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ABSTRACT 
In this paper the separation axioms via pg**-open sets are analysed in topological and ideal topological spaces. 
 
Key words: 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  space, 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  modulo I space, 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space, 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  modulo I space, 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space, 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  modulo 
I space, 𝑝𝑝𝑝𝑝∗∗regular space, 𝑝𝑝𝑝𝑝∗∗normal space. 
 
 
1. INTRODUCTION  
 
Levine [3] introduced the class of g-closed sets in 1970. Veerakumar[7] introduced g*-closed sets. A.S.Mashhour, M.E 
Abd El. Monsef [4] introduced a new class of pre-open sets in 1982. Ideal topological spaces have been first introduced 
by K.Kuratowski [2] in 1930. In this paper we generalize the conventional separation axioms through pg**-open sets. 
 
2. PRELIMINARIES 
  
Definition 2.1: A subset 𝐴𝐴 of a topological space(𝑋𝑋, 𝜏𝜏) is called a pre-open set [4] if 𝐴𝐴 ⊆ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐(𝐴𝐴) and a pre-closed 
set if 𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)) ⊆ 𝐴𝐴. 
 
Definition 2.2: A subset 𝐴𝐴 of topological space (𝑋𝑋, 𝜏𝜏) is called 

1. generalized closed set (g-closed) [3] if 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is open in (𝑋𝑋, 𝜏𝜏).         
2. g*-closed set [7] if 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is g-open in (𝑋𝑋, 𝜏𝜏). 
3. pg**- closed set[6] if 𝑝𝑝𝑝𝑝𝑝𝑝(𝐴𝐴) ⊆ 𝑈𝑈 whenever 𝐴𝐴 ⊆ 𝑈𝑈 and 𝑈𝑈 is g*-open in(𝑋𝑋, 𝜏𝜏). 

 
Definition 2.3: A function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏)  →  (𝑌𝑌,𝜎𝜎) is called  

1. pg**-irresolute[6] if 𝑓𝑓−1(𝑉𝑉) is a pg**-closed set of (𝑋𝑋, 𝜏𝜏) for every pg**-closed set 𝑉𝑉 of (𝑌𝑌,𝜎𝜎). 
2. pg**-continuous[6] if 𝑓𝑓−1(𝑉𝑉) is a pg**-closed set of (𝑋𝑋, 𝜏𝜏)for every closed set 𝑉𝑉of (𝑌𝑌,𝜎𝜎). 
3. pg**-resolute[6] if 𝑓𝑓(𝑈𝑈) is pg**- open in 𝑌𝑌 whenever 𝑈𝑈 is pg**- open in 𝑋𝑋. 

 
Definition 2.4: An ideal [2] I on a nonempty set 𝑋𝑋  is a collection of subsets of 𝑋𝑋  which satisfies the following 
properties. (𝑖𝑖)𝐴𝐴 ∈ 𝐼𝐼 , B ∈I⟹ 𝐴𝐴∪ 𝐵𝐵 ∈ 𝐼𝐼(𝑖𝑖𝑖𝑖)𝐴𝐴 ∈ 𝐼𝐼,𝐵𝐵 ⊂ 𝐴𝐴 ⟹ 𝐵𝐵 ∈ 𝐼𝐼 .  A topological space (𝑋𝑋, 𝜏𝜏) with an ideal 𝐼𝐼on 𝑋𝑋 is 
called an ideal topological space and is denoted by (𝑋𝑋, 𝜏𝜏,I ). 
 
3. 𝒑𝒑𝒑𝒑∗∗𝑻𝑻𝟎𝟎 Space 
 
Definition 3.1: The points 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋  is said to be pg**- indistinguishable if 𝑥𝑥 ∈ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑦𝑦) and 𝑦𝑦 ∈ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑥𝑥) 
 
Note: pg**-indistinguishability is an equivalence relation. 
 
Definition 3.2: A topological space (𝑋𝑋, 𝜏𝜏)  is said to be 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  space if no two distinct points are pg**-
indistinguishable. Equivalently a topological space 𝑋𝑋 is called 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space if given any two distinct points 𝑥𝑥 and 𝑦𝑦 
there is either a pg**- open set 𝑈𝑈 such that 𝑥𝑥 ∈ 𝑈𝑈, 𝑦𝑦 ∉ 𝑈𝑈 or 𝑦𝑦 ∈ 𝑈𝑈, 𝑥𝑥 ∉ 𝑈𝑈. 
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Example 3.3: Let (𝑋𝑋, 𝜏𝜏)be an indiscrete topological space has more than one point. Then 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  space, since 
every subset of 𝑋𝑋 is pg**-open. 
 
Theorem 3.4: Every 𝑇𝑇0 space is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space but not conversely 
 
Proof: Obvious since every open set is pg**- open. 
 
Example 3.5: The space in example (3.3) is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 but not 𝑇𝑇0. Consider ℝ with trivial topology, take two arbitrary 
points 𝑥𝑥,𝑦𝑦 ∈ ℝ such that 𝑥𝑥 ≠ 𝑦𝑦. Here 𝑈𝑈 = {𝑥𝑥} and 𝑉𝑉 = {𝑦𝑦} are pg**- open sets, therefore ℝ with trivial topology is 
𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space. But this space is not 𝑇𝑇0, since the only open sets are 𝜑𝜑 and ℝ. 
 
Theorem 3.6: Let (𝑋𝑋, 𝜏𝜏) be a pg**- multiplicative space, then 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space if and only if pg**-closures of distinct 
points are distinct. (i.e) if 𝑥𝑥 ≠ 𝑦𝑦 ∈ 𝑋𝑋, 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑥𝑥}) ≠ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑦𝑦}).  
 
Proof: Let (𝑋𝑋, 𝜏𝜏) be a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  space and 𝑥𝑥 and 𝑦𝑦 be two distinct points of 𝑋𝑋. Then there is a pg**-open set 𝑈𝑈 such that 
𝑥𝑥 ∈ 𝑈𝑈, 𝑦𝑦 ∉ 𝑈𝑈 and 𝑦𝑦 ∈ 𝑈𝑈𝑐𝑐 , 𝑥𝑥 ∉ 𝑈𝑈𝑐𝑐 . 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑦𝑦}) ⊆ 𝑈𝑈𝑐𝑐  since 𝑈𝑈𝑐𝑐  is pg**-closed in 𝑋𝑋. Thus 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑥𝑥}) ≠ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑦𝑦}).  
 
Conversely suppose for any pair of distinct points 𝑥𝑥 and 𝑦𝑦 in 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑥𝑥}) ≠ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑦𝑦}). Then we can choose 𝑧𝑧 ∈ 𝑋𝑋 
such that 𝑧𝑧 ∈ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑥𝑥}) but 𝑧𝑧 ∉ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑦𝑦}) . If 𝑥𝑥 ∈ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑦𝑦}) , then 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑥𝑥}) ⊆ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑦𝑦}) , this implies 
𝑧𝑧 ∈ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑦𝑦}) which is a contradiction. Hence𝑥𝑥 ∉ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑦𝑦}) this implies𝑥𝑥 ∈ (𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐({𝑦𝑦}))𝑐𝑐which is pg**-open in 
𝑋𝑋 containing 𝑥𝑥 but not𝑦𝑦. Hence 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space. 
 
