Essential concepts of pg**- closed sets

Dr. A. PUNITHA THARANI
Associate Professor, St. Mary’s College, Thoothukudi – India.

Mrs. G. PRISCILLA PACIFICA*
Assistant Professor, St. Mary’s College, Thoothukudi – India.

(Received On: 11-02-17; Revised & Accepted On: 10-03-17)

ABSTRACT

In this paper we define pg**- neighbourhood, pg**-closure, pg**-interior and pg**-boundary by means of pg**- closed and pg**-open sets and studied their properties. Further pg**-multiplicative and pg**-additive are also defined and implemented.

Key words: pg**-multiplicative, pg**-additive, pg**-neighbourhood, pg**-closure, pg**-interior, pg**-boundary.

1. INTRODUCTION

2. PRELIMINARIES

Definition 2.1: A subset 𝐴𝐴 of a topological space (𝑋, 𝜏) is called a pre-open set [4] if 𝐴𝐴 ⊆ int(cl(A)) and a pre-closed set if cl(int(A)) ⊆ 𝐴𝐴.

Definition 2.2: A subset 𝐴𝐴 of topological space (𝑋, 𝜏) is called
1. generalized closed set (g-closed) [3] if cl(A) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is open in (𝑋, 𝜏).
2. g*-closed set [7] if cl(A) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is g-open in (𝑋, 𝜏).
3. g**-closed set [5] if cl(A) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is g*-open in (𝑋, 𝜏).
4. pg**-closed set [6] if 𝑝𝑝𝑐𝑐𝑐𝑐(A) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is g*-open in (𝑋, 𝜏).

3. Essential concepts of pg**- closed sets

If 𝐴𝐴 and 𝐵𝐵 are pg**-closed subsets of (𝑋, 𝜏), then 𝐴𝐴∪𝐵𝐵 is also a pg**-closed set[6] and hence the finite union of pg**-closed sets is pg**-closed. Equivalently finite intersection of pg**-open sets is open. But arbitrary union of pg**-open sets need not be pg**-open. Hence PG**O(X, 𝜏) is not a topology. To make it a topology, we need the following definition.

Definition 3.1: A topological space (𝑋, 𝜏) is said to be pg**-multiplicative (resp. pg**-finitely multiplicative, pg**-countably multiplicative) if arbitrary (resp. finite, countable) intersection of pg**- closed sets is pg**-closed. Equivalently arbitrary (resp. finite, countable) union of pg**-open sets is pg**-open.

Remark 3.2: In a pg**-multiplicative space PG**O(X, 𝜏) is a topology. For,
1. 𝜙 and 𝑋 are pg**-open sets.
2. Arbitrary union of pg**-open sets is pg**-open.
3. Finite intersection of pg**-open sets is pg**-open.

Corresponding Author: Mrs. G. Priscilla Pacifica
Assistant Professor, St. Mary’s College, Thoothukudi – India.
Example 3.3: An infinite set with cofinite topology is pg^\ast-multiplicative.

Consider \mathbb{R} with infinite cofinite topology. In this space, let $\{F_n\}$ be an arbitrary collection of pg^\ast-closed sets. Therefore each F_n is either finite or \varnothing or is all of \mathbb{R}. Then $\bigcap F_n$ is finite or \varnothing or \mathbb{R} and hence arbitrary intersection of pg^\ast-closed sets is pg^\ast-closed. Therefore \mathbb{R} with infinite cofinite topology is a pg^\ast-multiplicative space.

Definition 3.4: A topological space (X, τ) is said to be pg^\ast-additive (resp. pg^\ast-countably additive) if arbitrary (resp. countable) union of pg^\ast-closed sets is pg^\ast-closed. Equivalently arbitrary (resp. countable) intersection of pg^\ast-open sets is pg^\ast-open.

Example 3.5: Consider \mathbb{R} with cofinite topology is not pg^\ast-countably additive and not pg^\ast-additive. Let $A_n = \{-n, -(n-1), \ldots, (n-1), n\}$ then A_n's are pg^\ast-closed but $\bigcup A_n = \mathbb{Z}$ is not pg^\ast-closed. Therefore \mathbb{R} with infinite cofinite topology is not pg^\ast-additive.

Definition 3.6: A topological space (X, τ) is said to be pg^\ast-discrete if every subset of X is pg^\ast-open. Equivalently every subset is pg^\ast-closed.

