On $\ \tau_p^{\ +} Generalized$ Closed Sets, $\ \tau_p^{\ +} g$ regular and $\ \tau_p^{\ +} g$ normal spaces

¹F. Nirmala Irudayam* and ²Sr. I. Arockiarani

¹Assistant Professor, Department of Mathematics (CA), Nirmala College for Women, Coimbatore, INDIA ²Associate Professor, Department of Mathematics, Nirmala College for Women, Coimbatore, INDIA

*E-mail: nirmalairudayam@ymail.com

(Received on: 02-08-11; Accepted on: 13-08-11)

ABSTRACT

In this paper we introduce two classes of spaces called $\tau_p^+ g$ regular and $\tau_p^+ g$ normal space. These classes arise as a combination of simple extension topology and pre open sets in (X, τ) . In the light of $\tau_p^+ g$ closed sets and $\tau_p^+ g$ open sets we study some of the properties of the newly introduced sets.

AMS classification: 54D10, 54D15, 54C08, 54C10.

Key words: $\tau_p^+ g$ regular, $\tau_p^+ g - T_o$, $\tau_p^+ g - R_o$, $\tau^+ - T_2$ space, $\tau_p^+ g$ irresolute, $\tau_p^+ g$ normal.

INTRODUCTION:

In 1963 Levine [2], started the study of generalized open sets with the introduction of semi-open sets. With this notion, the concept of g-regular and g-normal spaces were introduced and studied by Munshi [7]. Futher Noiri and Popa [8] investigated the concepts introduced by Munshi[7].In 2010 M.E.Abd El Monsef [1] have defined the notion of Bg – closed sets, gB –continuity and gB-irresolute map. In this paper we define a τ_p^+ generalized closed set and study its regularity and normality.

1. PRELIMINARIES:

Throughout this paper (X, τ) and (Y, σ) represent non-empty topological spaces on which no separation axioms are assumed unless explicitly stated and they are simply written as X and Y respectively .For a subset A of (X, τ) , the closure of A, the interior of A with respect to τ are denoted by cl(A) and int(A) respectively. The complement of A is denoted by A^c .

Before entering into our work we recall the following definitions.

Definition 1.1: A subset A of a topological space (X, τ) is called pre-open [6] if $A \subseteq intcl(A)$. The complement of pre-open set is called pre-closed.

Definition 1.2: A subset of a topological space (X, τ) is called g-closed [4] if $cl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in (X, τ) . The complement of g-closed is called g-open.

Definition 1.3: Levine [3], in 1963 defined τ^+ (B) = {O \cup (O \cap B) / O, O' $\in \tau$ } and called it the simple expansion of τ by B where B $\notin \tau$.

Definition 1.4: A map $f: X \rightarrow Y$ is called gc-irresolute [5] if $f^{-1}(F)$ is g-closed in X for every g closed set F in Y.

2. τ_p^+ GENERALIZED CLOSED SET:

Definition 2.1: A subset A of a topological space (X, τ) is said to be a τ_p^+ generalized closed $(\tau_p^+ g \text{ closed})$ if $\tau^+ \text{ cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is pre-open in (X, τ) . Also $\tau^+ \text{ cl}(A) = \cap \{S \subseteq X \mid A \subseteq S \text{ and } S \text{ is closed in } \tau^+(B)\}$. The complement of τ_p^+ generalized closed is known as τ_p^+ generalized open in (X, τ) .

Corresponding author: ¹F. Nirmala Irudayam, *E-mail: nirmalairudayam@ymail.com

 1F . Nirmala Irudayam* and 2Sr . I. Arockiarani/On τ_p ^+G Generalized Closed Sets, τ_p ^+g regular and τ_p ^+g normal spaces/IJMA- 2(8), August-2011, Page: 1405-1410

Example 2.2: Consider $X = \{a, b, c\}$ $\tau = \{X, \phi \{a\}, \{b\}, \{a, b\}\}$. Let $B = \{c\}$ Here the τ_p^+ generalized closed sets are $\{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$.

Theorem 2.3: The union of two τ_p^+ g closed set is τ_p^+ g closed.

Proof: Let A and B be two τ_p^+ g closed sets.

Let U be a pre open set such that $A \cup B \subseteq U$. This implies $A \subseteq U$ and $B \subseteq U$.

