Essential concepts of pg**- closed sets Dr. A. PUNITHA THARANI Associate Professor, St. Mary's College, Thoothukudi – India. Mrs. G. PRISCILLA PACIFICA* Assistant Professor, St. Mary's College, Thoothukudi – India. (Received On: 11-02-17; Revised & Accepted On: 10-03-17) #### **ABSTRACT** In this paper we defined pg**- neighbourhood, pg**closure, pg**interior and pg**-boundary by means of pg**-closed and pg**-open sets and studied their properties. Furtherpg**-multiplicative and pg** - additive are also defined and implemented. **Key words:** pg^{**} -multiplicative, pg^{**} - additive, pg^{**} - neighbourhood, pg^{**} closure, pg^{**} interior, pg^{**} - boundary. #### 1. INTRODUCTION Levine [3] introduced the class of g-closed sets in 1970. Veerakumar [7] introduced g*-closed sets. P M Helen [5] introduced g**-closed sets. A.S.Mashhour, M.E Abd El. Monsef and S.N.EI. Deeb [4] introduced a new class of preopen sets in 1982. We have already introduced pg**-closed sets [6] and investigated their properties. The purpose of this paper is to introduce pg**- multiplicative, pg**- additive, pg**- neighbourhood, pg**closure, pg**interior, pg**-boundary and analyse their properties. # 2. PRELIMINARIES **Definition 2.1:** A subset A of a topological space (X, τ) is called a pre-open set [4] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$. **Definition 2.2:** A subset A of topological space (X, τ) is called - 1. generalized closed set (g-closed) [3] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . - 2. g^* -closed set [7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) . - 3. g^{**} -closed set [5] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^{*} -open in (X, τ) . - 4. pg^{**} closed set[6] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^{*} -open in(X, τ). # 3. Essential concepts of pg**- closed sets If A and B are pg**- closed subsets of (X, τ) , then $A \cup B$ is also a pg**- closed set[6]and hence the finite union of pg**- closed sets is pg**- closed. Equivalently finite intersection of pg**- open sets is open. But arbitrary union of pg**- open sets need not be pg**- open. Hence $PG^{**}O(X,\tau)$ is not a topology. To make it a topology, we need the following definition. **Definition 3.1:** A topological space (X, τ) is said to be $pg^{**-multiplicative}$ (resp. $pg^{**-finitely}$ multiplicative, $pg^{**-countable}$ countably multiplicative) if arbitrary (resp. finite, countable) intersection of $pg^{**-countable}$ closed sets is $pg^{**-countable}$. Equivalently arbitrary (resp. finite, countable) union of $pg^{**-countable}$ open. **Remark 3.2:** In a pg**-multiplicative space $PG^{**}O(X,\tau)$ is a topology. For, - 1. φ and X are pg**- open sets. - 2. Arbitrary union of pg**- open sets is pg**- open. - 3. Finite intersection of pg**- open sets is pg**-open. Corresponding Author: Mrs. G. Priscilla Pacifica* Assistant Professor, St. Mary's College, Thoothukudi – India. **Example 3.3:** An infinite set with cofinite topology is pg**-multiplicative. Consider \mathbb{R} with infinite cofinite topology. In this space, Let $\{F_{\alpha}\}$ be an arbitrary collection of pg**- closed sets. Therefore each F_{α} is either finite or φ or is all of X. Then $\cap F_{\alpha}$ finite or φ or X and