Example 3.7: All the discrete and indiscrete topological spaces are pg^\ast-discrete.

Example 3.8: \mathbb{R} with infinite cofinite topology is not pg^\ast-discrete.

Definition 3.9: Let (X, τ) be a topological space and $x \in X$. Every pg^\ast-open set containing x is said to be a pg^\ast-neighbourhood of x. Differently a set U in X is said to be an pg^\ast-neighbourhood of x if $x \in G \subseteq U$ for some pg^\ast-open set G in X. The collection \mathcal{V}_x of all pg^\ast-neighbourhoods of x is called the pg^\ast-neighbourhood system of x.

Theorem 3.10: Let A be a subset of a pg^\ast-multiplicative space (X, τ). Then A is pg^\ast-open if and only if A contains a pg^\ast-neighbourhood of each of its points.

Proof: Let A be a pg^\ast-open set in (X, τ) and $x \in A$. Then A is a pg^\ast-neighbourhood of x, contained in A. Conversely suppose A contains pg^\ast-neighbourhood of each of its points. For every $x \in A$, there exists a pg^\ast-neighbourhood G_x of x such that $x \in G_x \subseteq A$ and hence $\bigcup G_x \subseteq A$. Let $x \in A$, then there exists pg^\ast-neighbourhood G_x such that $x \in G_x$. Therefore $x \in \bigcup G_x$. Hence $A = \bigcup G_x$. Since (X, τ) is a pg^\ast-multiplicative space $\bigcup G_x$ is pg^\ast-open, and hence A is pg^\ast-open.

Theorem 3.11: Let (X, τ) be a pg^\ast-multiplicative space. If F is a pg^\ast-closed subset of X and $x \in F^c$, then there exists a pg^\ast-neighbourhood U of x such that $U \cap F = \varnothing$.

Proof: Let F be pg^\ast-closed subset of X and $x \in F^c$. Then F^c is pg^\ast-open set of X. Then by theorem (3.7) F^c contains a pg^\ast-neighbourhood of each of its points. Hence there exists pg^\ast-neighbourhood U of x such that $U \subseteq F^c$. Therefore $U \cap F = \varnothing$.

Theorem 3.12: Every neighbourhood U of $x \in X$ is pg^\ast-neighbourhood of x.

Proof: Follows from every open set is pg^\ast-open.

Remark 3.13: In general a pg^\ast-neighbourhood U of $x \in X$ need not be a neighbourhood of x, as seen from the following example.

Example 3.14: Let (X, τ), where $X = \{a, b, c\}$, $\tau = \{\varnothing, X, \{a\}, \{a, c\}\}$ be a topological space.

Here $\ast O(X, \tau) = \{\varnothing, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$. The set $\{a, b\}$ is a pg^\ast-neighbourhood of the point $b \in X$. However, the set $\{a, b\}$ is not a neighbourhood of the point b.

Definition 3.15: Let A be a subset of (X, τ). A point $x \in X$ is said to be pg^\ast-limit point or pg^\ast-cluster point of A if every pg^\ast-neighbourhood of x contains a point of A other than x. Said differently, x is a pg^\ast-limit point of A if it belongs to the pg^\ast-closure of $A - \{x\}$. The set of all pg^\ast-limit point of A is called pg^\ast-derived set of A and is denoted by the symbol A'.

Example 3.16: Consider \mathbb{R} with infinite cofinite topology and the subset \mathbb{Q}.

$\text{PG} \ast O(\mathbb{R}) = \{\varnothing, \mathbb{R}, \text{all infinite subsets}\}$. Let $x \in \mathbb{R}$ be arbitrary and U, pg^\ast-neighbourhood of x. Then U is infinite and U contains a point of \mathbb{Q} other than x. Therefore x is a pg^\ast-limit point of \mathbb{Q}.
Example 3.17: Consider \(\mathbb{R} \) with discrete topology. \(PG \ast\ast O(\mathbb{R}) = \{ \text{all subsets} \} \).

The set of all rationals \(\mathbb{Q} \) has no \(pg\ast\ast \)-limit point. Since for any \(x \in \mathbb{R} \), \(\{ x \} \) is \(pg\ast\ast \)-neighbourhood of \(x \) which contains no point of \(\mathbb{Q} \) other than \(x \). In fact, in any set with discrete topology, no subset has a \(pg\ast\ast \)-limit point.