Theorem 3.7:  Let (X, τ) and (Y, σ)  be two topological spaces and 𝑓𝑓 ∶ (X, τ) → (Y, σ) be a bijection. Then, 

1. 𝑓𝑓 is pg**- continuous and 𝑌𝑌 is a 𝑇𝑇0 space⟹ 𝑋𝑋 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  space. 
2. 𝑓𝑓 is continuous and 𝑌𝑌 is a 𝑇𝑇0 space ⟹  𝑋𝑋 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space. 
3. 𝑓𝑓 is pg**-irresolute and 𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space⟹ 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space. 
4. 𝑓𝑓 is pg**-resolute and 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  space⟹ 𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space. 
5. 𝑓𝑓 is pg**- open and𝑋𝑋 is a 𝑇𝑇0 space ⟹  𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  space. 
6. 𝑓𝑓 is strongly pg**- continuous and 𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space⟹ 𝑋𝑋 is a 𝑇𝑇0 space. 

 
Proof:  (1) Let 𝑥𝑥 and 𝑦𝑦 be two distinct points of 𝑋𝑋, then 𝑓𝑓(𝑥𝑥) and 𝑓𝑓(𝑦𝑦) are distinct points of 𝑌𝑌. Then there is a pg**-
open set 𝑈𝑈 in 𝑌𝑌 such that 𝑓𝑓(𝑥𝑥) ∈ 𝑈𝑈, 𝑓𝑓(𝑦𝑦) ∉ 𝑈𝑈or 𝑓𝑓(𝑦𝑦) ∈ 𝑈𝑈, 𝑓𝑓(𝑥𝑥) ∉ 𝑈𝑈. Then 𝑓𝑓−1(𝑈𝑈) is a pg**-open set in 𝑋𝑋 such that 
𝑥𝑥 ∈ 𝑓𝑓−1(𝑈𝑈) , 𝑦𝑦 ∉ 𝑓𝑓−1(𝑈𝑈)  or 𝑦𝑦 ∈ 𝑓𝑓−1(𝑈𝑈), 𝑥𝑥 ∉ 𝑓𝑓−1(𝑈𝑈). Therefore 𝑋𝑋 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  space. 
 
Proofs for (2) to (6) are similar to the above.  
 
Remark 3.8: The property of being 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space, is a pg**-topological property. This follows from (3) and (4) of the 
above theorem. 
 
Theorem 3.9: Let 𝑓𝑓 ∶ (X, τ) → (Y, σ) be an injective map and 𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space. If 𝑓𝑓 is pg**- totally continuous then 𝑋𝑋 
is ultra-Hausdorff. 
 
Proof: Let 𝑥𝑥 and 𝑦𝑦 be any two distinct points in 𝑋𝑋. Since 𝑓𝑓 is injective,𝑓𝑓(𝑥𝑥) and 𝑓𝑓(𝑦𝑦) are distinct points in 𝑌𝑌. Since 𝑌𝑌 
is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space there exists an pg**- open set 𝑈𝑈 in 𝑌𝑌containing 𝑓𝑓(𝑥𝑥)  but not 𝑓𝑓(𝑦𝑦). Then ∈ 𝑓𝑓−1(𝑈𝑈), 𝑦𝑦 ∉ 𝑓𝑓−1(𝑈𝑈) and 
𝑥𝑥 ∈ 𝑓𝑓−1(𝑈𝑈), 𝑦𝑦 ∈ (𝑓𝑓−1(𝑈𝑈))𝑐𝑐also 𝑓𝑓−1(𝑈𝑈) is clopen in 𝑋𝑋. This implies every pair of distinct points of 𝑋𝑋 can be separated 
by disjoint clopen sets. Therefore 𝑋𝑋 is ultra-Hausdorff. 
 
4. 𝒑𝒑𝒑𝒑∗∗𝑻𝑻𝟎𝟎 modulo I space 
 
Definition 4.1: An ideal topological space (𝑋𝑋, 𝜏𝜏, I ) is said to be 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 modulo Iif for every pair of points 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 and 
𝑥𝑥 ≠ 𝑦𝑦 there exists pg**- open set 𝑈𝑈 such that 𝑥𝑥 ∈ 𝑈𝑈,𝑈𝑈 ∩ {𝑦𝑦} ∈ 𝐼𝐼 or 𝑦𝑦 ∈ 𝑈𝑈,𝑈𝑈 ∩ {𝑥𝑥} ∈ 𝐼𝐼. 
 
Example 4.2: An ideal topological space (𝑋𝑋, 𝜏𝜏, I )where 𝐼𝐼 = 𝓅𝓅(𝑋𝑋) is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 modulo I space. 
 
For, if 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 and 𝑥𝑥 ≠ 𝑦𝑦, for any pg**- open sets 𝑈𝑈𝑥𝑥 ,𝑈𝑈𝑦𝑦  containing 𝑥𝑥,𝑦𝑦 respectively, then 𝑈𝑈𝑥𝑥 ∩ {𝑦𝑦},𝑈𝑈𝑦𝑦 ∩ {𝑥𝑥} ∈ 𝐼𝐼. 
 
Theorem 4.3: Every pg**- 𝑇𝑇0 space is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  modulo I space for every ideal I. 
 
Proof: Let 𝑥𝑥 and 𝑦𝑦 be any two distinct points in 𝑋𝑋. Since 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  spacethere exists disjoint pg**- open sets 𝑈𝑈𝑥𝑥 ,𝑈𝑈𝑦𝑦  
containing 𝑥𝑥,𝑦𝑦 respectively, then 𝑈𝑈𝑥𝑥 ∩ 𝑈𝑈𝑦𝑦 = 𝜑𝜑 ∈ 𝐼𝐼. Hence 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  modulo I space. 
 
Remark 4.4: If 𝐼𝐼 = {𝜑𝜑} then both 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space and 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  modulo I space coincide. 
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Theorem 4.5: Let 𝐼𝐼, 𝐽𝐽 be ideals of 𝑋𝑋 and if 𝐼𝐼 ⊆ 𝐽𝐽, then (𝑋𝑋, 𝜏𝜏, I ) is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  modulo I implies (𝑋𝑋, 𝜏𝜏, 𝐽𝐽) is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 modulo 𝐽𝐽. 
 
If 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 and 𝑥𝑥 ≠ 𝑦𝑦 , then there exists disjoint pg**-open sets 𝑈𝑈𝑥𝑥 ,𝑈𝑈𝑦𝑦  containing 𝑥𝑥,𝑦𝑦  respectively such that              
𝑈𝑈𝑥𝑥 ∩ 𝑈𝑈𝑦𝑦 = 𝜑𝜑 ∈ 𝐼𝐼 ⊆ 𝐽𝐽. Therefore (𝑋𝑋, 𝜏𝜏, 𝐽𝐽) is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0modulo 𝐽𝐽 space. 
 