hence arbitrary intersection of pg**-closed sets is pg**-closed. Therefore \mathbb{R} with infinite cofinite topology is a pg**-multiplicative space. **Definition 3.4:** A topological space (X, τ) is said to be pg^{**} - additive (resp. pg^{**} -countably additive) if arbitrary (resp. countable) union of pg^{**} - closed sets is pg^{**} - closed. Equivalently arbitrary (resp. countable) intersection of pg^{**} -open sets is pg^{**} - open. **Example 3.5:** Consider \mathbb{R} with cofinite topology is not pg**-countably additive and not pg**-additive. Let $A_n = \{-n, -(n-1), ..., (n-1), n\}$ then A_n 's are pg**- closed but $\bigcup A_n = Z$ is not pg**- closed. Therefore \mathbb{R} with infinite cofinite topology is not pg**-additive. **Definition 3.6:** A topological space (X, τ) is said to be pg^{**} -discrete if every subset of X is pg^{**} -open. Equivalently every subset is pg^{**} -closed. **Example 3.7:** All the discrete and indiscrete topological spaces are pg**-discrete. **Example 3.8:** \mathbb{R} with infinite cofinite topology is not pg**-discrete. **Definition 3.9:** Let(X, τ) be a topological space and $x \in X$. Every pg**- open set containing x is said to be a pg^{**} neighbourhood of x. Differently a set U in X is said to be apg**-neighbourhood of x if $x \in G \subseteq U$ for some pg**open set G in X. The collection N_x of allpg**- neighbourhoods of x is called the pg**- neighbourhood system of x. **Theorem 3.10:** Let A be a subset of a pg**-multiplicative space(X, τ). Then A is pg**- open if and only if A contains a pg**-neighbourhood of each of its points. **Proof:** Let A be a pg**- open set in (X, τ) and $x \in A$. Then A is a pg**- open set containing x and hence A is a pg**-neighbourhood of x, contained in A.Conversely suppose A contains apg**-neighbourhood of each of its points. For every $x \in A$, there exists a pg**-neighbourhood G_x of x such that $x \in G_x \subseteq A$ and hence $\int_x^U G_x \subseteq A$. Let $x \in A$, then there exists apg**-neighbourhood G_x such that $x \in G_x$. Therefore $x \in \int_x^U G_x$. Hence $x \in \int_x^U G_x$ is a pg**-multiplicative space $\int_x^U G_x$ is pg**- open, and hence $x \in A$ is pg**- open. **Theorem 3.11:** Let (X, τ) be a pg**-multiplicative space. If F is a pg**-closed subset of X and $x \in F^c$, then there exists a pg**- neighbourhood U of x such that $U \cap F = \varphi$. **Proof:** Let F be pg**-closed subset of X and $x \in F^c$. Then F^c is pg**- open set of X. Then by theorem (3.7) F^c contains a pg**-neighbourhood of each of its points. Hence there exists apg**- neighbourhood U of X such that $U \subset F^c$. Therefore $U \cap F = \varphi$. **Theorem 3.12:** Every neighbourhood U of $x \in X$ is pg**-neighbourhood of x. **Proof:** Follows from every open set is pg**- open. **Remark 3.13:** In general a pg**-neighbourhood U of $x \in X$ need not be a neighbourhood of x, as seen from the following example. **Example 3.14:** Let (X, τ) , where $X = \{a, b, c\}, \tau = \{\varphi, X, \{a\}, \{a, c\}\}$ be a topological space. Here ** $O(X,\tau) = \{\varphi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$. The set $\{a, b\}$ is a pg**-neighbourhood of the point $b \in X$. However, the set $\{a, b\}$ is not a neighbourhood