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ABSTRACT
In this paper the separation axioms via pg**-open sets are analysed in topological and ideal topological spaces.
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1. INTRODUCTION

Levine [3] introduced the class of g-closed sets in 1970. Veerakumar[7] introduced g*-closed sets. A.S.Mashhour, M.E
Abd EI. Monsef [4] introduced a new class of pre-open sets in 1982. Ideal topological spaces have been first introduced
by K.Kuratowski [2] in 1930. In this paper we generalize the conventional separation axioms through pg**-open sets.

2. PRELIMINARIES

Definition 2.1: A subset A of a topological space(X, 7) is called a pre-open set [4] if A € int(cl(A) and a pre-closed
set if cl(int(A4)) € A.

Definition 2.2: A subset A of topological space (X, t) is called
1. generalized closed set (g-closed) [3] if cI(A) € U whenever A € U and U is open in (X, 7).
2. g*-closed set [7] if cl(A) < U whenever A € U and U is g-open in (X, 7).
3. pg**- closed set[6] if pcl(A) € U whenever A < U and U is g*-open in(X, 7).

Definition 2.3: A function f: (X,t) — (Y,0) iscalled
1. pg**-irresolute[6] if £~1(V) is a pg**-closed set of (X, 7) for every pg**-closed set V of (Y, o).
2. pg**-continuous[6] if f~1(V) is a pg**-closed set of (X, t)for every closed set Vof (Y, g).
3. pg**-resolute[6] if f(U) is pg**- open in Y whenever U is pg**- open in X.

Definition 2.4: An ideal [2] | on a nonempty set X is a collection of subsets of X which satisfies the following
properties. ()A€ l,Bel= AUB € I(ii)A€el,Bc A= B €. A topological space (X,t) with an ideal fon X is
called an ideal topological space and is denoted by (X, 7,1 ).

3.pg**T, Space

Definition 3.1: The points x,y € X is said to be pg**- indistinguishable if x € pg*™cl(y) and y € pg**cl(x)

Note: pg**-indistinguishability is an equivalence relation.

Definition 3.2: A topological space (X,t) is said to be pg**T, space if no two distinct points are pg**-

indistinguishable. Equivalently a topological space X is called pg™T, space if given any two distinct points x and y
there is either a pg**- open set U suchthatx e U,y ¢ Uory e U, x & U.
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Example 3.3: Let (X, 7)be an indiscrete topological space has more than one point. Then X is pg**T, space, since
every subset of X is pg**-open.

Theorem 3.4: Every T, space is pg™T, space but not conversely
Proof: Obvious since every open set is pg**- open.

Example 3.5: The space in example (3.3) is pg™*T, but not T,. Consider R with trivial topology, take two arbitrary
points x,y € Rsuch that x # y. Here U = {x} and V = {y} are pg**- open sets, therefore R with trivial topology is
pg™* T, space. But this space is not T}, since the only open sets are ¢ and R.

Theorem 3.6: Let (X, 7) be a pg**- multiplicative space, then X is pg**T, space if and only if pg**-closures of distinct
points are distinct. (i.e) if x # y € X, pg™cl({x}) # pg**cl({y}).

Proof: Let (X, ) be a pg™ T, space and x and y be two distinct points of X. Then there is a pg**-open set U such that
xeU,y¢Uandy e U, x & U. pg*cl({y}) € U° since U° is pg**-closed in X. Thus pg™*cl({x}) # pg™*cl({y}).

Conversely suppose for any pair of distinct points x and y in pg*cl({x}) # pg™*cl({y}). Then we can choose z € X
such thatz € pg**cl({x}) but z & pg~cl({y}). If x € pg**cl({y}), then pg*cl({x}) € pg**cl({y}), this implies
z € pg*™cl({y}) which is a contradiction. Hencex & pg**cl({y}) this impliesx € (pg**cl({y})) which is pg**-open in
X containing x but noty. Hence X is pg**T, space.

Theorem 3.7: Let (X, 1) and (Y,c) be two topological spaces and f : (X,t) — (Y, o) be a bijection. Then,
f is pg**- continuous and Y is a T, space= X is a pg™*T, space.

f is continuous and Y is a Ty space = X isapg**T, space.

f is pg**-irresolute and Y is pg™* T, space= X is pg™*T, space.

f is pg**-resolute and X is pg**T, space= Y is pg™*T, space.

f is pg**- open andX isa T, space = Y is pg™ T, space.

f is strongly pg**- continuous and Y is pg™* T, space= X is a T, space.

oukrwbdr

Proof: (1) Let x and y be two distinct points of X, then f(x) and f(y) are distinct points of Y. Then there is a pg**-
open set U in Y such that f(x) € U, f(y) & Uor f(y) € U, f(x) & U. Then f~1(U) is a pg**-open set in X such that
x€f Y U),yeftU) orye fL(U),x & f1(U). Therefore X is a pg**T, space.

Proofs for (2) to (6) are similar to the above.

Remark 3.8: The property of being pg**T, space, is a pg**-topological property. This follows from (3) and (4) of the
above theorem.

Theorem 3.9: Let f : (X,1) = (Y,0) be an injective map and Y is pg™ T, space. If f is pg**- totally continuous then X
is ultra-Hausdorff.

Proof: Let x and y be any two distinct points in X. Since f is injective,f(x) and f(y) are distinct points in Y. Since Y
is pg**T, space there exists an pg**- open set U in Ycontaining f(x) but not f(y). Then € f~1(U),y & f~1(U) and
x € fY(U), y € (f~1(U))also f~1(U) is clopen in X. This implies every pair of distinct points of X can be separated
by disjoint clopen sets. Therefore X is ultra-Hausdorff.