Theorem 4.6: Let (𝑋𝑋, 𝜏𝜏, I) and (𝑌𝑌,𝜎𝜎, J) be two ideal topological spaces and 𝑓𝑓 ∶ (X, τ, 𝐼𝐼) → (Y,σ, 𝐽𝐽) be a bijection where 
J = 𝑓𝑓(𝐼𝐼) is an ideal in 𝑌𝑌 then, 

1. 𝑓𝑓 is pg**-resolute and 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0modulo I space⟹ 𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 modulo 𝐽𝐽 space. 
2. 𝑓𝑓 is pg**-continuous and 𝑌𝑌 is a 𝑇𝑇0modulo 𝐽𝐽 space⟹ 𝑋𝑋 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 modulo I space. 
3. 𝑓𝑓 is continuous and 𝑌𝑌 is a𝑇𝑇0modulo 𝐽𝐽space⟹  𝑋𝑋 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 modulo I space. 
4. 𝑓𝑓 is pg**-irresolute and 𝑌𝑌 is 𝑇𝑇0modulo 𝐽𝐽 space ⟹ 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 modulo I space. 
5. 𝑓𝑓 is pg**-open and 𝑋𝑋 is a 𝑇𝑇0 space⟹  𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0  modulo 𝐽𝐽 space. 
6. 𝑓𝑓 is open and 𝑋𝑋 is a 𝑇𝑇0 space⟹  𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 modulo 𝐽𝐽 space. 

 
Proof: (1) Let 𝑦𝑦1 ≠ 𝑦𝑦2 ∈ 𝑌𝑌. Since 𝑓𝑓  is a bijection there exists 𝑥𝑥1 ≠ 𝑥𝑥2 ∈ 𝑋𝑋 such that 𝑓𝑓(𝑥𝑥1) = 𝑦𝑦1and 𝑓𝑓(𝑥𝑥2) = 𝑦𝑦2. Also 
there exists pg**-open set 𝑈𝑈  in 𝑋𝑋such that 𝑥𝑥1 ∈ 𝑈𝑈,𝑈𝑈 ∩ {𝑥𝑥2} ∈ 𝐼𝐼 or 𝑥𝑥2 ∈ 𝑈𝑈,𝑈𝑈 ∩ {𝑥𝑥1} ∈ 𝐼𝐼  since 𝑋𝑋  is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 modulo I 
space, which implies 𝑦𝑦1 ∈ 𝑓𝑓(𝑈𝑈), 𝑓𝑓(𝑈𝑈) ∩ {𝑦𝑦2} ∈ 𝐽𝐽 or 𝑦𝑦2 ∈ 𝑓𝑓(𝑈𝑈), 𝑓𝑓(𝑈𝑈) ∩ {𝑦𝑦1} ∈ 𝐽𝐽  where 𝑓𝑓(𝑈𝑈)  is pg**-open in 𝑌𝑌 . 
Therefore (Y,σ, 𝐽𝐽) is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 modulo 𝐽𝐽 space. 
 
Proofs for (2) to (6) are similar to (1). 
 
5. 𝒑𝒑𝒑𝒑∗∗𝑻𝑻𝟏𝟏 Space 
 
Definition 5.1: A topological space (𝑋𝑋, 𝜏𝜏) is said to be 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space if 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 and 𝑥𝑥 ≠ 𝑦𝑦, there exists pg**- open sets 
𝑈𝑈𝑥𝑥 ,𝑈𝑈𝑦𝑦  containing 𝑥𝑥,𝑦𝑦 respectively, such that 𝑦𝑦 ∉ 𝑈𝑈𝑥𝑥  and 𝑥𝑥 ∉ 𝑈𝑈𝑦𝑦 . 
 
Example 5.2: An indiscrete topological space (𝑋𝑋, 𝜏𝜏) has more than one point is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space, since all the subsets of 
𝑋𝑋 is pg**- open. 
 
Example 5.3: Consider an infinite set 𝑋𝑋 with cofinite topology, if 𝑥𝑥 ≠ 𝑦𝑦 ∈ 𝑋𝑋, then 𝑈𝑈𝑥𝑥 = 𝑋𝑋 − {𝑦𝑦} and 𝑈𝑈𝑦𝑦 = 𝑋𝑋 − {𝑥𝑥} are 
pg**- open sets such that 𝑦𝑦 ∉ 𝑈𝑈𝑥𝑥  and 𝑥𝑥 ∉ 𝑈𝑈𝑦𝑦 . Therefore 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space. 
 
Example 5.4: The one point space is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1, because the definition of 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space is vacuously satisfied. 
 
Example 5.5: Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}}. Then 𝑃𝑃𝑃𝑃∗∗𝑂𝑂(𝑋𝑋) = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}}. This space is not 
𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space. 
 
Theorem 5.6: Every T1 space is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space. 
 
Proof follows from the fact that every open set is pg**-open. 
 
Remark 5.7: The converse of the above theorem is not true from the following example. 
 
Example 5.8: An indiscrete topological space (𝑋𝑋, 𝜏𝜏) has more than one point is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 but not T1 space. 
 
Theorem 5.9: Every 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 space but not conversely. 
 
Proof follows from the definitions. 
 
Example 5.10: The space in example (5.5) is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 but not 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 spaces. 
 
Hence the set of 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1topological spaces is a proper subset of all 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0topological spaces. 
 
Theorem 5.11: A topological space (𝑋𝑋, 𝜏𝜏) is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space if and only if every singleton set is pg**-closed. 
 
Proof: Let (𝑋𝑋, 𝜏𝜏)be 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space and 𝑥𝑥 ∈ 𝑋𝑋. Let 𝑥𝑥 ≠ 𝑦𝑦 be an arbitrary element in 𝑋𝑋. Subsequently there exists pg**- 
open sets 𝑈𝑈𝑥𝑥 ,𝑈𝑈𝑦𝑦  containing 𝑥𝑥,𝑦𝑦 respectively, such that 𝑦𝑦 ∉ 𝑈𝑈𝑥𝑥  and 𝑥𝑥 ∉ 𝑈𝑈𝑦𝑦 .  
 
Now 𝑈𝑈𝑥𝑥  is a pg**- open set containing 𝑥𝑥 not intersecting{𝑦𝑦}. Therefore 𝑥𝑥 is not a pg**- limit point of {𝑦𝑦}. Thus {𝑦𝑦} is 
pg**- closed. Conversely let every singleton set is pg**- closed in 𝑋𝑋 . If 𝑥𝑥 and𝑦𝑦  are distinct points of 𝑋𝑋 , then              
𝑈𝑈𝑥𝑥 = 𝑋𝑋 − {𝑦𝑦} and 𝑈𝑈𝑦𝑦 = 𝑋𝑋 − {𝑥𝑥} are pg**- open sets such that 𝑦𝑦 ∉ 𝑈𝑈𝑥𝑥  and 𝑥𝑥 ∉ 𝑈𝑈𝑦𝑦 . Therefore 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space. 
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Theorem 5.12: If (𝑋𝑋, 𝜏𝜏) is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space then every finite subset of 𝑋𝑋 is pg**- closed. 
 
Proof: Let𝐴𝐴 be a finite subset of 𝑋𝑋, then 𝐴𝐴 = ∪

𝑥𝑥∈𝐴𝐴
{𝑥𝑥} is pg**- closed being finite union of pg**- closed sets.       

 
Theorem 5.13: In a topological space(𝑋𝑋, 𝜏𝜏)the following statements are equivalent: 

1. (𝑋𝑋, 𝜏𝜏) is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space. 
2. Every singleton set of (𝑋𝑋, 𝜏𝜏)is pg**- closed. 
3. Every finite subset of 𝑋𝑋 is pg**- closed. 
4. Every point 𝑥𝑥 ∈ 𝑋𝑋 equals the intersection of all pg**-neighbourhoods of 𝑥𝑥. 