of the point b. **Definition 3.15:** Let A be a subset of (X, τ) . A point $x \in X$ is said to be pg^{**} -limit point or pg^{**} -cluster point or pg^{**} -accumulation point of A if every pg^{**} -neighborhood of x contains a point of A other than x. Said differently, x is a pg^{**} -limit point of A if it belongs to the pg^{**} -closure of $A - \{x\}$. The set of all pg^{**} -limit point of A is called pg^{**} -derived set of A and is denoted by the symbol A'. **Example 3.16:** Consider \mathbb{R} with infinite cofinite topology and the subset \mathbb{Q} . $PG ** O(\mathbb{R}) = \{\varphi, \mathbb{R}, all \ infinite \ subsets\}$. Let $x \in \mathbb{R}$ be arbitrary and U, apg**-neighbourhood of x. Then U is infinite and U contains a point of \mathbb{Q} other than x. Therefore x is a pg**-limit point of \mathbb{Q} . **Example 3.17:** Consider \mathbb{R} with discrete topology. $PG ** O(\mathbb{R}) = \{ all \ subsets \}.$ The set of all rationals \mathbb{Q} has no pg**-limit point. Since for any $\in \mathbb{R}$, $\{x\}$ is pg**-neighbourhood of x which contains no point of \mathbb{Q} other than x. In fact, in any set with discrete topology, no subset has a pg**-limit point. **Theorem 3.18:** If A and B are subsets of a space (X, τ) , then $A \subset B \Rightarrow A' \subset B'$. **Proof:** Let $x \in A'$. Then every pg**-neighbourhood U of x contains a point y of A with $y \neq x$. Since $A \subset B$, $y \in B$. Hence every pg**-neighbourhood U of x contains a point y of B with $y \neq x$. Hence $x \in B'$. Therefore, $A' \subset B'$. **Definition 3.19:** Let A be a subset of a topological space (X, τ) . A is said to be pg^{**} -perfect if A is pg^{**} -closed and every point of A is a pg^{**} -limit point of A. **Definition 3.20:** Let A be a subset of a topological space (X, τ) . pg ** cl(A) is defined to be the intersection of all pg^{**} -closed sets containing A. #### Note: - (i) Since intersection of pg**-closed sets need not be pg**-closed, pg ** cl(A) need not be pg**-closed. If A is pg**-closed then pg ** cl(A) = A. But pg ** cl(A) = A need not imply A is pg**-closed. - (ii) If (X, τ) is pg**-multiplicative then pg ** cl(A) = A if and only if A is pg**-closed. **Theorem 3.21:** If A is a subset of a topological space (X, τ) , then $pg ** cl(A) \subset cl(A)$. **Proof:** Let A be a subset of a topological space (X, τ) . $cl(A) = \cap \{F \subset X : A \subset F \in C(X)\}$. Since every closed set is pg^{**} -closed $A \subset F \in C(X)$, implies $A \subset F \in PG ** C(X)$. That is $pg ** cl(A) \subset F$. Therefore $pg ** cl(A) \subset \cap \{F \subset X : A \subset F \in C(X)\} = cl(A)$. Hence $pg ** cl(A) \subset cl(A)$. The converse of the above Theorem need not be true in general as seen in the following example. **Example 3.22:** Let $X = \{a, b, c\}$ with topology $\tau = \{\varphi, X, \{a\}, \{a, b\}\}$. Let $A = \{a\}$ where $pg ** cl(A) = \{a, c\}$ and cl(A) = X. Hence $pg ** cl(A) \neq cl(A)$. **Theorem 3.23:** For any $x \in X$, $x \in pg ** cl(A)$ if and only if $A \cap U \neq \varphi$ for every pg**-open set U containing x. **Proof:** Let $x \in pg ** cl(A)$. Suppose there exists a pg**-open set U containing x such that $A \cap U = \varphi$. Then $A \subseteq X - U$. Since X - U is pg**-closed, $pg ** cl(A) \subseteq X - U$. This implies $x \notin pg ** cl(A)$ which is a contradiction. Hence $A \cap U \neq \varphi$ for every pg**-open set U containing x. Conversely, let $A \cap U \neq \varphi$ for every pg**-open set U containing X. Suppose $X \notin pg ** cl(A)$, then there exists a pg**-closed set Y containing Y such that $Y \notin Y$. Then $Y \in X - Y$ and Y = Y = X - Y ispg**-open. Also Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = X - Y = **Theorem 3.24:** Let A be a subset of a topological space (X, τ) . Then $pg ** cl(A) = A \cup A'$. **Proof:** Clearly $A \subseteq pg ** cl(A)$. Let $x \in A'$ and suppose $x \notin pg ** cl(A)$, then there exists a pg **-closed set F containing A such that $x \notin F$. Then $x \in X - F$ and X - F is pg **-cpen. Also $(X - F) \cap (A - \{x\}) = \varphi$ which is not true. Therefore $x \in pg ** cl(A)$. Therefore $A \cup A' \subseteq pg ** cl(A)$. Let $x \in pg ** cl(A)$ and $x \notin A$. Suppose $x \notin A'$ then there exists apg **-neighbourhood U of X such that $X \cap U = \varphi$. Therefore $X \subseteq X - U$ which is $X \in Y \cap U$ which is a contradiction. Therefore $X \in Y \cap U \cap U$. Hence $X \in Y \cap U \cap U$ which is a contradiction. **Theorem 3.25:** The subset A of pg**-multiplicative space(X, τ) is pg**-closed if and only if $A' \subseteq A$. **Proof:** By theorem (3.21) *A* is pg**-closed if and only if $A = A \cup A' \Leftrightarrow A' \subseteq A$. **Definition 3.26:** Let A be a subset of a topological space (X, τ) . Then A is pg^{**} -dense in X if every point of X is a pg^{**} -limit point of A or a point of A. **Definition 3.27:** Atopological space having countable pg**-dense subset is said to be pg**-separable. **Example 3.28:** In \mathbb{R} with cofinite topology \mathbb{Q} is pg**-dense in \mathbb{R} . Also \mathbb{R} is pg**-separable. **Definition 3.29:** Let *A* be a subset of a topological space (X, τ) . A point $x \in A$ is said to be pg^{**} -interior point of *A* if there exists a pg^{**} -open set *U* such that $x \in U \subset A$. **Definition 3.30:** Let A be a subset of a topological space (X, τ) . $pg^{**int}(A)$ is defined to be the union of all pg^{**} -open sets contained in A. Equivalently $$pg ** int(A) = \cup \{U: U \subseteq A, U \in PG ** O(X)\}.$$ ### **Example 3.31:** - (1) Consider \mathbb{R} with discrete topology. Then \mathbb{Q} is pg^{**} -open and hence every point in \mathbb{Q} is a pg^{**} -interior point. - (2) Consider \mathbb{R} with cofinite topology, the subset \mathbb{Q} and $x \in \mathbb{Q}$ be arbitrary. Suppose x is a pg**-interior point of \mathbb{Q} , then there exists a pg**-neighbourhood U of x such that $x \in U \subset \mathbb{Q}$. This implies \mathbb{Q}^c must be finite which is not true. Therefore x is not apg**-interior point of \mathbb{Q} . Since x is arbitrary \mathbb{Q} has no pg**-interior point. **Note** Any subset of \mathbb{R} with cofinite topology whose complement is not finite has no pg**-interior point. #### Note: - (1) Obviously pg ** int(A) is the set of all pg **-interior point of A. - (2) pg ** int(A) need not be pg **-open but if A is pg **-open then pg ** int(A) = A. - (3) If (X, τ) is pg**-multiplicative space then pg ** int(A) = A