Theorem 3.18: If \(A \) and \(B \) are subsets of a space \((X, \tau)\), then \(A \subset B \implies A' \subset B' \).

Proof: Let \(x \in A' \). Then every \(PG\ast\ast \)-neighbourhood \(U \) of \(x \) contains a point \(y \) of \(A \) with \(y \neq x \). Since \(A \subset B \), \(y \in B \). Hence every \(pg\ast\ast \)-neighbourhood \(U \) of \(x \) contains a point \(y \) of \(B \) with \(y \neq x \). Hence \(x \in B' \). Therefore, \(A' \subset B' \).

Definition 3.19: Let \(A \) be a subset of a topological space \((X, \tau)\). A is said to be \(pg\ast\ast \)-perfect if \(A \) is \(pg\ast\ast \)-closed and every point of \(A \) is a \(pg\ast\ast \)-limit point of \(A \).

Definition 3.20: Let \(A \) be a subset of a topological space \((X, \tau)\). \(pg \ast cl(A) \) is defined to be the intersection of all \(pg\ast\ast \)-closed sets containing \(A \).

Note:
1. Since intersection of \(pg\ast\ast \)-closed sets need not be \(pg\ast\ast \)-closed, \(pg \ast cl(A) \) need not be \(pg\ast\ast \)-closed. If \(A \) is \(pg\ast\ast \)-closed then \(pg \ast cl(A) = A \). But \(pg \ast cl(A) = A \) need not imply \(A \) is \(pg\ast\ast \)-closed.
2. If \((X, \tau)\) is \(pg\ast\ast \)-multiplicative then \(pg \ast cl(A) = A \) if and only if \(A \) is \(pg\ast\ast \)-closed.

Theorem 3.21: If \(A \) is a subset of a topological space \((X, \tau)\), then \(pg \ast cl(A) \subset cl(A) \).

Proof: Let \(A \) be a subset of a topological space \((X, \tau)\). \(cl(A) = \cap \{ F \subset X : A \subset F \subset C(X) \} \). Since every closed set is \(pg\ast\ast \)-closed \(A \subset F \in C(X) \), implies \(A \subset F \in PG \ast cl(A) \). That is \(pg \ast cl(A) \subset F \). Therefore \(pg \ast cl(A) \subset \cap \{ F \subset X : A \subset F \subset C(X) \} = cl(A) \). Hence \(pg \ast cl(A) \subset cl(A) \).

The converse of the above Theorem need not be true in general as seen in the following example.

Example 3.22: Let \(X = \{ a, b, c \} \) with topology \(\tau = \{ \varnothing, X, [a], [a, b] \} \). Let \(A = \{ a \} \) where \(pg \ast cl(A) = \{ a, c \} \) and \(cl(A) = X \). Hence \(pg \ast cl(A) \neq cl(A) \).

Theorem 3.23: For any \(x \in X \), \(x \in pg \ast cl(A) \) if and only if \(A \cap U \neq \varnothing \) for every \(pg\ast\ast \)-open set \(U \) containing \(x \).

Proof: Let \(x \in pg \ast cl(A) \). Suppose there exists a \(pg\ast\ast \)-open set \(U \) containing \(x \) such that \(A \cap U = \varnothing \). Then \(A \subset X - U \). Since \(X - U \) is \(pg\ast\ast \)-closed, \(pg \ast cl(A) \subset X - U \). This implies \(x \notin pg \ast cl(A) \) which is a contradiction. Hence \(A \cap U \neq \varnothing \) for every \(pg\ast\ast \)-open set \(U \) containing \(x \). Conversely, let \(A \cap U \neq \varnothing \) for every \(pg\ast\ast \)-open set \(U \) containing \(x \). Suppose \(x \notin pg \ast cl(A) \), then there exists a \(pg\ast\ast \)-closed set \(F \) containing \(A \) such that \(x \notin F \). Then \(x \in X - F \) and \(X - F \) is \(pg\ast\ast \)-open. Also \((X - F) \cap A = \varnothing \) this is a contradiction to the hypothesis. Hence \(x \in pg \ast cl(A) \).

Theorem 3.24: Let \(A \) be a subset of a topological space \((X, \tau)\). Then \(pg \ast cl(A) = A \cup A' \).