 
Proof: The proof for (1) ⇔ (2) ⇔ (3) follows from theorem (5.11). 
 
(𝟏𝟏) ⇒ (𝟒𝟒): Let 𝑁𝑁𝑥𝑥  be the intersection of all pg**-neighbourhoods of 𝑥𝑥 in 𝑋𝑋. Let 𝑥𝑥 ≠ 𝑦𝑦 be an arbitrary element in 𝑋𝑋. 
Since 𝑋𝑋  is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 there exists pg**- open set 𝑈𝑈𝑥𝑥  containing 𝑥𝑥 , such that 𝑥𝑥 ∈ 𝑈𝑈𝑥𝑥  and 𝑦𝑦 ∉ 𝑈𝑈𝑥𝑥 . Therefore 𝑦𝑦 ∉ 𝑁𝑁𝑥𝑥  and 
hence 𝑁𝑁𝑥𝑥 = {𝑥𝑥}. 
 
(𝟒𝟒) ⇒ (𝟏𝟏): Let𝑥𝑥,𝑦𝑦 be two distinct points in 𝑋𝑋and 𝑁𝑁𝑥𝑥  be the intersection of all pg**-neighborhoods of 𝑥𝑥, then 𝑁𝑁𝑥𝑥 = {𝑥𝑥}. 
Therefore 𝑦𝑦 ∉ 𝑁𝑁𝑥𝑥 . Therefore there is atleast one pg**- open set 𝑈𝑈𝑥𝑥  containing 𝑥𝑥 and notcontaining 𝑦𝑦. Correspondingly 
we can get a pg**- open set 𝑈𝑈𝑦𝑦containing 𝑦𝑦and notcontaining 𝑥𝑥. Thus(𝑋𝑋, 𝜏𝜏)is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space. 
 
Theorem 5.14: A topological space (𝑋𝑋, 𝜏𝜏) is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space if and only if 𝑃𝑃𝑃𝑃∗∗𝑂𝑂(𝑋𝑋, 𝜏𝜏)is finer than co finite topology 
on 𝑋𝑋. 
 
Proof: Let 𝑋𝑋 be a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space. Let 𝜏𝜏∗ denote the co finite topology on 𝑋𝑋. To prove that𝜏𝜏∗ ⊆ 𝑃𝑃𝑃𝑃∗∗𝑂𝑂(𝑋𝑋, 𝜏𝜏).Let 𝑈𝑈 ∈ 𝜏𝜏∗, 
then 𝑋𝑋 − 𝑈𝑈  is a finite set. Since 𝑋𝑋 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space𝑋𝑋 − 𝑈𝑈  is pg**-closed in 𝑋𝑋 . Hence 𝑈𝑈  is pg**-open. Therefore 
𝜏𝜏∗ ⊆ 𝑃𝑃𝑃𝑃∗∗𝑂𝑂(𝑋𝑋, 𝜏𝜏) . Conversely presume 𝜏𝜏∗ ⊆ 𝑃𝑃𝑃𝑃∗∗𝑂𝑂(𝑋𝑋, 𝜏𝜏) . Choose 𝑥𝑥 ∈ 𝑋𝑋 . Then 𝑋𝑋 − {𝑥𝑥} ∈ 𝜏𝜏∗ ⇒ 𝑋𝑋 − {𝑥𝑥} ∈
𝑃𝑃𝑃𝑃∗∗𝑂𝑂(𝑋𝑋, 𝜏𝜏). This implies{𝑥𝑥}is pg**-closed in 𝑋𝑋. Then by theorem (5.11)(𝑋𝑋, 𝜏𝜏) is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space. 
 
Theorem 5.15: Every finite 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space is a pg**-discrete space. 
 
Proof: Let (𝑋𝑋, 𝜏𝜏) be a finite 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space, then all the subsets of 𝑋𝑋 is finite and hence pg**-closed. Therefore 𝑋𝑋 is 
pg**-discrete. 
 
Theorem 5.16: In a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space (𝑋𝑋, 𝜏𝜏) every pg**-connected set containing more than one point is infinite. 
 
Proof: Let 𝐴𝐴  be a pg**-connected subset of 𝑋𝑋  has more than one point. Presume that 𝐴𝐴  is finite and let                      
𝐴𝐴 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚 }, then 𝐴𝐴 is pg**-discrete. Therefore {𝑥𝑥1} and 𝐴𝐴 − {𝑥𝑥1} are both pg**-clopen. Thus 𝐴𝐴 can be written 
as the union of two non-empty disjoint pg**-open sets. Which is a contradiction to 𝐴𝐴 is pg**-connected. Therefore 𝐴𝐴 
must be infinite. 
 
Theorem 5.17: Let (𝑋𝑋, 𝜏𝜏) be pg**-additive and 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space. Then 𝑋𝑋 is a pg**-discrete space. 
 
Proof: Let 𝐴𝐴 be a subset of 𝑋𝑋. Then 𝐴𝐴 = ∪

𝑥𝑥∈𝐴𝐴
{𝑥𝑥} and each {𝑥𝑥} is pg**- closed. Since 𝑋𝑋 is pg**-additive 𝐴𝐴 is pg**- 

closed. Therefore 𝑋𝑋 is pg**-discrete. 
 
Theorem 5.18: Let (𝑋𝑋, 𝜏𝜏) be a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space and 𝐴𝐴 be a subset of 𝑋𝑋. Then a point 𝑥𝑥 ∈ 𝑋𝑋 is a pg**-limit point of 𝐴𝐴 if 
and only if every pg**-open set containing 𝑥𝑥 contains infinitely many points of 𝐴𝐴. Consequently in a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space no 
finite set has a pg**-limit point. 
 
Proof: Let𝑥𝑥 be a pg**-limit point of 𝐴𝐴 and 𝑈𝑈 be a pg**-open set containing 𝑥𝑥. Suppose 𝑈𝑈 intersects 𝐴𝐴 in only finitely 
many points. Then 𝑈𝑈 also intersects 𝐴𝐴 − {𝑥𝑥} in finitely many points. Let 𝐸𝐸 = 𝑈𝑈 ∩ 𝐴𝐴 − {𝑥𝑥} = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚 }. Then 𝐸𝐸 is 
pg**-closed, since 𝑋𝑋 is pg**-T1 space. Therefore 𝐸𝐸𝑐𝑐 ∩ 𝑈𝑈 is pg**-open set containing 𝑥𝑥. (𝐸𝐸𝑐𝑐 ∩ 𝑈𝑈) ∩ (𝐴𝐴 − {𝑥𝑥}) = 𝐸𝐸𝑐𝑐 ∩
𝐸𝐸 = 𝜑𝜑, which is a contradiction to 𝑥𝑥 is a pg**-limit point of 𝐴𝐴. Therefore 𝑈𝑈 intersects 𝐴𝐴 ininfinitely many points of 𝐴𝐴. 
Conversely if every pg**-open set containing 𝑥𝑥 contains infinitely many points of 𝐴𝐴, it certainly intersects 𝐴𝐴 in some 
point other than 𝑥𝑥 itself, so that 𝑥𝑥 is a pg**-limit point of 𝐴𝐴. 
 