Since A is τ_p^+ g closed set, we have τ^+ cl(A) \subseteq U also if B is τ_p^+ g closed set, we have τ^+ cl(B) \subseteq U

ie) $\tau^+ \operatorname{cl}(A) \cup \tau^+ \operatorname{cl}(B) \subseteq U$

ie) τ^+ cl(AUB) \subseteq U whenever AUB \subseteq U where U is pre open.

Hence union of two τ_p^+ g closed set is τ_p^+ g closed.

Definition 2.4: A subset A of a topological space (X, τ) is said to be a τ^+ generalized closed $(\tau^+$ g closed) if τ^+ cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

Example 2.5: Consider $X = \{a, b, c\}$ $\tau = \{X, \phi \{b\}, \{c\}, \{b, c\}\}$. Let $B = \{a, c\}$ Here the τ^+ generalized closed sets are $\{X, \phi, \{a\}, \{b\}, \{a, b\}\{a, c\}\}$.

Proposition 2.6: Every closed set in $\tau^+(B)$ is τ_p^+ g closed set.

Proof: This is true by the definition of τ_p^+ g closed set.

Theorem 2.7: Every τ_p^+ g closed set is τ^+ g closed.

Proof: Obvious

Remark 2.8:

(i) Every τ^+ g closed set need not be τ_p^+ g closed

(ii) Every τ_p^+ g closed set need not be τ^+ (B) closed.

Proof: Follows from the following example.

Example 2.9: Consider $X = \{a, b, c\} \tau = \{X, \phi, \{a\}, \{a, b\}\}$. Let $B = \{c\}$ Here τ_p^+ generalized closed sets are $\{X, \phi, \{b\}, \{c\}, \{b, c\}\}\{a, b\}$.

The τ^+ generalized closed sets are $\{X, \varphi, \{b\}, \{c\}, \{a, b\}\{a, c\}, \{b, c\}\}.$

Here $\{a, c\}$ is τ^+ g closed but neither $\tau^+(B)$ closed nor τ_p^+ g closed

3: τ_p^+ g REGULAR SPACES:

Definition 3.1: A subset A of a space is regular τ^+ -clopen if A is both τ^+ open and τ^+ closed.

Definition 3.2: A space (X, τ) is said to be τ_p^+ generalized regular $(\tau_p^+ g \text{ regular})$ if for every $\tau_p^+ g$ closed set F and a point $x \notin F$, there exist disjoint τ^+ open sets U and V such that $F \subseteq U$ and $x \in V$.

Theorem 3.3: For a topological space ,the following are equivalent.

- (i) (X, τ) is τ_p^+ g regular.
- (ii) Every τ_p^+ g open set U is a union of τ^+ regular sets.
- (iii) Every τ_p^+ g closed set A is a intersection of τ^+ regular sets.

Proof:

T.P (i) ⇒ (ii)

Let (X, τ) be τ_p^+ g regular .Let U be a τ_p^+ g open set and let $x \in U$. If $A = X \setminus U$, then A is τ_p^+ g closed. By assumption there exists disjoint τ^+ open subsets W_1 & W2 of X such that $x \in W_1$ and $A \subseteq W_2$.

If $V = \tau^+ \operatorname{cl}(W_1)$, then V is τ^+ closed and $V \cap A \subseteq V \cap W_2 = \varphi$. It follows that $x \in V \subseteq U$.

 1F . Nirmala Irudayam* and 2Sr . I. Arockiarani/ On τ_p^+ Generalized Closed Sets, τ_p^+ g regular and τ_p^+ g normal spaces/ IJMA- 2(8), August-2011, Page: 1405-1410

Thus U is the union of τ^+ regular sets.

Hence (i) ⇒ (ii) and (ii) ⇒ (iii) is obvious.

T.P (iii) \Rightarrow (i) Let A be τ_p^+ g closed and $x \in A$. By assumption there exists a τ^+ regular set V such that $A \subseteq V$ and $x \notin V$.

If $U=X\setminus V$ then U is τ^+ open set containing x and $U\cap V=\phi$. Thus (X,τ) is τ_p^+ g regular. Hence the proof.

Now τ_p^+ g open sets give rise to various separation properties of which we have the following.

Definition 3.4: A topological space $((X, \tau))$ is said to be

(i) $\tau_p^+ g - T_0$ if for each pair of distinct points, there exists $\tau_p^+ g$ open set containing one point but not the other.