Proof: Clearly \(A \subset pg \ast cl(A) \). Let \(x \in A' \) and suppose \(x \notin pg \ast cl(A) \), then there exists a \(pg\ast\ast \)-closed set \(F \) containing \(A \) such that \(x \notin F \). Then \(x \in X - F \) and \(X - F \) is \(pg\ast\ast \)-open. Also \((X - F) \cap (A - \{ x \}) = \varnothing \) which is not true. Therefore \(x \in pg \ast cl(A) \). Therefore \(A \cup A' \subset pg \ast cl(A) \). Let \(x \in pg \ast cl(A) \) and \(x \notin A \). Suppose \(x \in A' \) then there exists an \(pg\ast\ast \)-neighbourhood \(U \) of \(x \) such that \(A \cap U = \varnothing \). Therefore \(A \subset X - U \) which is \(pg\ast\ast \)-closed containing \(A \) and \(x \notin X - U \). which is a contradiction. Therefore \(pg \ast cl(A) \subset A \cup A' \). Hence \(pg \ast cl(A) = A \cup A' \).

Theorem 3.25: The subset \(A \) of \(pg\ast\ast \)-multiplicative space \((X, \tau)\) is \(pg\ast\ast \)-closed if and only if \(A' \subseteq A \).

Proof: By theorem (3.21) \(A \) is \(pg\ast\ast \)-closed if and only if \(A = A \cup A' \iff A' \subseteq A \).

Definition 3.26: Let \(A \) be a subset of a topological space \((X, \tau)\). Then \(A \) is \(pg\ast\ast \)-dense in \(X \) if every point of \(X \) is a \(pg\ast\ast \)-limit point of \(A \) or a point of \(A \).

Definition 3.27: A topological space having countable \(pg\ast\ast \)-dense subset is said to be \(pg\ast\ast \)-separable.

Example 3.28: In \(\mathbb{R} \) with cofinite topology \(\mathbb{Q} \) is \(pg\ast\ast \)-dense in \(\mathbb{R} \). Also \(\mathbb{R} \) is \(pg\ast\ast \)-separable.

Definition 3.29: Let \(A \) be a subset of a topological space \((X, \tau)\). A point \(x \in A \) is said to be \(pg\ast\ast \)-interior point of \(A \) if there exists a \(pg\ast\ast \)-open set \(U \) such that \(x \in U \subset A \).
Definition 3.30: Let A be a subset of a topological space (X, τ). $pg**\text{int}(A)$ is defined to be the union of all $pg**$-open sets contained in A.

Equivalently $pg**\text{int}(A) = \bigcup \{ U: U \subseteq A, U \in PG**O(X) \}$.

Example 3.31:

1. Consider \mathbb{R} with discrete topology. Then \mathbb{Q} is $pg**$-open and hence every point in \mathbb{Q} is a $pg**$-interior point.
2. Consider \mathbb{R} with cofinite topology, the subset \mathbb{Q} and $x \in \mathbb{Q}$ be arbitrary. Suppose x is a $pg**$-interior point of \mathbb{Q}, then there exists a $pg**$-neighbourhood U of x such that $x \in U \subset \mathbb{Q}$. This implies \mathbb{Q}^c must be finite which is not true. Therefore x is not $apg**$-interior point of \mathbb{Q}. Since x is arbitrary \mathbb{Q} has no $pg**$-interior point.

Note: Any subset of \mathbb{R} with cofinite topology whose complement is not finite has no $pg**$-interior point.

Note:

1. Obviously $pg**\text{int}(A)$ is the set of all $pg**$-interior point of A.
2. $pg**\text{int}(A)$ need not be $pg**$-open but if A is $pg**$-open then $pg**\text{int}(A) = A$.
3. If (X, τ) is $pg**$-multiplicative space then $pg**\text{int}(A) = A$ if and only if A is $pg**$-open.

Theorem 3.32: For any two subsets A and B of (X, τ). Then,

1. $\text{int}(A) \subseteq pg**\text{int}(A) \subseteq A$.
2. If $A \subseteq B$, then $pg**\text{int}(A) \subseteq pg**\text{int}(B)$.
3. $pg**\text{int}(A \cup B) \supseteq pg**\text{int}(A) \cup pg**\text{int}(B)$.
4. $pg**\text{int}(A \cap B) = pg**\text{int}(A) \cap pg**\text{int}(B)$.

Proof: follows from the definition.