if and only if A is pg**-open. **Theorem 3.32:** For any two subsets A and B of (X, τ) . Then, - 1. $int(A) \subseteq pg ** int(A) \subseteq A$. - 2. If $A \subseteq B$, then $pg ** int(A) \subseteq pg ** int(B)$. - 3. $pg ** int(A \cup B) \supseteq pg ** int(A) \cup pg ** int(B)$. - 4. $pg ** int(A \cap B) = pg ** int(A) \cap pg ** int(B)$. **Proof:** follows from the definition. **Remark 3.33:** For a subset A of $Xpg ** int(A) \neq int(A)$ as seen from the following example. **Example 3.34:** Let $X = \{a, b, c\}, \tau = \{\varphi, X, \{a\}, \{a, b\}\}\$ Let $A = \{a, c\}$ where $pg ** int(A) = \{a, c\}$ and $int(A) = \{a\}$. Hence $pg ** int(A) \neq int(A)$. **Remark 3.35:** pg ** int(A) = pg ** int(B) does not imply that A = B. This is revealed by the following example. **Example 3.36:** Let (X, τ) , where $X = \{a, b, c\}, \tau = \{\varphi, X, \{a\}, \{c\}, \{a, c\}\}\}$ be a topological space. Here $PG^{**}O(X, \tau) = \{\varphi, X, \{a\}, \{c\}, \{a, c\}\}\}$. Let $A = \{a, b\}$ and $B = \{a\}$, then pg ** int(A) = pg ** int(B) but $A \neq B$. **Theorem 3.37:** Let A be a subset of (X, τ) , then the following are true. - (1) $(pg ** int(A))^c = pg ** cl(A^c)$. - (2) $pg ** int(A) = (pg ** cl(A^c))^c$. - (3) $pg ** cl(A) = (pg ** int(A^c))^c$. #### **Proof:** - (1) Let $x \in (pg ** int(A))^c$. Then $x \notin pg ** int(A)$. That is every pg **-open set U containing x is such that U is not a proper subset of A. Thus $U \cap A^c \neq \varphi$ for every pg **-open set U containing x. Thus $x \in pg ** cl(A^c)$. Conversely, suppose $x \in pg ** cl(A^c)$, then for every pg **-open set U containing x, $U \cap A^c \neq \varphi$. Then by the definition of pg ** int(A), $x \notin pg ** int(A)$, hence $x \in (pg ** int(A))^c$. Therefore $(pg ** int(A))^c = pg ** cl(A^c)$. - (2) Follows by taking complements in (1). - (3) Follows by replacing A by A^c in (1). **Theorem 3.38:** For any $A \subseteq X$, (X - pg ** int(A)) = pg ** cl(X - A). **Proof:** Let $x \in X - pg ** int(A)$. Then $x \notin pg ** int(A)$, that is every pg **-open set G containing x is such that $G \nsubseteq A$. Therefore every pg **-open set G containing x intersects X - A. That is $G \cap X - A \neq \varphi$ and hence $x \in pg ** cl(X - A)$. Conversely let $x \in pg ** cl(X - A)$. Then every pg **-open set G containing G intersects G containing G intersects G containing G is such that $G \nsubseteq G$. This implies G is G in **Remark 3.39:** For any $A \subseteq X$, we have - (i) (X pg ** cl(X A)) = pg ** int(A). - (ii) (X pg ** int(X A)) = pg ** cl(A). Taking complement in the above theorem and by replacing A by X A in theorem (3.38) the results (i) and (ii) follow. **Definition 3.40:** A subset *A* of a topological space (X, τ) is called pg^{**} -clopen if it is both pg^{**} - open and pg^{**} -closed in *X*. **Example 3.41:** Consider \mathbb{R} with usual topology \mathbb{Q} and \mathbb{Q}^c are pg**-clopen. **Definition 3.42:** A point $x \in X$ is said to be a pg^{**} -boundary point of A if every pg^{**} - open set containing x intersects both A and X - A. **Definition 3.43:** Let A be any subset of a topological space (X, τ) . Then the pg^{**} -boundary of A is defined as $pg^{**}Bd(A) = pg ** cl(A) \cap pg ** cl(A^c)$. **Example 