(ii) $\tau_p^+ g - R_0$ space if $\tau^+ cl\{x\} \subseteq U$ whenever U is $\tau_p^+ g$ open and $x \in U$.

Definition 3.5: A topological space is said to be τ^+ - T_2 if for each pair of the distinct points x and y in X, there exist disjoint τ^+ open sets U and V in X such that $x \in U$ and $y \in V$.

Theorem 3.6: Every τ_p^+ g regular space is both τ^+ - T_2 and τ_p^+ g - R_0 .

Proof: Let (X, τ) be τ_p^+ g regular space and let $x,y \in X$ such that $x \neq y$, By theorem 3.3 $\{x\}$ is either τ^+ open or τ^+ closed.

Since every space is τ^+ -T₂.If $\{x\}$ is τ^+ open, hence τ_p^+ g open.

Thus $\{x\}$ and $X\setminus\{x\}$ are separately τ^+ open sets. If $\{x\}$ is τ^+ closed then $X\setminus\{x\}$ is τ^+ open and by theorem 3.3 is the union of τ^+ regular sets. Hence there is a τ^+ regular set $V\subseteq X\setminus\{x\}$ containing y. This proves that (X,τ) is τ^+ -T₂. By theorem 3.3 it follows immediately, that (X,τ) is also τ_p^+ g - R₀.

Definition 3.7: The intersection of all τ_p^+ g closed set containing A is called the τ_p^+ g closure of A and denoted as τ_p^+ g cl (A). The characterization of τ_p^+ g cl (A) are as follows

Theorem 3.8: Let A be a subset of a space X and $x \in X$, then the following properties hold for of $\tau_p^+ g$ cl (A):

- (i) $x \in \tau_p^+ g$ cl(A) iff $A \cap U \neq \phi$, for every $U \in \tau^+ O(X)$, containing x.
- (ii) A is τ_p^+ g closed iff $A = \tau_p^+$ gcl(A)
- (iii) τ_p^+ g cl(A) is τ^+ g closed.
- (iv) $\tau_p^+ g \operatorname{cl}(A) \subseteq \tau_p^+ g \operatorname{cl}(B)$ if $A \subseteq B$
- $(v)\tau_{p}^{+} g(\tau_{p}^{+} g cl(A)) = \tau_{p}^{+} g cl(A)$

Proof: obvious.

Definition 3.9: A subset N of X is called τ_p^+ generalized neighbourhood (τ_p^+ g nbh) of a point $x \in X$, if there exists a τ_p^+ g open set U such that $x \in U \subseteq N$.

Theorem 3.10: Suppose that $B \subseteq A \subseteq X$, B is τ_p^+ g closed set relative to A and that A is open and τ_p^+ g closed in $(X \tau)$. Then B is τ_p^+ g closed in (X, τ) .

Theorem 3.11:If (X, τ) is a τ_p^+ g regular space and Y is an open and τ_p^+ g closed subset of (X, τ) , then the subspace Y is τ_p^+ g regular.

Proof: Let F be any τ_p^+ g closed subset of Y and $y \in F^c$. By above theorem 3.10 ,F is τ_p^+ g closed (X, τ) . Since (X, τ) is τ_p^+ g regular, there exists disjoint τ^+ open sets U and V of (X, τ) such that $y \in U$ and $F \subseteq V$. Since Y is open and hence τ^+ open we get $U \cap Y$ and $V \cap Y$ are disjoint τ^+ open sets of the subspace Y such that $y \in U \cap Y$ and $F \subseteq V \cap Y$. Hence the subspace Y is τ_p^+ g regular.

Theorem 3.12: Let (X, τ) be a topological space .Then the following statements are equivalent. (i) (X, τ) is τ_p^+ g regular

 ^{1}F . Nirmala Irudayam* and ^{2}Sr . I. Arockiarani/On τ_{p}^{+} Generalized Closed Sets, $\tau_{p}^{+}g$ regular and $\tau_{p}^{+}g$ normal spaces/IJMA- 2(8), August-2011, Page: 1405-1410

(ii) For each point $x \in X$ and for each τ_p^+ g open nbh Wof x, there exists a τ^+ open set U of X such that τ^+ cl(U) \subseteq W.

(iii)For each point $x \in X$ and for each τ_p^+ g closed set F not containing x, there exists a τ^+ open set V of X such that τ^+ cl(V) \cap F = ϕ .