Corollary 5.19: Any finite subset of 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space has no pg**-limit point. 
 
Proof follows from theorem (5.18). 
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Theorem 5.20: In a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1space 𝑋𝑋, if every infinite subset has a pg**-limit point then 𝑋𝑋 is pg**-countably compact.  
 
Proof: Let every infinite subset has apg**-limit point. We need to prove 𝑋𝑋is pg**-countably compact. Suppose not, 
then there exists a countable pg**-open cover {𝑈𝑈𝑛𝑛 } has no finite subcover.  
 
In view of the fact that 𝑈𝑈1 ≠ 𝑋𝑋, then there exists 𝑥𝑥1 ∉ 𝑈𝑈1 also 𝑋𝑋 ≠ 𝑈𝑈1 ∪ 𝑈𝑈2, then there exists 𝑥𝑥2 ∉ 𝑈𝑈1 ∪ 𝑈𝑈2. Proceeding 
like this there exists 𝑥𝑥𝑛𝑛 ∉ 𝑈𝑈1 ∪ 𝑈𝑈2 ∪ … ∪ 𝑈𝑈𝑛𝑛 for all 𝑛𝑛. Now 𝐴𝐴 = {𝑥𝑥𝑛𝑛} is an infinite set. If 𝑥𝑥 ∈ 𝑋𝑋 then 𝑥𝑥 ∈ 𝑈𝑈𝑛𝑛  for some 
𝑛𝑛. But 𝑥𝑥𝑚𝑚 ∉ 𝑈𝑈𝑛𝑛 ,   ∀𝑚𝑚 ≥ 𝑛𝑛. Since 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space 𝑈𝑈𝑛𝑛 − {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛−1} is a pg**-open set containing 𝑥𝑥 which does 
not have a point of 𝐴𝐴  other than 𝑥𝑥 . Contradicting the fact that every infinite subset of 𝑋𝑋  has a pg**-limit point. 
Therefore 𝑋𝑋 is pg**-countably compact. 
 
Remark 5.21: A sequence in a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  spaceis pg**-congregates to more than one pg**-limit. In fact a sequence can 
pg**-congregates to every point of the space. Consider the following example. 
 
Let (X, τ) be an infinite topological space with co finite topology, 〈𝑥𝑥𝑛𝑛〉 be any sequence in X and 𝑥𝑥 ∈ 𝑋𝑋. To prove 

〈𝑥𝑥𝑛𝑛〉
     𝑝𝑝𝑝𝑝∗∗
�⎯⎯⎯�𝑥𝑥. Let 𝑈𝑈 ∈ τ such that 𝑥𝑥 ∈ 𝑈𝑈. 𝑈𝑈 ∈ τimplies 𝑈𝑈 ∈ 𝑃𝑃𝑃𝑃∗∗𝑂𝑂(𝑋𝑋, 𝜏𝜏)and 𝑋𝑋 − 𝑈𝑈 is a finite. Find the largest 𝑛𝑛0 ∈ ℕ 

such that 𝑥𝑥𝑛𝑛0 ∈ 𝑋𝑋 − 𝑈𝑈. Therefore 𝑥𝑥𝑛𝑛 ∈ 𝑈𝑈  ∀ 𝑛𝑛 ≥ 𝑛𝑛0. This shows that 〈𝑥𝑥𝑛𝑛〉
     𝑝𝑝𝑝𝑝∗∗
�⎯⎯⎯�𝑥𝑥 in 𝑋𝑋. Since 𝑥𝑥 ∈ 𝑋𝑋 is arbitrary, we get 

any sequence in (X, τ) pg**-congregates to every point of the space. 
 
Theorem 5.22: If 𝑋𝑋 is infinite pg**-additive 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space then it is not pg**-compact. 
 
Proof: In a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space{𝑥𝑥} is pg**-closed for all 𝑥𝑥 ∈ 𝑋𝑋 . Therefore every subset of 𝑋𝑋  is pg**-clopen. Therefore 
{{𝑥𝑥}/𝑥𝑥 ∈ 𝑋𝑋} is a pg**-open cover for 𝑋𝑋 which has no finite subcover. 
 
Theorem 5.23: Let (X, τ) and (Y, σ)  be two topological spaces and 𝑓𝑓 ∶ (X, τ) → (Y, σ) be a bijection. Then, 

1. 𝑓𝑓 is pg**-continuous and 𝑌𝑌 is a 𝑇𝑇1 space⟹ 𝑋𝑋 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space. 
2. 𝑓𝑓 is continuous and 𝑌𝑌is a𝑇𝑇1 space ⟹  𝑋𝑋 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space. 
3. 𝑓𝑓 is pg**-irresolute and 𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space ⟹ 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space. 
4. 𝑓𝑓 is pg**- resolute and 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space⟹ 𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space. 
5. 𝑓𝑓 is pg**-open and 𝑋𝑋 is a 𝑇𝑇1 space⟹ 𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space. 
6. 𝑓𝑓 is strongly pg**-continuous and 𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space⟹ 𝑋𝑋 is a 𝑇𝑇1 space. 

 
Proof: (1) Let𝑥𝑥 and 𝑦𝑦 be two distinct points of 𝑋𝑋, then 𝑓𝑓(𝑥𝑥) and 𝑓𝑓(𝑦𝑦) are distinct points of 𝑌𝑌. Then there exists pg**- 
open sets 𝑈𝑈𝑥𝑥 and𝑈𝑈𝑦𝑦  in 𝑌𝑌 such that 𝑓𝑓(𝑥𝑥) ∈ 𝑈𝑈𝑥𝑥 , 𝑓𝑓(𝑦𝑦) ∉ 𝑈𝑈𝑥𝑥 and𝑓𝑓(𝑦𝑦) ∈ 𝑈𝑈𝑦𝑦 , 𝑓𝑓(𝑥𝑥) ∉ 𝑈𝑈𝑦𝑦 . Then 𝑓𝑓−1(𝑈𝑈𝑥𝑥)  and 𝑓𝑓−1(𝑈𝑈𝑦𝑦) are 
pg**- open sets in 𝑋𝑋  such that 𝑥𝑥 ∈ 𝑓𝑓−1(𝑈𝑈𝑥𝑥)  , 𝑦𝑦 ∉ 𝑓𝑓−1(𝑈𝑈𝑥𝑥)  or 𝑦𝑦 ∈ 𝑓𝑓−1(𝑈𝑈𝑦𝑦) , 𝑥𝑥 ∉ 𝑓𝑓−1(𝑈𝑈𝑦𝑦) . Therefore 𝑋𝑋  is a 
𝑝𝑝𝑝𝑝∗∗𝑇𝑇1space. 
 
Proofs for (2) to (6) are similar to the above.  
 
Remark 5.24: The property of being 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space, is a pg**- topological property. This follows from (3) and (4) of the 
above theorem. 
 
6. 𝒑𝒑𝒑𝒑∗∗𝑻𝑻𝟏𝟏 modulo I space 
 
Definition 6.1: An ideal topological space (𝑋𝑋, 𝜏𝜏, I ) is said to be 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 modulo I if for every pair of points 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 
and 𝑥𝑥 ≠ 𝑦𝑦 there exists pg**-open set 𝑈𝑈𝑥𝑥 ,𝑈𝑈𝑦𝑦  containing 𝑥𝑥,𝑦𝑦 respectively, such that𝑈𝑈𝑥𝑥 ∩ {𝑦𝑦} ∈ 𝐼𝐼,𝑈𝑈𝑦𝑦 ∩ {𝑥𝑥} ∈ 𝐼𝐼. 
 