Remark 3.33: For a subset A of X $pg**\text{int}(A) \neq \text{int}(A)$ as seen from the following example.

Example 3.34: Let $X = \{a,b,c\}, \tau = \{\varnothing, X, \{a\}, \{a,b\}\}$ Let $A = \{a,c\}$ where $pg**\text{int}(A) = \{a,c\}$ and $\text{int}(A) = \{a\}$. Hence $pg**\text{int}(A) \neq \text{int}(A)$.

Remark 3.35: $pg**\text{int}(A) = pg**\text{int}(B)$ does not imply that $A = B$. This is revealed by the following example.

Example 3.36: Let (X, τ), where $X = \{a,b,c\}, \tau = \{\varnothing, X, \{a\}, \{c\}, \{a,c\}\}$ be a topological space. Here $PG**O(X, \tau) = \{\varnothing, X, \{a\}, \{c\}, \{a,c\}\}$. Let $A = \{a, b\}$ and $B = \{a\}$, then $pg**\text{int}(A) = pg**\text{int}(B)$ but $A \neq B$.

Theorem 3.37: Let A be a subset of (X, τ), then the following are true.

1. $(pg**\text{int}(A))^c = pg**\text{cl}(A^c)$.
2. $pg**\text{int}(A) = (pg**\text{cl}(A^c))^c$.
3. $pg**\text{cl}(A) = (pg**\text{int}(A))^c$.

Proof:

1. Let $x \in (pg**\text{int}(A))^c$. Then $x \notin pg**\text{int}(A)$. That is every $pg**$-open set U containing x is such that U is not a proper subset of A. Thus $U \cap A^c \neq \varnothing$ for every $pg**$-open set U containing x. Thus $x \in pg**\text{cl}(A^c)$. Conversely, suppose $x \in pg**\text{cl}(A^c)$, then for every $pg**$-open set U containing x, $U \cap A^c \neq \varnothing$. Then by the definition of $pg**\text{int}(A)$, $x \notin pg**\text{int}(A)$, hence $x \in (pg**\text{int}(A))^c$. Therefore $(pg**\text{int}(A))^c = pg**\text{cl}(A^c)$.
2. Follows by taking complements in (1).
3. Follows by replacing A by A^c in (1).

Theorem 3.38: For any $A \subseteq X$, $(X - pg**\text{int}(A)) = pg**\text{cl}(X - A)$.

Proof: Let $x \in X - pg**\text{int}(A)$. Then $x \notin pg**\text{int}(A)$, that is every $pg**$-open set G containing x is such that $G \not\subseteq A$. Therefore every $pg**$-open set G containing x intersects $X - A$. That is $G \cap X - A \neq \varnothing$ and hence $x \in pg**\text{cl}(X - A)$. Conversely let $x \in pg**\text{cl}(X - A)$. Then every $pg**$-open set G containing x intersects $X - A$, that is $G \cap X - A \neq \varnothing$. To be precise every $pg**$-open set G containing x is such that $G \not\subseteq A$. This implies $x \notin pg**\text{int}(A)$. Therefore $x \in X - pg**\text{int}(A)$ and hence $(X - pg**\text{int}(A)) = pg**\text{cl}(X - A)$.

Remark 3.39: For any $A \subseteq X$, we have

1. $(X - pg**\text{cl}(X - A)) = pg**\text{int}(A)$.
2. $(X - pg**\text{int}(X - A)) = pg**\text{cl}(A)$. Taking complement in the above theorem and by replacing A by $X - A$ in theorem (3.38) the results (i) and (ii) follow.
Definition 3.40: A subset A of a topological space (X, τ) is called \textit{pg**-clopen} if it is both pg**- open and pg**- closed in X.

Example 3.41: Consider \mathbb{R} with usual topology \mathbb{Q} and $\mathbb{Q^c}$ are pg**-clopen.

Definition 3.42: A point $x \in X$ is said to be a \textit{pg**-boundary point} of A if every pg**- open set containing x intersects both A and $X - A$.

Definition 3.43: Let A be any subset of a topological space (X, τ). Then the \textit{pg**-boundary} of A is defined as $\text{pg**Bd}(A) = \text{pg** cl}(A) \cap \text{pg** cl}(A^c)$.