Proof: To prove (i) \Rightarrow (ii).Let W be any τ_p^+ g open nbh of x. Then there exists a τ_p^+ g open set G such that $x \in G \subseteq W$. Since G^c is τ_p^+ g closed and $x \notin G^c$ by hypothesis, there exists τ^+ open sets U and V such that $G^c \in U$, $x \in V$ and $U \cap V = \varphi$ and so $V \subseteq U^c$. Now $\tau^+ cl(V) \subseteq \tau^+ cl(U^c) = U^c$ and $G^c \subseteq U$ implies $U^c \subseteq G \subseteq W$. Thus $\tau^+ cl(U) \subseteq W$.

To prove (ii) \Rightarrow (i).Let F be any τ_p^+ g closed set and $x \notin F$. Then $x \in F^c$ and F^c is a τ_p^+ g open set and so F^c is an τ_p^+ g open nbh of x. By hypothesis, there exists τ^+ open set V of x such that $x \in V$ and $\tau^+ cl(V) \subseteq F^c$ which implies $F \subseteq (\tau^+ cl(V))^c$.

Then $(\tau^+ \text{cl}(V))^c$ is τ^+ open containing F and $V \cap (\tau^+ \text{cl}(V))^c = \phi$. Therefore X is τ_p^+ g regular.

To prove (ii) \Rightarrow (iii).Let $x \in X$ and F be a τ_p^+ g closed set such that $x \notin F$. Then F^c is a τ_p^+ g nbhd of x and by hypothesis, there exists a τ^+ open set V of X such that τ^+ cl(V) $\subseteq F^c$ and hence τ^+ cl(V) $\cap F = \varphi$.

To prove (iii) \Rightarrow (ii).Let $x \in X$ and W be a τ_p^+ g nbhd of x. Then there exists a τ_p^+ g open set G such that $x \in G \subseteq W$. Since G^c is τ_p^+ g closed and $x \notin G^c$ by hypothesis, there exists τ^+ open set G o

Theorem 3.13: A topological space (X, τ) is τ_p^+ g regular if and only if for each τ_p^+ g closed set F of (X, τ) and each $x \in F^c$, there exists τ^+ open sets U and V of (X, τ) such that $x \in U$ and $F \subseteq V$ and τ^+ cl $(U) \cap \tau^+$ cl $(V) = \varphi$.

Proof: Let F be any τ_p^+ g closed set and $x \notin F$. Then there exists a τ^+ open sets U_x and V such that $x \in U_x$, $F \subseteq V$ and $U_x \cap V = \varphi$, which implies that $U_x \cap \tau^+ cl(V) = \varphi$. Since (X, τ) is τ_p^+ g regular, there exists τ^+ open sets G and H of (X, τ) such that $x \in G$, $\tau^+ cl(V) \subseteq H$ and $G \cap H = \varphi$. This implies $\tau^+ cl(G) \cap H = \varphi$.

Now let $U = U_x \cap G$, then U and V are τ^+ open sets of (X, τ) such that $x \in U$ and $F \subseteq V$ and $\tau^+ cl(U) \cap \tau^+ cl(V) = \varphi$. The converse is straight forward.

Definition 3.14: A map $f: X \to Y$ is called M τ^+ open if f(V) is τ^+ open set in Y for every τ^+ open set V of X.

Definition 3.15: A map $f: X \rightarrow Y$ is called $\tau_p^+ g$ irresolute (resp. τ^+ irresolute) if $f^-(V)$ is $\tau_p^+ g$ open(resp. τ^+ open) set in X for every $\tau_p^+ g$ open (resp. τ^+ open) set V of Y.

Theorem 3.16:If (X, τ) is τ_p^+ g regular space and if $f: (X, \tau) \rightarrow (Y, \sigma)$ is bijective, τ_p^+ g irresolute and $M \tau^+$ open, then (Y, σ) is τ_p^+ g regular.

Proof: Let $y \in Y$ and F be any τ_p^+ g closed set of (Y,σ) with $y \notin F$. Since f is τ_p^+ g irresolute, $f^-(F)$ is τ_p^+ g closed set in (X,τ) . Since f is bijective let f(x) = y, then $x \ne f^-(y)$. By hypothesis, there exists τ^+ open sets U and V such that $x \in U$ and $f^-(F) \subseteq V$. Since f is M τ^+ open and bijective we have $y \in f(U)$ and f(U) and f(U) $f(V) = f(U \cap V) = \phi$. Hence (Y,σ) is τ_p^+ g regular space.

