg-closed in (X, 𝜏𝜏 ).                                               
Therefore f is sg-continuous in (X, 𝜏𝜏).  
 
The following example support that the converse of the above theorem need not be true in general. 
 
Example 4.11: Let X = Y = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}� , 𝜏𝜏 = {φ , X, {�𝑎𝑎} �, { �𝑏𝑏, 𝑐𝑐}}� and σ  ={φ , Y, { �𝑏𝑏}�}. Let f: (X , 𝜏𝜏) →  (Y , σ ) be 
defined by an identity mapping . 𝑓𝑓−1{𝑎𝑎, 𝑐𝑐} = {𝑎𝑎, 𝑐𝑐}  is sg-closed but not  (𝛼𝛼𝛼𝛼)∗-closed in ( X, 𝜏𝜏). 
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Theorem 4.12: Every (𝛼𝛼𝛼𝛼)∗-continuous map is 𝛼𝛼𝛼𝛼-continuous. 
 
Proof: Let f: (X, 𝜏𝜏) →  (Y, σ ) be (𝛼𝛼𝛼𝛼)∗-continuous map. Let V be a closed set in (Y, σ ), then 𝑓𝑓−1(𝑉𝑉) is (𝛼𝛼𝛼𝛼)∗-
closed in (X, 𝜏𝜏 ). Since every (𝛼𝛼𝛼𝛼)∗ -closed set is 𝛼𝛼𝛼𝛼  -closed, 𝑓𝑓−1(𝑉𝑉)  is 𝛼𝛼𝛼𝛼  -closed in (X, 𝜏𝜏 ).                                           
Therefore f is 𝛼𝛼𝛼𝛼 -continuous in (X, 𝜏𝜏). 
 
The following example support that the converse of the above theorem need not be true in general. 
 
Example 4.13: Let X = Y = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}� , 𝜏𝜏 = {φ , X, {�𝑎𝑎} �, { �𝑏𝑏, 𝑐𝑐} }� and σ  ={φ , Y, {�𝑏𝑏}�}.  Let f: (X, 𝜏𝜏) →  (Y , σ ) be 
defined by an identity mapping .𝑓𝑓−1{𝑎𝑎, 𝑐𝑐} = {𝑎𝑎, 𝑐𝑐} 𝑖𝑖𝑠𝑠 𝛼𝛼𝛼𝛼 − closed set   but  not a (𝛼𝛼𝛼𝛼)∗-closed in ( X, 𝜏𝜏). 
 
Theorem 4.14: Every (𝛼𝛼𝛼𝛼)∗-continuous map is 𝛼𝛼𝛼𝛼 -continuous. 
 
Proof: Let f: (X, 𝜏𝜏) →  (Y, σ ) be (𝛼𝛼𝛼𝛼)∗-continuous map. Let V be a closed set in (Y, σ ), then 𝑓𝑓−1(𝑉𝑉) is (𝛼𝛼𝛼𝛼)∗-
closed in (X, 𝜏𝜏 ). Since every (𝛼𝛼𝛼𝛼)∗ -closed set is 𝛼𝛼𝛼𝛼  -closed, 𝑓𝑓−1(𝑉𝑉)  is 𝛼𝛼𝛼𝛼  -closed in (X, 𝜏𝜏 ).                                            
Therefore f is 𝛼𝛼𝛼𝛼 -continuous in (X, 𝜏𝜏). 
 
The following example support that the converse of the above theorem need not be true in general. 
 
Example 4.15: Let X = Y = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}� , 𝜏𝜏 = {φ , X, {�𝑎𝑎} �, { �𝑏𝑏, 𝑐𝑐} }� and σ  ={φ , Y, {�𝑏𝑏}�}. Let f: (X, 𝜏𝜏 ) →  (Y , σ ) be 
defined by an  identity mapping. 𝑓𝑓−1{𝑎𝑎, 𝑐𝑐} = {𝑎𝑎, 𝑐𝑐}  𝑖𝑖𝑠𝑠 𝛼𝛼𝛼𝛼 − closed set  but not  (𝛼𝛼𝛼𝛼)∗- closed in ( X, 𝜏𝜏).  
 
Theorem 4.16: Every (𝛼𝛼𝛼𝛼)∗-continuous map is ψ -continuous. 
 