Example 6.2: An ideal topological space(𝑋𝑋, 𝜏𝜏, I ) where 𝐼𝐼 = 𝓅𝓅(𝑋𝑋) is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 modulo I space. 
 
Example 6.3: Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}} and  𝐼𝐼 = 𝜑𝜑, then (𝑋𝑋, 𝜏𝜏, 𝜑𝜑) is not𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo Ispace. 
 
Theorem 6.4: Every 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo I space for every ideal I. 
 
Proof is obvious since 𝜑𝜑 ∈ 𝐼𝐼. 
 
Remark 6.5: If 𝐼𝐼 = {𝜑𝜑} then both 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 space and 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo I space happen together. 
 
Theorem 6.6: Every ideal topological space which is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo I is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 modulo I space. 
 
Proof follows from the definitions. 
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Remark 6.7: The converse of the above theorem is not true as seen in the following example. 
 
Example 6.8: Let𝑋𝑋 = {𝑎𝑎,𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}} and 𝐼𝐼 = {𝜑𝜑, {𝑏𝑏}}, then (𝑋𝑋, 𝜏𝜏, 𝐼𝐼) is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0modulo I  but not 
𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo I space. 
 
Theorem 6.9: Let 𝐼𝐼, 𝐽𝐽 be ideals of 𝑋𝑋 and if 𝐼𝐼 ⊆ 𝐽𝐽, then (𝑋𝑋, 𝜏𝜏, I ) is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo I  implies (𝑋𝑋, 𝜏𝜏, 𝐽𝐽) is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo 𝐽𝐽.     
 
Proof: If 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 and 𝑥𝑥 ≠ 𝑦𝑦, then there exists disjoint pg**-open sets 𝑈𝑈𝑥𝑥 ,𝑈𝑈𝑦𝑦  containing 𝑥𝑥,𝑦𝑦 respectively such that 
𝑈𝑈𝑥𝑥 ∩ 𝑈𝑈𝑦𝑦 = 𝜑𝜑 ∈ 𝐼𝐼 ⊆ 𝐽𝐽. Therefore (𝑋𝑋, 𝜏𝜏, 𝐽𝐽) is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo𝐽𝐽 space. 
 
Theorem 6.10: Let(𝑋𝑋, 𝜏𝜏,I) and (𝑌𝑌,𝜎𝜎,J) be two ideal topological spaces and 𝑓𝑓 ∶ (X, τ, 𝐼𝐼) → (Y,σ, 𝐽𝐽) be a bijection where 
J = 𝑓𝑓(𝐼𝐼) is an ideal in 𝑌𝑌 then, 

1. 𝑓𝑓 is pg**-resolute and 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo I space⟹ 𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo 𝐽𝐽 space. 
2. 𝑓𝑓 is pg**-continuous and 𝑌𝑌 is a 𝑇𝑇1modulo 𝐽𝐽 space⟹ 𝑋𝑋 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo I space. 
3. 𝑓𝑓 is continuous and 𝑌𝑌 is a 𝑇𝑇1modulo 𝐽𝐽 space⟹  𝑋𝑋 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo I space. 
4. 𝑓𝑓 is pg**-irresolute and 𝑌𝑌 is 𝑇𝑇1modulo 𝐽𝐽 space ⟹ 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo I space. 
5. 𝑓𝑓 is pg**-open and 𝑋𝑋 is a 𝑇𝑇1 space⟹  𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo 𝐽𝐽 space. 
6. 𝑓𝑓 is open and𝑋𝑋 is a 𝑇𝑇1 space⟹  𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo 𝐽𝐽 space. 

 
Proof: (1) Let 𝑦𝑦1 ≠ 𝑦𝑦2 ∈ 𝑌𝑌. Since 𝑓𝑓   is a bijection there exists 𝑥𝑥1 ≠ 𝑥𝑥2 ∈ 𝑋𝑋 such that 𝑓𝑓(𝑥𝑥1) = 𝑦𝑦1  and 𝑓𝑓(𝑥𝑥2) = 𝑦𝑦2 . 
Since 𝑋𝑋  is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 modulo I space there exists pg**- open sets 𝑈𝑈  and  𝑉𝑉  in 𝑋𝑋  such that 𝑥𝑥1 ∈ 𝑈𝑈,𝑈𝑈 ∩ {𝑥𝑥2} ∈ 𝐼𝐼 and           
𝑥𝑥2 ∈ 𝑉𝑉,𝑉𝑉 ∩ {𝑥𝑥1} ∈ 𝐼𝐼this implies 𝑦𝑦1 ∈ 𝑓𝑓(𝑈𝑈), 𝑓𝑓(𝑈𝑈) ∩ {𝑦𝑦2} ∈ 𝐽𝐽 and𝑦𝑦2 ∈ 𝑓𝑓(𝑉𝑉), 𝑓𝑓(𝑉𝑉) ∩ {𝑦𝑦1} ∈ 𝐽𝐽 where 𝑓𝑓(𝑈𝑈) and 𝑓𝑓(𝑉𝑉) are 
pg**- open in 𝑌𝑌. Therefore (Y,σ, 𝐽𝐽) is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo𝐽𝐽 space. 
 
Proofs for (2) to (6) are similar to (1). 
 
7. 𝒑𝒑𝒑𝒑∗∗𝑻𝑻𝟐𝟐 Space 
 
Definition 7.1: A topological space (𝑋𝑋, 𝜏𝜏) is said to be 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space if 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 and 𝑥𝑥 ≠ 𝑦𝑦, there exists disjoint pg**- 
open sets 𝑈𝑈𝑥𝑥 ,𝑈𝑈𝑦𝑦  containing 𝑥𝑥,𝑦𝑦 respectively. 
 
Example 7.2: Every discrete and indiscrete topological space is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space, since every subset is pg**-open. For, if 
𝑥𝑥 ≠ 𝑦𝑦 in 𝑋𝑋, 𝑈𝑈 = {𝑥𝑥} and 𝑉𝑉 = {𝑦𝑦} are disjoint pg**-open sets. 
 
Example 7.3: An infinite set with cofinite topology is not 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2, since it is impossible to find two disjoint pg**-open 
sets. 
 
Theorem 7.4: Every𝑇𝑇2 space is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2space but not conversely. 
 
Proof is obvious since every open set is pg**-open set. 
 
Example 7.5: An indiscrete topological space (𝑋𝑋, 𝜏𝜏) has more than one point is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 but not a T2 space. 
 
Remark 7.6:  

(i) The properties 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 , 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  and 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  are separation properties through pg**-open sets in increasing 
order of strictness. That is, we have 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 ⇒ 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1 ⇒ 𝑝𝑝𝑝𝑝∗∗𝑇𝑇0 .  

(ii) If (𝑋𝑋, 𝜏𝜏) is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space and 𝜏𝜏∗ ⊇ 𝜏𝜏, then (𝑋𝑋, 𝜏𝜏∗) is also 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space. 
 