Theorem 3.17: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is gc –irresolute, M τ^+ closed and A is a τ_p^+ g closed subset of (X, τ) then f(A) is τ_p^+ g closed.

Theorem 3.18: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is gc –irresolute, $M \tau^+$ closed, injective and (Y, σ) is $\tau_p^+ g$ regular then (X, τ) is $\tau_p^+ g$ regular.

Proof: Let F be any τ_p^+ g closed set of (X, τ) and $x \notin F$. Since f is gc irresolute, M τ^+ closed by theorem 3.17, f(F) is τ^+ closed in Y and $f(x) \notin f(F)$. Since (Y,σ) is τ_p^+ g regular and so there exists disjoint τ^+ open sets U and V in (Y,σ) such that $f(x) \in U$ and $f(F) \subseteq V$. By hypothesis, $f^1(U)$ and $f^1(V) \in \tau^+O(X)$, such that $x \in f^{-1}(U)$ and $f \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \varphi$. Therefore (X,τ) is τ_p^+ g regular.

 1F . Nirmala Irudayam* and 2Sr . I. Arockiarani/ On τ_p^+ Generalized Closed Sets, τ_p^+ g regular and τ_p^+ g normal spaces/ IJMA- 2(8), August-2011, Page: 1405-1410

4. τ_p^+ g NORMAL SPACES:

Here we introduce a weak form of normality called τ_p^+ g normality in a topological space.

Definition 4.1:A topological space (X, τ) is said to be τ_p^+ generalized normal $(\tau_p^+ g \text{ normal})$ if for any pair of disjoint $\tau_p^+ g$ closed sets A and B, there exists disjoint τ^+ open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Theorem 4.2: If (X, τ) is $\tau_p^+ g^-$ normal space and Y is an open and $\tau_p^+ g^-$ closed subset of (X, τ) , then the subspace Y is $\tau_p^+ g^-$ normal.

Proof: Let A and B be any two disjoint $\tau_p^+ g$ closed sets of Y. By Theorem 3.10, A and B are $\tau_p^+ g$ closed in (X, τ) . Since (X, τ) is $\tau_p^+ g$ normal, there exists disjoint τ^+ open sets U and V of (X, τ) such that $A \subseteq U$ and $B \subseteq V$. Since Y is open and hence τ^+ open, $U \cap Y$ and $V \cap Y$ are disjoint τ^+ open sets of the subspace Y. Hence the subspace Y is $\tau_p^+ g$ normal.

Theorem 4.3: Let (X, τ) be a topological space, then the following statements are equivalent.

- (1) (X, τ) is $\tau_p^+ g$ normal
- (2) For each τ_p^+ g closed set F and for τ_p^+ g open set U containing F, there exists a τ^+ open set V containing F such that τ^+ cl(V) \subseteq U.
- (3) For each pair of disjoint τ_p^+ g closed set A and B in (X, τ) , there exists a τ^+ open set containing A such that τ^+ cl $(U) \cap B = \varphi$.
- (4) For each pair of disjoint τ_p^+ g closed set A and B in (X, τ) there exists τ^+ open sets U and V such that $A \subseteq U$ and $B \subseteq V$ and τ^+ cl $(A) \cap \tau^+$ cl $(B) = \varphi$.

To Prove: (1) => (2)

Let F be a τ_p^+ g closed set U be a τ_p^+ g open set such that $F \subseteq U$. Then $F \cap U^c = \phi$, by assumption, there exists τ^+ open set V and W such that $F \subseteq U$ and $U^c \subseteq W$ and $V \cap W = \phi => \tau^+ cl\ (V) \cap W = \phi$. Now $\tau^+ cl\ (V) \cap U^c \subseteq \tau^+ cl\ (V) \cap W = \phi$ and so $\tau^+ cl\ (V) \subseteq U$.

To Prove: (2) => (3)

Let A and B be disjoint τ_p^+ g closed sets of (X, τ) . Since $A \cap B = \phi$; $A \subseteq B^c$ and B^c is τ_p^+ g open. By assumption, there exists τ^+ open sets U containing A such that τ^+ cl $(U) \subseteq B^c$ and so τ^+ cl $(U) \cap B = \phi$.

To Prove: (3) => (4)

Let A and B be disjoint τ_p^+ g closed sets of (X, τ) . Then by assumption, there exists τ^+ open sets U containing A such that τ^+ cl(U) \cap B = ϕ .