3.44:** Consider \mathbb{R} with discrete topology and \mathbb{Q} , the set of rationals. Let $r \in \mathbb{R}$ be arbitrary, then $\{r\}$ is a pg**- open set containing r which cannot intersect both \mathbb{Q} and \mathbb{Q}^c . Therefore \mathbb{Q} has no pg**-boundary point. **Example 3.45:** Consider \mathbb{R} with finite complement topology and \mathbb{Q} , the set of rationals. Let $r \in \mathbb{R}$ be arbitrary and U be a pg**-neighbourhood of r, then U is infinite and hence contains at least one point of \mathbb{Q} . Therefore U intersects both both \mathbb{Q} and \mathbb{Q}^c . Therefore every real number is a pg**-boundary point of \mathbb{Q} . Infact, any infinite subset A of \mathbb{R} whose complement is also infinite has every real number as its pg**-boundary point. **Definition 3.46:** If (X, τ) is a topological space, a point $x \in X$ is said to be a pg^{**-} isolated point of X if the one-point set $\{x\}$ is pg^{**-} open in X. **Definition 3.47:** Let (X, τ) be a topological space and A be a subset of X. A point x in A is called a pg^{**-} isolated point of A if it has a pg^{**-} neighborhood of x which contains no other point of A. **Definition 3.48:** Let (X, τ) be a topological space and $A \subseteq X$. Then the pg^{**} -border of A is defined as bpg ** (A) = A - pg ** int(A). **Definition 3.49:** Let A be any subset of a topological space (X, τ) . Then the pg^{**} -exterior of A is defined as $pg ** Ext(A) = pg ** int(A^c)$. **Theorem 3.50:** Let A and B be any two sets of a topological space (X, τ) , then the following conditions hold: - (i) $pg ** Bd(A) = pg ** Bd(A^c)$. - (ii) $pg ** Bd(A) \subseteq pg ** cl(A^c)$. - (iii) If A is pg**-closed, then pg ** $Bd(A) \subseteq A$. - (iv) If A is pg**-open, then pg ** $Bd(A) \subseteq A^{c}$. - (v) Let $A \subseteq B$ and $B \in pg ** Cl(X, \tau)(resp. B \in pg ** O(X, \tau))$. Then, - (vi) $pg ** Bd(A) \subseteq B$ (resp. $pg ** Bd(A) \subseteq B^c$) where $pg ** Cl(X, \tau)$ denotes the class of pg **-closed (resp. $pg ** O(X, \tau)$ denotes the class of pg **-closed (resp. - (vii) $(pg ** Bd(A))^c = pg ** int(A) \cup pg ** int(A^c).$ **Proof:** (i) $pg^{**}Bd(A) = pg ** cl(A) \cap pg ** cl(A^c) = pg ** cl(A^c) \cap pg ** cl(A^c) = pg ** Bd(A^c).$ - (ii) and (iii) Follows from Definition of $pg^{**}Bd(A)$. - (iv) $pg ** Bd(A) \subseteq pg ** cl(A) = A$. Hence $pg ** Bd(A) \subseteq A$. - (v) Suppose A is pg**-open then A^c is pg**-closed, also pg** $Bd(A^c) \subseteq A^c$. Hence by (i) pg ** $Bd(A) \subseteq A$. - (vi) Since $A \subseteq B$, $pg ** cl(A) \subseteq pg ** cl(B)$. Now pg**Bd(A) \subseteq pg ** cl(A)) \subseteq pg ** cl(B) = B. Hence pg ** Bd(A) \subseteq B. ``` (vii) (pg ** Bd(A))^c = (pg ** cl(A) \cap pg ** cl(A^c))^c = (pg ** cl(A))^c \cup (pg ** cl(A^c))^c = pg ** int(A^c) \cup pg ** int(A^c)^c = pg ** int(A^c) \cup pg ** int(A). ``` **Theorem 3.51:** Let A be a subset of a topological space (X, τ) , then the following conditions hold: - (i) $pg ** Bd(A) \subseteq Bd(A)$, where Bd(A) denotes the boundary of A. - (ii) $pg ** cl(A) = pg ** int(A) \cup pg ** Bd(A)$ - (iii) pg ** int(A) \cap pg ** Bd(A) = φ . - (iv) $pg ** Bd(int(A)) \subseteq pg ** Bd(A)$. - (v) $pg ** Bd(cl(A)) \subseteq pg ** Bd(A)$. - (vi) $bpg ** (A) \subseteq pg ** Bd(A)$. **Proof:** (i) $pg**Bd(A) = pg ** cl(A) \cap pg ** cl(A^c) \subseteq cl(A) \cap cl(A^c) = Bd(A)$. - (ii) $pg ** int(A) \cup pg ** Bd(A) = pg ** int(A) \cup (pg ** cl(A) \cap pg ** cl(A^c)) = pg ** cl(A).