Proof: Let f: (X, 𝜏𝜏) →  (Y, σ ) be (𝛼𝛼𝛼𝛼)∗-continuous map. Let V be a closed set in (Y, σ ), then 𝑓𝑓−1(𝑉𝑉) is (𝛼𝛼𝛼𝛼)∗-
closed in (X, 𝜏𝜏 ). Since every (𝛼𝛼𝛼𝛼)∗ -closed set is ψ -closed, 𝑓𝑓−1(𝑉𝑉)  is ψ -closed in (X, 𝜏𝜏 ).                                            
Therefore f is ψ -continuous in (X, 𝜏𝜏). 
 
The following example support that the converse of the above theorem need not be true in general. 
 
Example 4.17: Let X = Y = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}�,  𝜏𝜏 = {φ , X, { �𝑏𝑏, 𝑐𝑐} �}, σ = {φ , Y, {�𝑐𝑐}�}.  Let f: (X, 𝜏𝜏) →  (Y, σ )  be defined by an 
identity mapping .𝑓𝑓−1{𝑎𝑎, 𝑏𝑏} = {𝑎𝑎, 𝑏𝑏} 𝑖𝑖𝑠𝑠 ψ − closed set but not  (𝛼𝛼𝛼𝛼)∗-closed in ( X, 𝜏𝜏).  
 
Theorem 4.18: Every (𝛼𝛼𝛼𝛼)∗-continuous map is 𝛼𝛼𝛼𝛼𝑠𝑠 -continuous. 
 
Proof: Let f: (X, 𝜏𝜏) →  (Y, σ ) be (𝛼𝛼𝛼𝛼)∗-continuous map. Let V be a closed set in (Y, σ ), then 𝑓𝑓−1(𝑉𝑉) is (𝛼𝛼𝛼𝛼)∗-
closed in (X, 𝜏𝜏 ). Since every (𝛼𝛼𝛼𝛼)∗ -closed set is 𝛼𝛼𝛼𝛼𝑠𝑠  -closed, 𝑓𝑓−1(𝑉𝑉)  is 𝛼𝛼𝛼𝛼𝑠𝑠  -closed in (X, 𝜏𝜏 ).                                     
Therefore f is 𝛼𝛼𝛼𝛼𝑠𝑠 -continuous in (X, 𝜏𝜏). 
 
The following example support that the converse of the above theorem need not be true in general 
 
Example 4.19: Let X = Y = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}� , 𝜏𝜏 = {φ , X, {�𝑎𝑎} �, {�𝑏𝑏, 𝑐𝑐}}� and σ  ={φ , Y, {�𝑏𝑏}�}. Let f: (X, 𝜏𝜏) →  (Y , σ ) be 
defined by an identity 𝑓𝑓−1{𝑎𝑎, 𝑐𝑐} = {𝑎𝑎, 𝑐𝑐}  is 𝛼𝛼𝛼𝛼𝑠𝑠 − 𝑐𝑐𝛼𝛼𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑set but not (𝛼𝛼𝛼𝛼)∗- closed in ( X, 𝜏𝜏). 
 
Theorem 4.20: Every (𝑠𝑠𝛼𝛼)∗  -continuous map is (𝛼𝛼𝛼𝛼)∗  -continuous.                 
 
Proof: Let f: (X, 𝜏𝜏) →  (Y, σ ) be (𝑠𝑠𝛼𝛼)∗-continuous map. Let V be a closed set in (Y, σ ), then 𝑓𝑓−1(𝑉𝑉) is (𝑠𝑠𝛼𝛼)∗-
closed in (X, 𝜏𝜏 ). Since every (𝑠𝑠𝛼𝛼)∗ -closed set is (𝛼𝛼𝛼𝛼)∗ -closed, 𝑓𝑓−1(𝑉𝑉)  is (𝛼𝛼𝛼𝛼)∗  -closed in (X, 𝜏𝜏 ).                                     
Therefore f is (𝛼𝛼𝛼𝛼)∗ -continuous in (X, 𝜏𝜏). 
 
Example 4.21: Let X = 𝑌𝑌 = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}�,𝜏𝜏 ={ φ ,  X, { �𝑎𝑎}�, {�𝑎𝑎, 𝑏𝑏}� } and σ  ={ φ , Y, {�𝑎𝑎, 𝑐𝑐} }�.  Let f : ( X , 𝜏𝜏 ) →  ( Y , σ ) 
be defined by an identity mapping .𝑓𝑓−1{𝑏𝑏} = {𝑏𝑏} 𝑖𝑖𝑠𝑠 (𝛼𝛼𝛼𝛼)∗  − closed set  but not (𝑠𝑠𝛼𝛼)∗- closed in ( X, 𝜏𝜏). 
 