Since τ^+ cl (A) is τ^+ closed, it is τ_p^+ g closed and so B and τ^+ cl (A) are disjoint τ_p^+ g closed sets in (X, τ) .

Hence by assumption, there exists a τ^+ open sets V containing B such that τ^+ cl (A) $\cap \tau^+$ cl (B) = φ .

To Prove: (4) => (1)

Let A and B be disjoint τ_p^+ g closed sets of (X, τ) . By assumption, there exists τ^+ open sets U and V such that $A \subseteq U$ and $B \subseteq V$ and τ^+ cl $(U) \cap \tau^+$ cl $(V) = \phi$. We have $U \cap V = \phi$ and thus (X, τ) is τ_p^+ g normal.

Theorem 4.4: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is $\tau_p^+ g$ irresolute, bijective, $M\tau^+$ open mapping and (X, τ) is $\tau_p^+ g$ normal, then (Y, σ) is $\tau_p^+ g$ normal.

 1F . Nirmala Irudayam* and 2Sr . I. Arockiarani/On τ_p ^+G Generalized Closed Sets, τ_p ^+g regular and τ_p ^+g normal spaces/IJMA- 2(8), August-2011, Page: 1405-1410

Proof: Let A and B be any two disjoint τ_p^+ g closed sets of (Y,σ) . Since f is τ_p^+ g irresolute, $f^1(A)$ and $f^1(B)$ are disjoint τ_p^+ g closed sets of (X,τ) . As (X,τ) is τ_p^+ g normal, there exists disjoint τ^+ open sets U and V such that $f^1(A) \subseteq U$ and $f^1(B) \subseteq V$. Since f is bijective and $M\tau^+$ open we have f(U) and f(V) are τ^+ open sets in (Y,σ) such that $A \subseteq f(U)$ and $B \subseteq f(V)$ and $f(U) \cap f(V) = \varphi$. Therefore (Y,σ) is τ_p^+ g normal.

Theorem 4.5: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is gc irresolute, $M\tau^+$ closed and τ^+ irresolute injection and (Y, σ) is $\tau_p^+ g$ normal, then (X, τ) is $\tau_p^+ g$ normal.

Proof: Let A and B be any two disjoint τ_p^+ g closed sets of (X, τ) . Since f is gc irresolute and M τ^+ closed. f (A) and f (B) are disjoint τ_p^+ g closed sets of (Y, σ) .

By Theorem 3.17 since (Y,σ) is $\tau_p^+ g$ normal, there exists disjoint τ^+ open sets U and V such that $f(A) \subseteq U$ and $f(B) \subseteq V$ i.e.) $A \subseteq f^{-1}(U)$ and $B \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \varphi$.

Since f is τ^+ irresolute, $f^1(U)$ and $f^1(V)$ are τ^+ open sets in (X, τ) , we have (X, τ) is τ_p^+ g normal.

REFERENCES:

- [1] M. E Abd El. Monsef, A. M. Kozae and R. A Abu-Gdairi, New approaches for generalized continuous functions, Int. Journal of Math.Analysis, Vol.4, 2010, 1329-1339.
- [2] N. Levine, Semi-open Sets and semi-continuity in topological Spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [3] N. Levine, Simple extension of topologies, Amer. Math. Monthly, 71(1964), 22 -105.
- [4] N. Levine, Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo, 19(2) (1970) 89-96.
- [5] H. Maki, P. Sundaram and K Balachandran, On Generalized Homeomorphisms in Topological Spaces, Bull. Fukuoka Univ. Ed. Part III, 40 (1991), 13-21.
- [6] A. S. Mashhour, M. E. Abd El. Monsef and S N El- Deeb, On Precontinuous and Weak Precontinuous Mappings, Proc. Math. And Phys. Soc. Egypt, 53 (1982), 47 53.
- [7] B. M. Munshi, Separation Aximos, Act Cienica India, 12 (1986), 140 144.
- [8] T. Noiri and V. Popa, On g-regular Spaces and some functions, Mem. Fac. Sci. Kochi Univ, Ser. A. Math., 20 (1999), 67-74.
- [9] A. Vadivel, R. Vijayalakshmi and D. Krishnaswamy, B-Generalised Regular and B-Generalised Normal spaces, Int. Mathematical Forum, 5, 2010, 2699-2706.