4.pg™*T, modulo I space

Definition 4.1: An ideal topological space (X, t, | ) is said to be pg**T, modulo lif for every pair of points x,y € X and
x # y there exists pg**- openset U suchthatx e U,UN{y}elory e U, UNn{x} €.

Example 4.2: An ideal topological space (X, z, | )where I = p(X) isa pg™* T, modulo | space.
For, if x,y € X and x # y, for any pg**- open sets U,, U, containing x, y respectively, then U, n {y}, U, n {x} € I.
Theorem 4.3: Every pg**- T, space is pg™*T, modulo | space for every ideal I.

Proof: Let x and y be any two distinct points in X. Since X is pg**T, spacethere exists disjoint pg**- open sets U,, U,
containing x, y respectively, then U, n U, = ¢ € I. Hence X is pg**T, modulo | space.

Remark 4.4: If I = {¢} then both pg™*T, space and pg**T, modulo | space coincide.
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Theorem 4.5: Let I, ] be ideals of X and if I < ], then (X, z, 1) is pg™ T, modulo | implies (X, ,]) is pg**T, modulo .

If x,y € Xand x #y, then there exists disjoint pg**-open sets U,,U, containing x,y respectively such that
U, nU, =¢ €l <] Therefore (X,7,]) isapg™Tomodulo ] space.

Theorem 4.6: Let (X, 1, 1) and (Y, g, J) be two ideal topological spaces and f : (X, t,I) = (Y, 0,J) be a bijection where
J= f(I) is an ideal in Y then,

f is pg**-resolute and X is pg™*Tymodulo | space= Y is pg™* T, modulo J space.

f is pg**-continuous and Y is a Tymodulo J space= X is a pg**T, modulo I space.

f is continuous and Y is aTomodulo Jspace= X isa pg* T, modulo | space.

f is pg**-irresolute and Y is Tymodulo J space = X is pg™*T, modulo | space.

f is pg**-open and X isa T, space= Y is pg™ T, modulo J space.

fisopenand X isa T, space= Y is pg™*T, modulo J space.

.ov.w.bsu!w—‘

Proof: (1) Lety; # y, € Y. Since f is a bijection there exists x; # x, € X such that f(x;) = y;and f(x;) = y,. Also
there exists pg**-open set U in Xsuch that x; e U,UN{x,} €l orx, € U,UN{x;} €1 since X is pg™T,modulo |

space, which impliesy; € f(U),f(U)n{y,} €] or y, € f(U),f(U) n{y;} €] where f(U) is pg**-open inY.
Therefore (Y,0,/) isapg™T, modulo J space.

Proofs for (2) to (6) are similar to (1).

5.pg** T4 Space

Definition 5.1: A topological space (X, 7) is said to be pg**T; space if x,y € X and x # y, there exists pg**- open sets

Uy, U, containing x, y respectively, such thaty € U, and x ¢ U,,.

Example 5.2: An indiscrete topological space (X, 7) has more than one point is pg**T; space, since all the subsets of
X is pg**- open.

Example 5.3: Consider an infinite set X with cofinite topology, if x # y € X, then U, = X — {y}and U, = X — {x} are
pg**- open sets such that y & U, and x ¢ U,,. Therefore X is pg™T; space.

Example 5.4: The one point space is pg™T;, because the definition of pg™T; space is vacuously satisfied.

Example 5.5: Let X = {a,b,c},t = {9, X,{a}, {c},{a,c}}. Then PG™0(X) = {¢, X,{a}, {c},{a, c}}. This space is not
pg* T, space.

Theorem 5.6: Every Ty space is pg™*T; space.

Proof follows from the fact that every open set is pg**-open.

Remark 5.7: The converse of the above theorem is not true from the following example.

Example 5.8: An indiscrete topological space (X, t) has more than one point is pg**T; but not T; space.
Theorem 5.9: Every pg™*T; space is pg™*T, space but not conversely.

Proof follows from the definitions.

Example 5.10: The space in example (5.5) is pg**T, but not pg**T; spaces.

Hence the set of pg™* T, topological spaces is a proper subset of all pg**T,topological spaces.

Theorem 5.11: A topological space (X, 7) isapg*™T; space if and only if every singleton set is pg**-closed.

Proof: Let (X, t)be pg™T; space and x € X. Let x # y be an arbitrary element in X. Subsequently there exists pg**-
open sets U,, U, containing x, y respectively, such that y ¢ U, and x ¢ U,,.

Now U, is a pg**- open set containing x not intersecting{y}. Therefore x is not a pg**- limit point of {y}. Thus {y} is

pg**- closed. Conversely let every singleton set is pg**- closed in X. If xandy are distinct points of X, then
Uy, =X —{y}and U, = X — {x} are pg**- open sets such that y & U, and x & U,. Therefore X is pg™T; space.
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Theorem 5.12: If (X, t) is a pg**T; space then every finite subset of X is pg**- closed.

Proof: LetA be a finite subset of X, then A = LEJA {x} is pg**- closed being finite union of pg**- closed sets.
X

Theorem 5.13: In a topological space(X, 7)the following statements are equivalent:
1. (X, 1) isapg**T; space.
2. Every singleton set of (X, 7)is pg**- closed.
3. Every finite subset of X is pg**- closed.
4. Every point x € X equals the intersection of all pg**-neighbourhoods of x.

Proof: The proof for (1) © (2) < (3) follows from theorem (5.11).