Theorem 7.7: If 𝑋𝑋  is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space then for 𝑥𝑥 ≠ 𝑦𝑦 ∈ 𝑋𝑋  there exists a pg**-open set 𝑈𝑈  such that 𝑥𝑥 ∈ 𝑈𝑈 and                    
𝑦𝑦 ∉ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑈𝑈). 
 
Proof: Let 𝑥𝑥, 𝑦𝑦 be distinct points of 𝑋𝑋. Since 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 there exists disjoint pg**-open sets 𝑈𝑈 and 𝑉𝑉 in 𝑋𝑋 such that 
𝑥𝑥 ∈ 𝑈𝑈 and 𝑦𝑦 ∈ 𝑉𝑉 . Therefore 𝑉𝑉𝑐𝑐 is pg**-closed set such that 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑈𝑈) ⊆ 𝑉𝑉𝑐𝑐 . Since 𝑦𝑦 ∈ 𝑉𝑉 , we have 𝑦𝑦 ∉ 𝑉𝑉𝑐𝑐 . Thus 
𝑦𝑦 ∉ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑈𝑈). 
 
Theorem 7.8: Let (𝑋𝑋, 𝜏𝜏) and (𝑌𝑌,𝜎𝜎) be two topological spaces and 𝑓𝑓 and 𝑔𝑔 be pg**-irresolute functions from 𝑋𝑋 to 𝑌𝑌. If  
𝑌𝑌 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space then the set 𝐴𝐴 = {𝑥𝑥 ∈ 𝑋𝑋/𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥)} is pg**-closed in 𝑋𝑋. 
 
Proof: If 𝑦𝑦 ∈ 𝑋𝑋 − 𝐴𝐴 , then 𝑓𝑓(𝑦𝑦) ≠ 𝑔𝑔(𝑦𝑦) . Since 𝑌𝑌  is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space there exists pg**-open sets 𝑈𝑈  and 𝑉𝑉  such that 
𝑓𝑓(𝑦𝑦) ∈ 𝑈𝑈, 𝑔𝑔(𝑦𝑦) ∈ 𝑉𝑉 and 𝑈𝑈 ∩ 𝑉𝑉 = 𝜑𝜑, this implies 𝑦𝑦 ∈ 𝑓𝑓−1(𝑈𝑈) ∩  𝑔𝑔−1(𝑉𝑉) = 𝐺𝐺  ispg**-open in 𝑋𝑋. Consequently𝐺𝐺  is a 
pg**-neighbourhood of 𝑦𝑦 ∈ 𝑋𝑋 − 𝐴𝐴and hence𝑋𝑋 − 𝐴𝐴 is pg**-open. Therefore 𝐴𝐴 is pg**-closed in 𝑋𝑋. 
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Theorem 7.9: Let (𝑋𝑋, 𝜏𝜏) and (𝑌𝑌,𝜎𝜎) be two topological spaces and 𝑓𝑓 and 𝑔𝑔 be pg**-continuous functions from 𝑋𝑋 to 𝑌𝑌. 
If  𝑌𝑌 is a 𝑇𝑇2 space then the set 𝐴𝐴 = {𝑥𝑥 ∈ 𝑋𝑋/𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥)} is pg**-closed in 𝑋𝑋. 
 
Proof is similar to the above theorem. 
 
Theorem 7.10: Let 𝑓𝑓 ∶ (X, τ) → (Y, σ) be an injective map and 𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2space. If 𝑓𝑓 is pg**-totally continuous then 𝑋𝑋 
is ultra-Hausdorff. 
 
Proof: Let𝑥𝑥 and 𝑦𝑦 be any two distinct points in 𝑋𝑋. Since 𝑓𝑓 is injective,𝑓𝑓(𝑥𝑥) and 𝑓𝑓(𝑦𝑦) are distinct points in 𝑌𝑌. Since 𝑌𝑌 is 
𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space there exists pg**- open sets 𝑈𝑈𝑥𝑥 ,𝑈𝑈𝑦𝑦 such that 𝑓𝑓(𝑥𝑥) ∈ 𝑈𝑈𝑥𝑥 , 𝑓𝑓(𝑦𝑦) ∈ 𝑈𝑈𝑦𝑦 and 𝑈𝑈𝑥𝑥 ∩ 𝑈𝑈𝑦𝑦 = 𝜑𝜑 . Then 𝑥𝑥 ∈
𝑓𝑓−1(𝑈𝑈𝑥𝑥) and 𝑦𝑦 ∈ 𝑓𝑓−1(𝑈𝑈𝑦𝑦 ). Since 𝑓𝑓 is pg**- totally continuous𝑓𝑓−1(𝑈𝑈𝑥𝑥)and 𝑓𝑓−1(𝑈𝑈𝑦𝑦) are clopen in 𝑋𝑋. Also 𝑓𝑓−1(𝑈𝑈𝑥𝑥) ∩
𝑓𝑓−1�𝑈𝑈𝑦𝑦� = 𝜑𝜑.  This implies every pair of distinct points of 𝑋𝑋 can be separated by disjointclopen sets. Therefore 𝑋𝑋 is 
ultra-Hausdorff. 
 
Theorem 7.11: If (𝑋𝑋, 𝜏𝜏)is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space then a sequence of points of 𝑋𝑋 pg**-congregates to atmost a point of 𝑋𝑋. 
 

Proof: Let 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 and 𝑥𝑥 ≠ 𝑦𝑦 , suppose 〈𝑥𝑥𝑛𝑛〉
    𝑝𝑝𝑝𝑝∗∗
�⎯⎯⎯�𝑥𝑥  and 〈𝑥𝑥𝑛𝑛〉

    𝑝𝑝𝑝𝑝∗∗
�⎯⎯⎯� 𝑦𝑦 . Since 𝑋𝑋  is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space there exists 

disjointpg**-open sets 𝑈𝑈 and 𝑉𝑉 such that 𝑥𝑥 ∈ 𝑈𝑈 and 𝑦𝑦 ∈ 𝑉𝑉. Since 〈𝑥𝑥𝑛𝑛〉
    𝑝𝑝𝑝𝑝∗∗
�⎯⎯⎯�𝑥𝑥 there exists a positive integer 𝑁𝑁 such 

that 𝑥𝑥𝑛𝑛 ∈ 𝑈𝑈, ∀ 𝑛𝑛 ≥ 𝑁𝑁. Hence 𝑉𝑉 can contain only finitely many points of the sequence 〈𝑥𝑥𝑛𝑛〉. Therefore 〈𝑥𝑥𝑛𝑛〉 does not 
pg**-congregates to 𝑦𝑦. 
 
Definition 7.12: If 𝑓𝑓:𝑋𝑋 → 𝑋𝑋 is a function then define 𝐹𝐹𝐹𝐹𝐹𝐹 (𝑓𝑓) = {𝑥𝑥 ∈ 𝑋𝑋/𝑓𝑓(𝑥𝑥) = 𝑥𝑥}. 
 
Theorem 7.13: If (𝑋𝑋, 𝜏𝜏)is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space and 𝑓𝑓 is pg**-irresolute function of 𝑋𝑋 into itself then 𝐹𝐹𝐹𝐹𝐹𝐹(𝑓𝑓) is pg**-closed. 
 