Example 3.44: Consider \mathbb{R} with discrete topology and \mathbb{Q}, the set of rationals. Let $r \in \mathbb{R}$ be arbitrary, then $\{r\}$ is a pg**- open set containing r which cannot intersect both \mathbb{Q} and $\mathbb{Q^c}$. Therefore \mathbb{Q} has no pg**-boundary point.

Example 3.45: Consider \mathbb{R} with finite complement topology and \mathbb{Q}, the set of rationals. Let $r \in \mathbb{R}$ be arbitrary and U be a pg**-neighbourhood of r, then U is infinite and hence contains atleast one point of \mathbb{Q}. Therefore U intersects both \mathbb{Q} and $\mathbb{Q^c}$. Therefore every real number is a pg**-boundary point of \mathbb{Q}.

Infact, any infinite subset A of \mathbb{R} whose complement is also infinite has every real number as its pg**-boundary point.

Definition 3.46: If (X, τ) is a topological space, a point $x \in X$ is said to be a \textit{pg**- isolated point} of X if the one-point set $\{x\}$ is pg**- open in X.

Definition 3.47: Let (X, τ) be a topological space and A be a subset of X. A point $x \in A$ is called a \textit{pg**- isolated point} of A if it has a pg**- neighborhood of x which contains no other point of A.

Definition 3.48: Let (X, τ) be a topological space and $A \subseteq X$. Then the \textit{pg**-border} of A is defined as $\text{bp}_{\text{pg}}(A) = A - \text{pg** int}(A)$.

Definition 3.49: Let A be any subset of a topological space (X, τ). Then the \textit{pg**-exterior} of A is defined as $\text{pg** Ext}(A) = \text{pg** int}(A^c)$.

Theorem 3.50: Let A and B be any two sets of a topological space (X, τ), then the following conditions hold:

(i) $\text{pg** Bd}(A) = \text{pg** cl}(A) \cap \text{pg** cl}(A^c) = \text{pg** cl}(A^c)^c \cap \text{pg** cl}(A^c) = \text{pg** Bd}(A^c)$.

(ii) and (iii) Follows from Definition of $\text{pg** Bd}(A)$.

(iv) $\text{pg** Bd}(A) \subseteq \text{pg** cl}(A) \subseteq \text{A}$. Hence $\text{pg** Bd}(A) \subseteq \text{A}$.

(v) Suppose A is pg**-open then A is pg**-closed, also $\text{pg** Bd}(A^c) \subseteq A^c$. Hence by (i) $\text{pg** Bd}(A) \subseteq A$.

(vi) Since $A \subseteq B$, $\text{pg** cl}(A) \subseteq \text{pg** cl}(B)$. Now $\text{pg** Bd}(A) \subseteq \text{pg** cl}(A) \cup \text{pg** cl}(B) = B$. Hence $\text{pg** Bd}(A) \subseteq B$.

(vii) $(\text{pg** Bd}(A))^c = (\text{pg** cl}(A) \cap \text{pg** cl}(A^c))^c = (\text{pg** cl}(A))^c \cup (\text{pg** cl}(A^c))^c = \text{pg** int}(A)^c \cup \text{pg** int}(A^c)^c = \text{pg** int}(A^c) \cup \text{pg** int}(A)$.

Proof: (i) $\text{pg** Bd}(A) = \text{pg** cl}(A) \cap \text{pg** cl}(A^c) = \text{pg** cl}(A^c)^c \cap \text{pg** cl}(A^c) = \text{pg** Bd}(A^c)$.

and (ii) (iii) Follows from Definition of $\text{pg** Bd}(A)$.

(iv) $\text{pg** Bd}(A) \subseteq \text{pg** cl}(A) \subseteq \text{A}$. Hence $\text{pg** Bd}(A) \subseteq \text{A}$.

(v) Suppose A is pg**-open then A is pg**-closed, also $\text{pg** Bd}(A^c) \subseteq A^c$. Hence by (i) $\text{pg** Bd}(A) \subseteq A$.

(vi) Since $A \subseteq B$, $\text{pg** cl}(A) \subseteq \text{pg** cl}(B)$. Now $\text{pg** Bd}(A) \subseteq \text{pg** cl}(A) \cup \text{pg** cl}(B) = B$. Hence $\text{pg** Bd}(A) \subseteq B$.