(1) = (4): Let N, be the intersection of all pg**-neighbourhoods of x in X. Let x # y be an arbitrary element in X.
Since X is pg™ T, there exists pg**- open set U, containing x, such that x € U, and y & U, . Therefore y & N, and
hence N, = {x}.

(4) = (1): Letx, y be two distinct points in Xand N, be the intersection of all pg**-neighborhoods of x, then N, = {x}.
Therefore y & N,.. Therefore there is atleast one pg**- open set U, containing x and notcontaining y. Correspondingly
we can get a pg**- open set U, containing yand notcontaining x. Thus(X, t)is a pg™T; space.

Theorem 5.14: A topological space (X, t) is a pg*™*T; space if and only if PG**0(X, t)is finer than co finite topology
onX.

Proof: Let X be a pg™T; space. Let 7* denote the co finite topology on X. To prove thatt* € PG*™0(X,1).Let U € 77,
then X — U is a finite set. Since X is a pg™*T; spaceX — U is pg**-closed in X. Hence U is pg**-open. Therefore
" € PG™O(X,7) . Conversely presume t° € PG™0O(X,t) . Choose x€X . Then X —{x}e1t"=>X—-{x} €
PG™0(X, ). This implies{x}is pg**-closed in X. Then by theorem (5.11)(X, t) is a pg**T; space.

Theorem 5.15: Every finite pg™ T, space is a pg**-discrete space.

Proof: Let (X,7) be a finite pg**T; space, then all the subsets of X is finite and hence pg**-closed. Therefore X is
pg**-discrete.

Theorem 5.16: Inapg**T; space (X, 1) every pg**-connected set containing more than one point is infinite.

Proof: Let A be a pg**-connected subset of X has more than one point. Presume that A is finite and let
A = {x1,x3, ..., Xy, }, then A is pg**-discrete. Therefore {x;} and A — {x;} are both pg**-clopen. Thus A can be written
as the union of two non-empty disjoint pg**-open sets. Which is a contradiction to A is pg**-connected. Therefore A
must be infinite.

Theorem 5.17: Let (X, ) be pg**-additive and pg™T; space. Then X is a pg**-discrete space.

Proof: Let A be a subset of X. Then A = LEJA {x} and each {x} is pg**- closed. Since X is pg**-additive A is pg**-
closed. Therefore X is pg**-discrete.

Theorem 5.18: Let (X,7) be apg™T; space and A be a subset of X. Then a point x € X is a pg**-limit point of 4 if
and only if every pg**-open set containing x contains infinitely many points of A. Consequently in a pg™T; space no
finite set has a pg**-limit point.

Proof: Letx be a pg**-limit point of A and U be a pg**-open set containing x. Suppose U intersects A in only finitely
many points. Then U also intersects A — {x} in finitely many points. Let E = U N A — {x} = {xy, %y, ..., X, }. Then E is
pg**-closed, since X is pg**-T; space. Therefore E€ N U is pg**-open set containing x. (EcNU) N (A —{x}) = E‘n
E = ¢, which is a contradiction to x is a pg**-limit point of A. Therefore U intersects A ininfinitely many points of A.
Conversely if every pg**-open set containing x contains infinitely many points of 4, it certainly intersects A in some
point other than x itself, so that x is a pg**-limit point of A.

Corollary 5.19: Any finite subset of pg™*T; space has no pg**-limit point.

Proof follows from theorem (5.18).
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Theorem 5.20: In a pg™* T, space X, if every infinite subset has a pg**-limit point then X is pg**-countably compact.

Proof: Let every infinite subset has apg**-limit point. We need to prove Xis pg**-countably compact. Suppose not,
then there exists a countable pg**-open cover {U,, } has no finite subcover.

In view of the fact that U; # X, then there exists x; & U; also X # U; U U,, then there exists x, € U; U U,. Proceeding
like this there exists x,, € U; U U, U ... U U, for all n. Now A = {x, } is an infinite set. If x € X then x € U,, for some
n. Butx,, € U,, Ym = n. Since X is pg™*T; space U, — {xq, X5, ..., X,_1} IS @ pg**-open set containing x which does
not have a point of A other than x. Contradicting the fact that every infinite subset of X has a pg**-limit point.
Therefore X is pg**-countably compact.

Remark 5.21: A sequence in a pg™*T; spaceis pg**-congregates to more than one pg**-limit. In fact a sequence can
pg**-congregates to every point of the space. Consider the following example.

Let (X,1) be an infinite topological space with co finite topology, (x,) be any sequence in X and x € X. To prove
(x,) 2 x. LetU € tsuch thatx € U. U € timplies U € PG*™0(X,t)and X — U is a finite. Find the largestn, € N

such that x,,, € X — U. Therefore x,, € U V¥ n = ng. This shows that (x,,) 0, xinX. Since x € X is arbitrary, we get
any sequence in (X, 1) pg**-congregates to every point of the space.

Theorem 5.22: If X is infinite pg**-additive pg™T; space then it is not pg**-compact.

Proof: In a pg™ T, space{x} is pg**-closed for all x € X. Therefore every subset of X is pg**-clopen. Therefore
{{x}/x € X} is a pg**-open cover for X which has no finite subcover.