$ - (ii) $pg ** int(A) \cap pg ** Bd(A) = pg ** int(A) \cap (pg ** cl(A) \cap pg ** cl(A^c)) = \varphi$. ``` (iv) pg ** Bd(int(A)) = (pg ** cl(int(A)) \cap pg ** cl(int(A))^c) = (pg ** cl(int(A)) \cap (pg ** int(int(A)))^c \subseteq pg ** cl(A) \cap (pg ** int(A))^c = pg ** Bd(A). (v) pg ** Bd(cl(A)) = (pg ** cl(cl(A)) \cap pg ** cl(cl(A))^c) \subseteq pg ** cl(A) \cap (pg ** int(A))^c = pg ** Bd(A). (vi) bpg ** (A) = A - pg ** int(A) \subseteq pg ** cl(A) \cap (pg ** int(A))^c = pg ** Bd(A). ``` **Theorem 3.52:** Let A be a subset of a topological space (X, τ) , then the following conditions hold: - (i) $bpg ** (A) \subseteq b(A)$, where b(A) denotes the border of A. - (ii) $A = pg ** int(A) \cup bpg ** (A)$. - (iii) pg ** int(A) \cap bpg ** (A) = φ . - (iv) If A is pg **-open, then $bpg ** (A) = \varphi$. - (v) $bpg ** (A) = A \cap pg ** cl(A^c)$. **Proof:** (i) follows from definition of pg^{**} -border of A and $A - pg ** int(A) \subseteq A - int(A)$. - (ii) and (iii) follows from the definition of pg^{**} -border of A. - (iv) If A is pg **-open, then pg ** int(A) = A. Thus $bpg ** (A) = \varphi$. - (v) $bpg ** (A) = A pg ** int(A) = A (pg ** cl(A^c))^c = A \cap pg ** cl(A^c).$ **Theorem 3.53:** Let A be a subset of a topological space (X, τ) , then the following conditions hold: - (i) $Ext(A) \subseteq pg ** Ext(A)$, where Ext(A) denotes the exterior of A. - (ii) $pg ** Ext(X) = \varphi$. - (iii) pg ** $Ext(\varphi) = X$. - (iv) $pg ** Ext(A) = (pg ** cl(A))^c$. - (v) pg ** Ext(pg ** Ext(A)) = pg ** int(pg ** cl(A)). - (vi) If $A \subseteq B$ then pg ** Ext(A) \supseteq pg ** Ext(B). - (vii)pg ** Ext(A \cup B) \subseteq pg ** Ext(A) \cup pg ** Ext(B). - (viii) $pg ** Ext(A \cap B) \supseteq pg ** Ext(A) \cap pg ** Ext(B)$. - (ix) $pg ** int(A) \subseteq pg ** Ext(pg ** Ext(A))$. **Proof:** (i) (ii) (iii) and (iv) follows from the definition of pg ** Ext(A). - (v) $pg ** Ext(pg ** Ext(A)) = pg ** Ext(pg ** cl(A))^c = pg ** int(pg ** cl(A)).$ - (vi) If $A \subseteq B$ then $A^c \supseteq B^c \Rightarrow pg ** int(A^c) \supseteq pg ** int(B^c) \Rightarrow pg ** Ext(A) \supseteq pg ** Ext(B)$. - (vii) and (viii) follows from (vi). - (ix) $pg ** int(A) \subseteq pg ** int(pg ** cl(A)) = pg ** int(pg ** Ext(A))^c = pg ** Ext(pg ** Ext(A)).$ #### REFERENCES - 1. James R. Munkres, Topology, Ed.2, PHI Learning Pvt.Ltd. New Delhi, 2011. - 2. K.Kuratowski, Topology I.Warrzawa 1933. - 3. N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (1970), 89-96. - 4. A.S.Mashhour, M.E.Abd EI-Monsef and S.N.EI-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. And Phys. Soc. Egypt, 53(1982), 47-53. - 5. Pauline Mary Helen M, g**-closed sets in Topological spaces, IJMA, 3(5), (2012), 1-15. - 6. Punitha Tharani. A, Priscilla Pacifica. G, pg**-closed sets in topological spaces, IJMA, 6(7), (2015), 128-137. - 7. M.K.R.S. Veerakumar, Mem. Fac. Sci. Koch. Univ. Math., 21(2000), 1-19. # Source of support: Nil, Conflict of interest: None Declared. [Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]