Theorem 4.22: Every (𝛼𝛼𝑠𝑠𝛼𝛼)∗  -continuous is (𝛼𝛼𝛼𝛼)∗  -continuous.            
 
Proof: Let f: (X, 𝜏𝜏) →  (Y, σ ) be (𝛼𝛼𝑠𝑠𝛼𝛼)∗-continuous map. Let V be a closed set in (Y, σ ), then 𝑓𝑓−1(𝑉𝑉) is (𝛼𝛼𝑠𝑠𝛼𝛼)∗-
closed in (X, 𝜏𝜏 ). Since every (𝛼𝛼𝑠𝑠𝛼𝛼)∗ -closed set is (𝛼𝛼𝛼𝛼)  -closed, 𝑓𝑓−1(𝑉𝑉)  is (𝛼𝛼𝛼𝛼)  -closed in (X, 𝜏𝜏 ).                                     
Therefore f is (𝛼𝛼𝛼𝛼) -continuous in (X, 𝜏𝜏). 
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Example 4.23: Let X = 𝑌𝑌 = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}�,𝜏𝜏 ={φ ,  X, {�𝑎𝑎} � } and σ  ={φ , Y, {�𝑎𝑎, 𝑐𝑐}}�.   Let f: (X , 𝜏𝜏) →  (Y , σ ) be defined 
by an identity mapping .𝑓𝑓−1{𝑏𝑏} = {𝑏𝑏}  𝑖𝑖𝑠𝑠 (𝛼𝛼𝛼𝛼)∗  − closed set  but not (𝛼𝛼𝑠𝑠𝛼𝛼)∗-closed in ( X, 𝜏𝜏). 
 
Definition 4.24: A function f: (X, 𝜏𝜏) →  (Y,σ ) is called (𝛼𝛼𝛼𝛼)∗-irresolute if  𝑓𝑓−1(𝑉𝑉) is a  (𝛼𝛼𝛼𝛼)∗-closed set of (X,  𝜏𝜏) 
for every (𝛼𝛼𝛼𝛼)∗-closed set V of  (Y, σ ) 
 
Theorem 4.25: Every (𝛼𝛼𝛼𝛼)∗  -irresolute is  (𝛼𝛼𝛼𝛼)∗  -continuous                       
 
Proof: Let f: (X , 𝜏𝜏 ) →  ( Y , σ ) be an (𝛼𝛼𝛼𝛼)∗ - irresolute. Let V be a closed set in (Y, σ ) Every closed set is (𝛼𝛼𝛼𝛼)∗-
closed. Therefore V is (𝛼𝛼𝛼𝛼)∗-closed.Then 𝑓𝑓−1(𝑉𝑉) is (𝛼𝛼𝛼𝛼)∗ −closed since f is (𝛼𝛼𝛼𝛼)∗ −irresolute and hence f is (𝛼𝛼𝛼𝛼)∗ -
continuous.  The converse of the above theorem is not true  in general as it can be seen from the following example 
 
Example 4.26: Let X = 𝑌𝑌 = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}�,   𝜏𝜏 = {φ , X, {�𝑎𝑎} �, {�𝑏𝑏, 𝑐𝑐}�} and  σ  = {φ , Y, {𝑐𝑐�}} Define  f: (X , 𝜏𝜏) →  (Y, σ )  by  
f(a) = c, f(b) = a and f(c) = b. 𝑓𝑓−1{𝑎𝑎, 𝑏𝑏} = {𝑏𝑏, 𝑐𝑐}  is (𝛼𝛼𝛼𝛼)∗ closed set in ( X , 𝜏𝜏 ) .Therefore 𝑓𝑓 𝑖𝑖𝑠𝑠 (𝛼𝛼𝛼𝛼)∗-continuous. {𝑏𝑏, 𝑐𝑐}  
is (𝛼𝛼𝛼𝛼)∗ closed set in (Y, σ ) .  𝑓𝑓−1{𝑎𝑎} = {𝑏𝑏} , 𝑓𝑓−1{𝑏𝑏} = {𝑐𝑐}   is not (𝛼𝛼𝛼𝛼)∗ closed set in   (X, 𝜏𝜏 ). Therefore 
𝑓𝑓 𝑖𝑖𝑠𝑠 𝑛𝑛𝑐𝑐𝑛𝑛 (𝛼𝛼𝛼𝛼)∗- irresolute. 
 