Theorem 5.23: Let (X, 1) and (Y, o) be two topological spaces and f : (X,t) — (Y, o) be a bijection. Then,
f is pg**-continuous and Y is a T space= X is a pg™T; space.

f is continuous and Yis aT; space = X isapg**T; space.

f is pg**-irresolute and Y is pg™*T; space = X is pg**T; space.

f is pg**- resolute and X is pg™ Ty space= Y is pg™*T; space.

fispg**-openand X is a T; space= Y is pg™T; space.

f is strongly pg**-continuous and Y is pg**T; space= X is a T, space.

ogkrwbdr

Proof: (1) Letx and y be two distinct points of X, then f(x) and f () are distinct points of Y. Then there exists pg**-
open sets U,andU, in Y such that f(x) € U,, f(y) ¢ U,andf(y) € Uy, f(x) &€ U,. Then f~(U,) and f~1(U,) are
pg**- open sets in X such thatx € f~'(U,) , y & f'(U,) or ye f71(U,), x & f~'(U,). Therefore X is a
pg**T,space.

Proofs for (2) to (6) are similar to the above.

Remark 5.24: The property of being pg™T; space, is a pg**- topological property. This follows from (3) and (4) of the
above theorem.

6. pg**T1 modulo I space

Definition 6.1: An ideal topological space (X, , | ) is said to be pg™*T; modulo | if for every pair of points x,y € X
and x = y there exists pg**-open set U,, U, containing x, y respectively, such thatU, n {y} € I, U, n {x} € I.

Example 6.2: An ideal topological space(X, z, | ) where I = p(X) isa pg™T; modulo I space.

Example 6.3: Let X = {a, b, c},T = {9, X, {a}, {c},{a,c}} and I = ¢, then (X, T, @) is notpg**T;modulo Ispace.
Theorem 6.4: Every pg™*T; space is pg™*T;modulo | space for every ideal I.

Proof is obvious since ¢ € I.

Remark 6.5: If I = {¢} then both pg™*T; space and pg**T; modulo | space happen together.

Theorem 6.6: Every ideal topological space which is pg*™Tymodulo | is pg**T, modulo | space.

Proof follows from the definitions.
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Remark 6.7: The converse of the above theorem is not true as seen in the following example.

Example 6.8: LetX = {a,b,c},t = {¢,X,{a},{c},{a,c}}and I = {o,{b}}, then (X, 7, ) is pg**Tymodulo | but not
pg”~"Tymodulo | space.

Theorem 6.9: Let I, ] be ideals of X and if I < J, then (X, t, | ) is pg™*Tymodulo | implies (X, t,]) is pg™Tymodulo J.

Proof: If x,y € X and x # y, then there exists disjoint pg**-open sets U,, U, containing x, y respectively such that
U, nU, =¢ €1 c ] Therefore (X,7,]) is a pg™ T;modulo] space.

Theorem 6.10: Let(X, 7,l) and (Y, ,J) be two ideal topological spaces and f : (X, t,I) — (Y, 0,]) be a bijection where
J= f(I) is an ideal in Y then,

f is pg**-resolute and X is pg™*T;modulo | space= Y is pg**T;modulo J space.

f is pg**-continuous and Y is a Tymodulo J space= X is a pg**T;modulo | space.

f is continuous and Y is a Tymodulo J space= X is a pg™*T;modulo | space.

f is pg**-irresolute and Y is Tymodulo J space = X is pg™T; modulo | space.

fis pg**-open and X isa T, space= Y is pg**T;modulo J space.

fisopenandX isa T; space= Y is pg™*Tymodulo J space.

.m.w.h.w!wﬂ

Proof: (1) Lety, # y, € Y. Since f is a bijection there exists x; # x, € X such that f(x;) = y; and f(x;) = y,.
Since X is pg™*T; modulo | space there exists pg**- open sets U and V in X such that x; € U,U N {x,} € I and
Xy €V, V N {x;} € Ithis implies y; € f(U),f(U) n{y,} € Jandy, € f(V),f(V) n{y,} € ] where f(U) and f (V) are
pg**- open in Y. Therefore (Y, 0,]) isa pg™ Ty moduloj space.

Proofs for (2) to (6) are similar to (1).
7.pg" T, Space

Definition 7.1: A topological space (X, t) is said to be pg™ T, space if x,y € X and x # y, there exists disjoint pg**-
open sets Uy, U, containing x, y respectively.

Example 7.2: Every discrete and indiscrete topological space is pg™ T, space, since every subset is pg**-open. For, if
x #yinX,U = {x}and V = {y} are disjoint pg**-open sets.

Example 7.3: An infinite set with cofinite topology is not pg**T,, since it is impossible to find two disjoint pg**-open
sets.

Theorem 7.4: EveryT, space is pg**T,space but not conversely.
Proof is obvious since every open set is pg**-open set.
Example 7.5: An indiscrete topological space (X, t) has more than one point is pg**T, but not a T, space.

Remark 7.6:
(i) The properties pg™T,, pg™*T; and pg™ T, are separation properties through pg**-open sets in increasing
order of strictness. That is, we have pg™T, = pg™T; = pg™Ty.
(i) If (X,7)isapg™T, space and t* 2 t, then (X, t*) is also pg**T, space.

Theorem 7.7: If X is pg™ T, space then for x #y € X there exists a pg**-open set U such that x € U and
y €pg cl(U).

Proof: Let x, y be distinct points of X. Since X is pg™T, there exists disjoint pg**-open sets U and V in X such that
x €U and y € V. Therefore V¢is pg**-closed set such that pg*cl(U) € V¢. Since y €V, we have y & V¢. Thus

y € pg rcl(U).

Theorem 7.8: Let (X, t) and (Y, o) be two topological spaces and f and g be pg**-irresolute functions from X to Y. If
Yisapg™T, space thentheset A = {x € X/f(x) = g(x)} is pg**-closed in X.