(vii) $(\text{pg** Bd}(A))^c = (\text{pg** cl}(A) \cap \text{pg** cl}(A^c))^c = (\text{pg** cl}(A))^c \cup (\text{pg** cl}(A^c))^c = \text{pg** int}(A)^c \cup \text{pg** int}(A^c)^c = \text{pg** int}(A^c) \cup \text{pg** int}(A)$.

Theorem 3.51: Let A be a subset of a topological space (X, τ), then the following conditions hold:

(i) $\text{pg** Bd}(A) \subseteq \text{Bd}(A)$, where $\text{Bd}(A)$ denotes the boundary of A.

(ii) $\text{pg** cl}(A) = \text{pg** int}(A) \cup \text{pg** Bd}(A)$

(iii) $\text{pg** int}(A) \cap \text{pg** Bd}(A) = \emptyset$.

(iv) $\text{pg** Bd}(\text{int}(A)) \subseteq \text{pg** Bd}(A)$.

(v) $\text{pg** Bd}(\text{cl}(A)) \subseteq \text{pg** Bd}(A)$.

(vi) $\text{bpg}(A) \subseteq \text{pg** Bd}(A)$.

Proof: (i) $\text{pg** Bd}(A) = \text{pg** cl}(A) \cap \text{pg** cl}(A^c) \subseteq \text{cl}(A) \cap \text{cl}(A^c) = \text{Bd}(A)$.

(ii) $\text{pg** int}(A) \cup \text{pg** Bd}(A) = \text{pg** int}(A) \cup (\text{pg** cl}(A) \cap \text{pg** cl}(A^c)) = \text{pg** cl}(A)$.

(iii) $\text{pg** int}(A) \cap \text{pg** Bd}(A) = \text{pg** int}(A) \cap (\text{pg** cl}(A) \cap \text{pg** cl}(A^c)) = \emptyset$.
Theorem 3.52: Let A be a subset of a topological space $(X, τ)$, then the following conditions hold:

(i) $bp\mathbb{g}** (A) \subseteq b(A)$, where $b(A)$ denotes the border of A.

(ii) $A = pg** int(A) \cup bp\mathbb{g}** (A)$.

(iii) $pg** int(A) \cap bp\mathbb{g}** (A) = \varnothing$.

(iv) If A is $pg**$-open, then $bp\mathbb{g}** (A) = \varnothing$.

(v) $bp\mathbb{g}** (A) = A = pg** int(A) \subseteq pg** cl(A) \cap (pg** int(A))^c = pg** Bd(A)$.

Proof: (i) follows from the definition of $pg**$-border of A and $A = pg** int(A) \subseteq A - int(A)$.

(ii) and (iii) follows from the definition of $pg**$-border of A.

(iv) If A is $pg**$-open, then $A = pg** int(A)$. Thus $bp\mathbb{g}** (A) = \varnothing$.

Theorem 3.53: Let A be a subset of a topological space $(X, τ)$, then the following conditions hold:

(i) $Ext(A) \subseteq pg** Ext(A)$, where $Ext(A)$ denotes the exterior of A.

(ii) $pg** Ext(X) = \varnothing$.

(iii) $pg** Ext(\varnothing) = X$.

(iv) $pg** Ext(A) = (pg** cl(A))^c$.

(v) $pg** Ext(pg** Ext(A)) = pg** int(pg** cl(A))$.

(vi) If $A \subseteq B$ then $pg** Ext(A) \supseteq pg** Ext(B)$.

(vii) $pg** Ext(A \cup B) \subseteq pg** Ext(A) \cup pg** Ext(B)$.

(viii) $pg** Ext(A \cap B) \supseteq pg** Ext(A) \cap pg** Ext(B)$.

(ix) $pg** int(A) \subseteq pg** Ext(pg** Ext(A))$.

Proof: (i) (ii) (iii) and (iv) follows from the definition of $pg** Ext(A)$.

(v) $pg** Ext(pg** Ext(A)) = pg** Ext(pg** cl(A))^c = pg** int(pg** cl(A))$.

(vi) If $A \subseteq B$ then $A^c \supseteq B^c \Rightarrow pg** int(A^c) \supseteq pg** int(B^c) \Rightarrow pg** Ext(A) \supseteq pg** Ext(B)$.

(vii) and (viii) follows from (vi).

(ix) $pg** int(A) \subseteq pg** int(pg** cl(A)) = pg** int(pg** Ext(A))^c = pg** Ext(pg** Ext(A))$.

REFERENCES

[Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]