Theorem 4.27: Let f: (X, 𝜏𝜏) →  (Y,σ ) and g : (Y,σ ) →  (Z,η ) be any two functions then, 
(i).g f: (X, 𝜏𝜏) →   (Z,η )  is (𝛼𝛼𝛼𝛼)∗-continuous if f is (𝛼𝛼𝛼𝛼)∗-irresolute and g is (𝛼𝛼𝛼𝛼)∗-continuous. 
(ii).g  f : (X, 𝜏𝜏) →   (Z,η )  is (𝛼𝛼𝛼𝛼)∗- irresolute if f and g are (𝛼𝛼𝛼𝛼)∗- irresolute. 
(iii).g  f: (X, 𝜏𝜏) →  (Z,η )  is (𝛼𝛼𝛼𝛼)∗-continuous if f  is (𝛼𝛼𝛼𝛼)∗-continuous and g is continuous.                                                                                                                                    
 
Proof: (i).Let F be closed set in (Z,η ).Then 𝛼𝛼−1(F ) is (𝛼𝛼𝛼𝛼)∗-closed in (Y,σ ) implies f-1(g-1(F)) is (𝛼𝛼𝛼𝛼)∗-closed  in 
(X, 𝜏𝜏) . Therefore (f  g)-1(F) is (𝛼𝛼𝛼𝛼)∗-closed in (X, 𝜏𝜏). Hence (f  g) is (𝛼𝛼𝛼𝛼)∗-continuous.  (ii).Let F be (𝛼𝛼𝛼𝛼)∗-closed in 
(Z,η ). Then  𝛼𝛼−1(F ) is (𝛼𝛼𝛼𝛼)∗-closed in ( Y,σ ).Therefore f-1(g-1(F)) is (𝛼𝛼𝛼𝛼)∗-closed  in (X, 𝜏𝜏). Therefore (f g)-1(F) is 
(𝛼𝛼𝛼𝛼)∗-closed in (X, 𝜏𝜏).Hence (f  g) is (𝛼𝛼𝛼𝛼)∗-irresolute. (iii).Let F be closed in (Z,η ). Then  𝛼𝛼−1(F ) is (𝛼𝛼𝛼𝛼)∗-closed in 
(Y,σ ) . Therefore  f

-1(g-1(F)) is (𝛼𝛼𝛼𝛼)∗-closed  in (X, 𝜏𝜏). Therefore   (f  g)-1(F) is (𝛼𝛼𝛼𝛼)∗-closed in (X,𝜏𝜏).Hence (f  g) is 
(𝛼𝛼𝛼𝛼)∗-continuous. 
 
 Thus we have the following diagram. 
 

 
 
Where A        B  represents A implies B and   A         B  represents A does not  imply B 
 
5. APPLICATIONS OF (𝜶𝜶𝜶𝜶)∗-CLOSED SETS 
 
As applications of  (𝛼𝛼𝛼𝛼)∗- closed set, a new space 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ is introduced. 
 
Definition 5.1: A space (X,𝜏𝜏) is called a 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space if every (𝛼𝛼𝛼𝛼)∗- closed set is closed. 
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Theorem 5.2:  Every 𝑇𝑇𝑏𝑏  space is a 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space. 
 
Proof follows from the definition of  𝑇𝑇𝑏𝑏  space and 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space. 
 
The reverse implication does not hold as it can be seen from the following example. 
 
Example 5.3: Let X = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}�,𝜏𝜏 ={ φ ,X,{�𝑎𝑎} �,{�𝑏𝑏}�, {�𝑎𝑎, 𝑏𝑏}� }, then (X ,𝜏𝜏 ) is  a  𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space. A={a} is gs-closed set but not 
a closed set. Therefore (X ,𝜏𝜏 ) is  a 𝑇𝑇𝑏𝑏  space. 
 
Theorem 5.4:  Every  𝛼𝛼𝑇𝑇𝑏𝑏   space is a 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space. 
 
Proof follows from the definition of    𝛼𝛼𝑇𝑇𝑏𝑏  space and 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space. 
 
The converse of the above theorem is not true  in general as it can be seen from the following example. 
 