Proof: If y e X — A, then f(y) # g(y). Since Y is a pg™* T, space there exists pg**-open sets U and V such that

fO)EU, gly)eEVandUNV = ¢, this impliesy € f~1(U) n g~1(V) = G ispg**-open in X. ConsequentlyG is a
pg**-neighbourhood of y € X — Aand henceX — A is pg**-open. Therefore A is pg**-closed in X.
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Theorem 7.9: Let (X, 7) and (Y, o) be two topological spaces and f and g be pg**-continuous functions from X to Y.
If YisaT, spacethenthesetA = {x € X/f(x) = g(x)} is pg**-closed in X.

Proof is similar to the above theorem.

Theorem 7.10: Let f : (X,1) = (Y, c) be an injective map and Y is pg**T,space. If f is pg**-totally continuous then X
is ultra-Hausdorff.

Proof: Letx and y be any two distinct points in X. Since f is injective,f (x) and f(y) are distinct points in Y. Since Y is
pg™T, space there exists pg**- open sets U,,U, such that f(x) € U,,f(y) €U,andU, NnU, =¢ . Then x €

f~'(U) andy € f~1(U,). Since f is pg**- totally continuousf ' (U,)and f~*(U,) are clopen inX. Also f~(U,) n
f‘l(Uy) = ¢. This implies every pair of distinct points of X can be separated by disjointclopen sets. Therefore X is
ultra-Hausdorff.

Theorem 7.11: If (X, t)is a pg**T, space then a sequence of points of X pg**-congregates to atmost a point of X.

Proof: Let x,y € Xand x # y, suppose (xn)ﬂx and (xn)iy. Since X is a pg™* T, space there exists
disjointpg**-open sets U and V such that x € U and y € V. Since (x,,) 29, x there exists a positive integer N such
that x, € U, Vn = N. Hence V can contain only finitely many points of the sequence (x,). Therefore (x,,) does not
pg**-congregates to y.

Definition 7.12: If f: X - X is a function then define Fix (f) = {x € X/f(x) = x}.

Theorem 7.13: If (X, t)isa pg™ T, space and f is pg**-irresolute function of X into itself then Fix(f) is pg**-closed.
Proof: Let Fix(f) = A. To prove X — A is pg**-open, suppose X — A is empty then it is pg**-open. Presume that
X — A # ¢, then there exists y € X — A. Therefore f(y) # y. Since X is pg™*T,, there exists disjoint pg**-open sets U
and V such that y € U and f(y) € V. Therefore Un f~1(V) is a pg**-open set containing y . Suppose if
x € Un f71(V), then f(x) # x which implies x & A. Therefore U n f~1(V) € X — A. Therefore X — A is pg**-open.
Theorem 7.14: If (X, t)is a T, space and f is pg**-continuous function of X into itself then Fix(f) is pg**-closed.
Proof is similar to the above.

Theorem 7.15: Product of two pg™* T, space is pg™*T, space.

Proof: Let X x Y be the product of two topological spaces Xand Y. Let x and y be any two distinct points in X and

(x1,y1) and (x,, y,) be any two distinct points of X X Y. Then either x; # x, or y; # y,. If x; # x, and since X is
pg™"T, space there exists pg**- open sets U,, U, containing x,y respectively. Consequently U, X Y and U, X Y are

pg**- open sets containing (x;,¥;) and (x,,y,) respectively such that (U, XxY) n (U, XY) = (Ux n Uy) XY =g.
Therefore X x Y isapg**T, space.

8. pg**T, Spaces and pg**Compact spaces
Theorem 8.1: Let (X, 7)be a pg™*T, space, then every pg**-compact subset of X is pg**-closed.

Proof: Let Y be a pg**-compact subset of X and x € X — Y. Then for every y € Y there exists disjointpg**-open sets
U, and V, containing x and y respectively. Now {V,/y € Y} forms a pg**-open cover for Y, then there exists

n n
V1, Y2, V3, -, ¥} € Y such that Y gi L=Jl V,, =V.LetU = 91 Uy, then U is pg**-open.

Obviously U nY = ¢. Therefore U is a pg**-neighbourhood of x contained in X — Y. Therefore X — Y is pg**-open
and hence Y is pg**-closed.

Remark 8.2: In theorem (8.1) pg™* T, property is essential. An infinite cofinite topological space is pg**multiplicative
but not pg™*T, space, in this space every subset is pg**-compact but only finite sets are pg**-closed.

Theorem 8.3: If {X,} is a collection of pg**-compact subsets of a pg**-multiplicative pg**T, space(X, t) such that
the intersection of every finite subcollection of {X,} is nonempty, then N X, is nonempty.
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Proof: Fix a member X; of {X,} and put U, = X5. Assume that no point of X; belongs to every X,. Then the sets
U, form an pg**- open cover of X; , and since X; is pg**-compact, there are finitely many indices
ay,q;,az,..,a, such that X; c Uy, UU,, U ..UU,, . But this implies X; nX,, NX,, N..NnX, is empty,
contradiction to our hypothesis. Therefore n X,, is nonempty.

Theorem 8.4: A pg**multiplicative space(X, t) is pg**T, if and only if two disjoint pg**-compact subsets of X can be
separated by disjoint pg**-open sets

Proof: Let (X,t)be apg™T, space and A, B be disjointpg**-compact subsets of X. Choose x € A, then for every

y €EB we have x #y, since X is pg™T, there exists disjointpg**-open sets U, and V] containing x and y

respectively.Now B = UB {y} c UB V,, we get {j,/y € B} forms a pg**-open cover for B, then there exists
yE yeE

{y1,¥2,¥3, -, ¥, } € Y such thatB < 6 V,, = V. Define U, = ?\ U, , then U, is pg**-open. x € U,and U, NV = ¢.
i=1 7t i=1 7t

Seeing as A=U {x} cuU U,, we get {U,/a € A} forms a pg**-open cover for A. Since A is pg**-compact
xX€A xX€A

A gigl U, = U(say). Since X is pg**multiplicative U is pg**-open. Since U, NV = ¢ for every a € A, we get

U NV = @. Therefore the pg**-open setsU and V are disjoint pg**-open sets containing A, B respectively. Conversely
assume that any two disjoint pg**-compact subsets of X can be separated by disjoint pg**-open sets. Letx =y € X
then {x} and {y} are disjoint pg**-compact subsets of X. By hypothesis there exists disjoint pg**-open sets U and V
such that {x} € U, {y} € V. Therefore X isa pg**T, space.

Theorem 8.5: If a nonempty pg**multiplicative pg**-compactpg™ T, space X has no pg**-isolated points then X is
uncountable.

Proof: Let x; € X. Since X has no isolated points we can choose y € X such that x; # y. Since X is pg**T, there exists
disjointpg**-open sets U; and V; containing x; and y respectively. Therefore V; is a pg**-open set and x; ¢
pg”~cl(V;). Repeating the same process with V; = X and x; # x, then we get a pg**-open set V, and x; & pg**cl(V,).

In general for a nonempty pg**-open set V,,_;, we get pg**-open set V, such that v, € V,_; and x,, € pg**cl(V,). Thus
we get a nested sequence of pg**-closed sets such that pg**cl(V,) 2 pg™*cl(V,,.1) 2 -+, since X is pg**-compact
there exists x € N pg**cl(V,). Define f:N — X such that f(n) = x,,. We show that there exists x € X — f(N).
x €ENpg*rcl(V,) but x,, & pg**cl(V,) this implies x # x, for every n. Therefore x € X — f(N). f: N — X is not onto
and hence X is uncountable.

Theorem 8.6: Let (X, 7) be a pg**multiplicative pg* T, space. Then X is pg**-locally compact if and only if each of
its points is a pg**-interior point of some pg**-compact subset of X.

Proof: Let Xbe pg**-locally compact and x € X. Thenthere is some pg**-compact subset C of X that contains a pg**-
neighbourhood N of x. Conversely let every point x € X be a pg**-interior point of some pg**-compact subset C of X.
Then C is a pg**-neighbourhood x. Since C is pg**-compact it is pg**-closed. Therefore X is pg**-locally compact.

Theorem 8.7: Every pg**- irresolute mapping of a pg**-compact space into a pg**T, space is pg**- resolve.

Proof: Let (X, t)be pg**-compact space and (Y,o) be apg™ T, space. Let f: X — Y be a pg**- irresolute map and F
be pg**-closed in X. To prove f(F) is pg**-closed in Y. Since F is a pg**-closed subset of a pg**-compact space X, F
is pg**-compact. Also f: X — Yis pg**- irresolute and F is pg**-compact implies f(F) is pg**-compact subset of Y.
Since f(F) is pg**-compact subset of a pg™ T, space f(F) is pg**-closed. Therefore f is pg**-resolve.

Theorem 8.8: A one-one pg**-irresolute mapping of a pg**-compact space onto apg**multiplicative pg™T, space is a
pg**-homeomorphism.

Proof: Let X be pg**-compact, Ypg**multiplicative pg**T, space and f a one-one pg**-irresolute mapping onto Y. In
order to show that f is a pg**-homeomorphism, it is only necessary to show that it carries pg**-open sets into pg**-
open sets or unvaryingly pg**-closed sets into pg**-closed sets. But if E is a pg**-closed subset of X, then E is pg**-
compact. Since f is pg**-irresolute f(E) is pg**-compact. Therefore by theorem (8.1) f(E) is pg**-closed.

Theorem 8.9: Let (X, 7)be a pg**multiplicative pg**T, space. If E and F are subsets of X and if E is pg**-closed and
F is pg**-compact, then E N F is pg**-compact.

Proof: Since X is a pg**multiplicative pg™T, space E N F is pg**-closed. Also E n Fis a pg**-closed subset of a
pg**-compact space F. Therefore E N F is pg**-compact.
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9. pg**T, modulo | space

Definition 9.1: An ideal topological space (X, 7, | ) is said to be pg**T, modulo 1 if for every pair of points x,y € X
and x # y there exists pg**-openset U,V suchthatx e U —V,y eV —-UandUNV €.

Example 9.2: For any ideal I an indiscrete topological space (X, t, | ) is pg**T,modulo | space.

Example 9.3: Let(X, z, I) be an infinite co finite ideal topological space with I = {¢}. It is not possible to find two
disjoint pg**-open sets of X suchthatx e U —V,y eV —Uand U nV € I. Therefore X is not pg**T, modulo | space.

Theorem 9.4: Every pg**T, space is pg**T,modulo | space for every ideal | but not conversely.
Proof is obvious since ¢ € I.

Example 9.5: Let X be an infinite ideal topological space with cofinite topology and I = p(X), then the space is not
pg™*T, but it is pg**T,modulo I space.

Remark 9.6: Ifl = {¢} then both pg™T, space and pg™*T,modulo | space coincide.

Theorem 9.7: Let (X, 7, 1) be pg™*T,modulo | and J be an ideal of X with I € J, then (X, t,]) is pg™T,modulo J.
Proof is obvious.