Example 5.5: Let X = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐}�,𝜏𝜏 ={φ ,X,{�𝑏𝑏, 𝑐𝑐}�}. (𝛼𝛼𝛼𝛼)∗ -closed sets areφ ,X,{�𝑎𝑎} � and 𝛼𝛼𝛼𝛼-closed sets are φ ,X,{�𝑎𝑎} �, {a,b}, 
{a,c}. Since every (𝛼𝛼𝛼𝛼)∗ -closed set is 𝛼𝛼𝛼𝛼-closed, the space (X,𝜏𝜏) is a 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space. A = {a, b} is  𝛼𝛼𝛼𝛼-closed but not 
closed. Therefore the space is not a  𝛼𝛼𝑇𝑇𝑏𝑏     space. 
 
Theorem 5.6: Every 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space is a 𝑇𝑇(𝛼𝛼𝑠𝑠𝛼𝛼 )∗ space. 
 
Proof follows from the definition of  𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space and  𝑇𝑇(𝛼𝛼𝑠𝑠𝛼𝛼 )∗ space. 
 
Example 5.7:  Let X = {�𝑎𝑎, 𝑏𝑏, 𝑐𝑐} �,𝜏𝜏 ={φ ,X,{�𝑎𝑎} �}. (𝛼𝛼𝑠𝑠𝛼𝛼)∗ -closed sets  areφ , X, { �𝑏𝑏, 𝑐𝑐} � and  (𝛼𝛼𝛼𝛼)∗ -closed sets are φ , 
X,{�𝑏𝑏}�, {c}, {b,c}.Since  every (𝛼𝛼𝑠𝑠𝛼𝛼)∗-closed set is (𝛼𝛼𝛼𝛼)∗ -closed, the space (X,𝜏𝜏) is  a 𝑇𝑇(𝛼𝛼𝑠𝑠𝛼𝛼 )∗ space. A={b} is (𝛼𝛼𝛼𝛼)∗ -
closed but not closed .Therefore the  space is not a 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗   space. 
 
Theorem 5.8: A space  (X , 𝜏𝜏) which is both   𝛼𝛼𝑇𝑇𝑏𝑏   and  𝑇𝑇𝛼𝛼𝛼𝛼   is a 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space. 
 
Theorem 5.9: A space  (X , 𝜏𝜏) which is both  𝑇𝑇𝑏𝑏   and  𝑇𝑇𝛼𝛼𝑠𝑠𝛼𝛼  is a 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space. 
 
Theorem 5.10: A space  (X , 𝜏𝜏) which is both  𝑇𝑇1/2  and  𝛼𝛼𝑇𝑇𝑑𝑑    is a 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space. 
 
Theorem 5.11: A space  (X , 𝜏𝜏) which is both  𝑇𝑇1/2  and  𝑇𝑇𝑑𝑑   is a 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space. 
 
Theorem 5.12: Let (X , 𝜏𝜏) be  a 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space and f : (X, 𝜏𝜏) →  (Y, σ ) be 𝑎𝑎𝑛𝑛 (𝛼𝛼𝛼𝛼)∗ - irresolute.then f is continuous. 
 
Proof: Let f: (X, 𝜏𝜏) →  (Y, σ ) be an(𝛼𝛼𝛼𝛼)∗ - irresolute. Let V be a closed set of (Y, σ ). Every closed set is (𝛼𝛼𝛼𝛼)∗- 
closed set. Then 𝑓𝑓−1(𝑉𝑉) is an  (𝛼𝛼𝛼𝛼)∗ −closed since f is (𝛼𝛼𝛼𝛼)∗-irresolute. Every  (𝛼𝛼𝛼𝛼)∗-closed set is closed in X. Since 
(X, 𝜏𝜏 ) is a 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space. Therefore  𝑓𝑓−1(𝑉𝑉) is closed and hence f is continuous. 
 
Theorem 5.13: Let (X , 𝜏𝜏) be  a 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space and f: (X, 𝜏𝜏) →  (Y, σ ) be continuous. Then f is (𝛼𝛼𝛼𝛼)∗ - irresolute.                                                                          
 
Proof: Let A be an (𝛼𝛼𝛼𝛼)∗- closed set in Y. Then A is closed, Since ( Y , σ ) is a 𝑇𝑇(𝛼𝛼𝛼𝛼 )∗ space. Then 𝑓𝑓−1(𝐴𝐴) is closed, 
since f is continuous. Every closed set is (𝛼𝛼𝛼𝛼)∗- closed set . Therefore f  is an (𝛼𝛼𝛼𝛼)∗ - irresolute. 
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