Theorem 9.8: Every ideal topological space which is pg*™T,modulo | is pg™*T; modulo | space.

Proof follows from the definitions.

Remark 9.9: The converse of the above theorem need not be true as seen in the following example.

Example 9.10: Let X ={a,b,c}, 7 = {9, X, {a},{c}{a,c}}, PG"O(X) ={p,X,{a},{c},{a,c}}and I = p(X) then
(X,t,1)is pg™Tymodulo | but not pg**T,modulo I space.

Theorem 9.11: Let (X,7, 1) and (Y, 0, J) be two ideal topological spaces and f : (X,t,I) = (Y,0,/) be a bijection
where J = f(I) is an ideal in Y then,
1. fispg**-resolute and X is pg™*T,modulo | space= Y is pg™*T,modulo J space.
f is pg**-continuous and Y is a T,modulo J space= X is a pg**T,modulo | space.
f is continuous and Y is a T,modulo J space= X isa pg™ T,modulo | space.
f is pg**-irresolute and Y is T,modulo J space = X is pg™*T,modulo | space.
f is pg**-open andX isa T, space= Y is pg™*T,modulo J space.
fisopenand X isa T, space= Y is pg**T,modulo J space.

ogkrwd

Proof: (1) Lety; #y, €Y. Since f is a bijection there exists x; # x, € X such that f(x;) = y;and f(x;) = y,.
Since X is pg™* T, modulo | space there exists pg**- open sets Uand V in X such thatx; e U -V, x, €V — U and
unvV el

This implies y; € f(U) = f(V), f(V) = f(U) and f(V) n f(V) € Jwhere f(U) and f(V) are pg**- open inY.
Therefore (Y,0,]) isapg™T,modulo J space.

Proofs for (2) to (6) are similar to (1).
10. pg**regular spaces

Definition 10.1: A pg™*T; space (X, 7) is said to be pg**regularif F is a pg**- closed set and x € X is a point such that
x & F, there exists disjoint pg**- open sets Uy, U, containing F and xrespectively.

Example 10.2: Every indiscrete topological space is pg**regular.

If Fis a pg**-closed subset of X and x ¢ F then {x} and F are disjoint pg**- open sets containing x and F
respectively, Since every subset of a indiscrete topological space is pg**- open.

Example 10.3: Any infinite co finite topological space is not pg**regular, since it is impossible to find disjoint pg**-
open sets.
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Theorem 10.4: Every pg**regular space is pg™* T, space.
Proof: Follows from {x} is pg**- closed for all x € X.

Theorem 10.5: Let (X, ) be a pg™*multiplicative pg**T; space, then the following are equivalent.
(i) Xispg*regular.
(if) For every x € X and for every pg**-neighbourhood U of x there exists a pg**-neighbourhood V of x such that
pg*cl(V) € U.
(iii) For every x € X and for every pg**-closed set not containing xthere exists pg**-neighbourhood V of x such
that pg*cl(V) N F = ¢.

Proof (i) = (ii): Let (X, 1) bepg**regular. Let x € X and U be a pg**-neighbourhood of x, then F = X — U is pg**-
closed. Then there exists disjoint pg**- open sets V and Wsuch that x e Vand F € W. Lety € F = X — U. Therefore
y &€ pg cl(V). Thereforex e V € pg™cl(V) € U.

(i) = (iii): Let x € X and F be a pg**-closed set with x ¢ F. Then x € X — F which is pg**- open. Then there exists
pg**-neighbourhood V of x such that pg**cl(V) € X — F. Therefore pg**cl(V) N F = ¢.

(iii) = (i): Letx € X and F be a pg**-closed set with x & F. Then by hypothesis there exists a pg**-neighbourhood
V of x such that pg™cl(V) N F = ¢. Therefore F c X —pg™cl(V) = W.

Now V N (X —pg™cl(V)) cV n (X —V) = ¢. Therefore V and W are disjoint pg**- open sets containing x and F
respectively. Therefore X is pg**regular.

Theorem 10.6: Every pair of points in a pg**regular space have pg**-neighbourhoods whose pg**-closures are
disjoint.

Proof: Let x and y be distinct points in X. Then by the definition of pg**regularity {y} is pg**-closed and there exists
disjoint pg**- open sets U,V containing x and y respectively. Then by theorem (10.5) there exists a pg**-
neighbourhood U, of x such thatx € U, € pg™cl(U,) € U. Similarly there exists a pg**-neighbourhood V, of x such
that x € V, € pg™*cl(V,) € V. Therefore U, and V, are pg**-neighbourhoods of x and y whose pg**-closures are
disjoint.

Theorem 10.7: Let A be a pg**-compact subset of a pg™*multiplicative pg**regular space (X, t) then for any pg**-

open set G containing A there exists a pg**-closed set F suchthat A € F € G.

Proof: If a € Athen a € G. Since X is pg™ regular there exists a pg**-neighbourhood V, of a such that
a€eV, cpgcl(V,) €G. NowA = aZA{a} c a:A V, and {V, },e4 forms a pg**-open cover for a pg**-compact set A.

n n

Hence A< v V.. Nowpg™cl(V,,) € G for ali, 1< i < nimplies F = v pg™cl(V,,). Since X is pg™ multiplicative
i=1 i=1

F is pg**-closed such thatA € F € G.

Theorem 10.8: Let (X, t) be apg**finitely multiplicative pg**regular space. Let A and B be disjoint subsets of X such
that A is pg**-closed and B is pg**-compact in X. Then there exists disjoint pg**-open sets in X containing A and B
respectively.

Proof: If b € Bthen b ¢ A. Since X is pg™* regularthere exists disjoint pg**-open sets V,, U, containing A and

brespectively for each b € B. Thereforeb:B{b} c b:B Upand {U, },cgforms a pg**-open cover for B. Since B is pg**-

n n n
compact B S v Uy,. Define U = v Uy, which is pg**- open. Find correspondingV,, for all i, then AS n V..
i=1 i=1 i=1

n
Define V.= n V,, which is pg**-open. Therefore there exists disjoint pg**-open sets suchthat A < V and B < U.
i=1

1=
Theorem 10.9: pg**closure of a pg**-compact subset of apg™*multiplicative pg**regular space is pg**-compact.

Proof: Let (X,t) be apg**regular space and A be a pg**-compact subset of X. Let {G,} be a pg**-open cover for
pg*cl(A). Then {G,} is also a pg**-open cover for A. Since A is pg**-compact A < 3 Gq; = G Which is pg**-open.
Then by theorem (10.7) there exist a pg**-closed set F such that A € F C G. Sincel):(’lis pg~ multiplicative and F is
pg**-closed, pg**cl(A) € pg**cl(F) =F € G = iCllGal.. Therefore the open cover {G,} of pg™cl(A) has a finite

subcover. Hence pg**cl(A) is pg**-compact.
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11. pg**normal spaces

Definition 11.1: A pg™T; space (X, 1) is said to be pg*normal if for each pair A and B of disjoint pg**- closed sets in
X, there exist disjoint pg**- open sets Uy, Uz containing A and Brespectively.

Example 11.2: Every indiscrete topological space is pg**normal, since every subset of a indiscrete topological space
ispg**-open.

Example 11.3: Any infinite co finite topological space is not pg**normal, since it is impossible to find disjoint pg**-
open sets.

Theorem 11.4: Every pg**normal space is pg**regular space.
Proof: Follows from {x} is pg**-closed for all x € X.

Theorem 11.5: Let (X, t) be a pg™multiplicative pg™*T; space, then X is pg**normal if and only if for every pg**-
closed set A and a pg**-open setUcontaining A there exists a pg**-open set VV containing A such that pg™cl(V) € U.

Proof: Let A be a pg**-closed set and Ube a pg**-open set containing A. Then B = X — A is pg**-closed and
AN B = ¢. Since X is pg™normalthere exists disjoint pg**- open sets V, W containing A and Brespectively. Now
AcVcpgcV). LetyeX—-U=B<cWand VNnW = ¢. Therefore y & pg*cl(V). Hence pg™cl(V) S U.
Conversely let A and B be two pg**-closed subsets of X. Then U = X — B is pg**-open set containing A. By
hypothesis there exists a pg**-open set V containing A such that ACV S pg™cl(V) €U . Since X is
pg**multiplicative pg**cl(V) is pg**-closed. Therefore X — pg**cl(V) = W is a pg**-open set containing B and V' is
a pg**-open set containing A such that V. n W = ¢. Therefore (X, 7) is pg**normal.

Theorem 11.6: A pg™multiplicative space X in which every singleton set is a pg**-isolated point is pg**normal.
Proof: follows from every subset is pg**-clopen.
Theorem 11.7: Every pg**-compact pg**finitely multiplicativepg™T, space is pg**normal.

Proof: Let X be a pg**-compact pg**finitely multiplicative pg™* T, space. Let A and B be two pg**-closed subsets of

X. Since B is a pg**-closed subset of a pg**-compact space B is pg**-compact, also by theorem (8.1) for every x € B

there exists disjoint pg**-open sets U, V, such that x € U, and A € V. Now {U, /x € B} is a pg**-open cover for B.
n n

Then B € v U,, = U(say) which is pg**-open. LetV = n V.. which is pg**-open. ThenV and U are disjoint pg**-
i=1 i

i=1

open sets co_ntaining A and B respectively. Also every pg™ T,space is pg™T;. Hence X is pg**normal.
Theorem 11.8: Every metrizable space (X, 7) is pg™*normal.

Proof: Let (X, 7) be metrizable space with metric d. Let A and B be two pg**-closed subsets of X. For every a € 4,
choose ¢, such that B(a,e,) N B = ¢. Correspondingly for every b € B, choose ¢, such that B(b,e,) N A = ¢. Let

U= Y B(a,%“),v =Y B(b,%b). Uand V are pg**-open, since U and V are open in X. In ze UnNV then

a€A bEB
Z€EB (a,%“) NnB (b%”) for some a € Aand b € B. Therefore (a,b) < d(a,z) + d(z,b) < @ . Without loss of

generality let e, < g,. Then d(a, b) < ¢&,, this implies a € B(b, g,) which is a contradiction. Therefore U nV = ¢.
Since X is metrizable, every singleton set is closed and hence pg**-closed. Hence X is pg**normal.

Theorem 11.9: In a pg**normal space (X, 7) every pair of disjoint pg**-closed sets have pg**-neighbourhoods whose
pg*“closures are disjoint.

Proof: Let A and B be disjoint pg**-closed subsets of X. Then by definition of pg*™ normality there exist disjoint
pg**- open sets Uy, Up containing A and Brespectively. Then there exists a pg**-open set Vcontaining A such that
ACV cpgcl(V) € Uy. Likewise, there exists a pg**-open set W containing B such that B € W < pg™cl(W) <
Ug. Therefore V and W are the required pg**-neighbourhoods.
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