Proof: Let 𝐹𝐹𝐹𝐹𝐹𝐹(𝑓𝑓) = 𝐴𝐴. To prove 𝑋𝑋 − 𝐴𝐴 is pg**-open, suppose 𝑋𝑋 − 𝐴𝐴 is empty then it is pg**-open. Presume that 
𝑋𝑋 − 𝐴𝐴 ≠ 𝜑𝜑, then there exists 𝑦𝑦 ∈ 𝑋𝑋 − 𝐴𝐴. Therefore 𝑓𝑓(𝑦𝑦) ≠ 𝑦𝑦. Since 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2, there exists disjoint pg**-open sets 𝑈𝑈 
and 𝑉𝑉  such that 𝑦𝑦 ∈ 𝑈𝑈  and 𝑓𝑓(𝑦𝑦) ∈ 𝑉𝑉 . Therefore 𝑈𝑈 ∩ 𝑓𝑓−1(𝑉𝑉)  is a pg**-open set containing 𝑦𝑦 . Suppose if                     
𝑥𝑥 ∈ 𝑈𝑈 ∩ 𝑓𝑓−1(𝑉𝑉), then 𝑓𝑓(𝑥𝑥) ≠ 𝑥𝑥 which implies 𝑥𝑥 ∉ 𝐴𝐴. Therefore 𝑈𝑈 ∩ 𝑓𝑓−1(𝑉𝑉) ⊆ 𝑋𝑋 − 𝐴𝐴. Therefore 𝑋𝑋 − 𝐴𝐴 is pg**-open. 
 
Theorem 7.14: If (𝑋𝑋, 𝜏𝜏)is a 𝑇𝑇2 space and 𝑓𝑓 is pg**-continuous function of 𝑋𝑋 into itself then 𝐹𝐹𝐹𝐹𝐹𝐹(𝑓𝑓) is pg**-closed. 
 
Proof is similar to the above. 
 
Theorem 7.15: Product of two 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space. 
 
Proof: Let 𝑋𝑋 × 𝑌𝑌 be the product of two topological spaces 𝑋𝑋and 𝑌𝑌. Let 𝑥𝑥 and 𝑦𝑦 be any two distinct points in 𝑋𝑋 and  
(𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2) be any two distinct points of 𝑋𝑋 × 𝑌𝑌. Then either 𝑥𝑥1 ≠ 𝑥𝑥2  or 𝑦𝑦1 ≠ 𝑦𝑦2 . If 𝑥𝑥1 ≠ 𝑥𝑥2  and since 𝑋𝑋 is 
𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space there exists pg**- open sets 𝑈𝑈𝑥𝑥 ,𝑈𝑈𝑦𝑦  containing 𝑥𝑥,𝑦𝑦  respectively. Consequently 𝑈𝑈𝑥𝑥 × 𝑌𝑌  and 𝑈𝑈𝑦𝑦 × 𝑌𝑌  are 
pg**- open sets containing (𝑥𝑥1,𝑦𝑦1)  and (𝑥𝑥2,𝑦𝑦2) respectively such that (𝑈𝑈𝑥𝑥 × 𝑌𝑌) ∩ (𝑈𝑈𝑦𝑦 × 𝑌𝑌) = �𝑈𝑈𝑥𝑥 ∩ 𝑈𝑈𝑦𝑦� × 𝑌𝑌 = 𝜑𝜑 . 
Therefore 𝑋𝑋 × 𝑌𝑌 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space. 
 
8. 𝒑𝒑𝒑𝒑∗∗𝑻𝑻𝟐𝟐 Spaces and 𝒑𝒑𝒑𝒑∗∗Compact spaces 
 
Theorem 8.1: Let (𝑋𝑋, 𝜏𝜏)be a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space, then every pg**-compact subset of 𝑋𝑋 is pg**-closed. 
 
Proof: Let 𝑌𝑌 be a pg**-compact subset of 𝑋𝑋 and 𝑥𝑥 ∈ 𝑋𝑋 − 𝑌𝑌. Then for every 𝑦𝑦 ∈ 𝑌𝑌 there exists disjointpg**-open sets 
𝑈𝑈𝑥𝑥  and 𝑉𝑉𝑦𝑦  containing 𝑥𝑥  and 𝑦𝑦 respectively. Now {𝑉𝑉𝑦𝑦/𝑦𝑦 ∈ 𝑌𝑌}  forms a pg**-open cover for 𝑌𝑌 , then there exists 

{𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, … ,𝑦𝑦𝑛𝑛} ∈ 𝑌𝑌 such that 𝑌𝑌 ⊆ ∪
𝑖𝑖 = 1

𝑛𝑛
𝑉𝑉𝑦𝑦𝑖𝑖 = 𝑉𝑉. Let 𝑈𝑈 = ∩

𝑖𝑖 = 1

𝑛𝑛
𝑈𝑈𝑥𝑥𝑖𝑖 , then 𝑈𝑈 is pg**-open.  

 
Obviously 𝑈𝑈 ∩ 𝑌𝑌 = 𝜑𝜑. Therefore 𝑈𝑈 is a pg**-neighbourhood of 𝑥𝑥 contained in 𝑋𝑋 − 𝑌𝑌. Therefore 𝑋𝑋 − 𝑌𝑌 is pg**-open 
and hence 𝑌𝑌 is pg**-closed.  
 
Remark 8.2: In theorem (8.1) 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  property is essential. An infinite cofinite topological space is pg**multiplicative 
but not 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space, in this space every subset is pg**-compact but only finite sets are pg**-closed. 
 
Theorem 8.3: If {𝑋𝑋𝛼𝛼} is a collection of pg**-compact subsets of a pg**-multiplicative pg**𝑇𝑇2 space(𝑋𝑋, 𝜏𝜏) such that 
the intersection of every finite subcollection of {𝑋𝑋𝛼𝛼 } is nonempty, then ∩ 𝑋𝑋𝛼𝛼  is nonempty. 
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Proof: Fix a member 𝑋𝑋1 of {𝑋𝑋𝛼𝛼} and put 𝑈𝑈𝛼𝛼 = 𝑋𝑋𝛼𝛼𝑐𝑐 . Assume that no point of 𝑋𝑋1 belongs to every 𝑋𝑋𝛼𝛼 . Then the sets 
𝑈𝑈𝛼𝛼 form an pg**- open cover of 𝑋𝑋1 , and since 𝑋𝑋1  is pg**-compact, there are finitely many indices 
𝛼𝛼1 ,𝛼𝛼2 ,𝛼𝛼3 , … ,𝛼𝛼𝑛𝑛 such that 𝑋𝑋1 ⊂ 𝑈𝑈𝛼𝛼1 ∪ 𝑈𝑈𝛼𝛼2 ∪ …∪ 𝑈𝑈𝛼𝛼𝑛𝑛 . But this implies 𝑋𝑋1 ∩ 𝑋𝑋𝛼𝛼1 ∩ 𝑋𝑋𝛼𝛼2 ∩ …∩ 𝑋𝑋𝛼𝛼𝑛𝑛  is empty, 
contradiction to our hypothesis. Therefore ∩ 𝑋𝑋𝛼𝛼  is nonempty. 
 
Theorem 8.4: A pg**multiplicative space(𝑋𝑋, 𝜏𝜏) is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 if and only if two disjoint pg**-compact subsets of 𝑋𝑋 can be 
separated by disjoint pg**-open sets 
 
Proof: Let  (𝑋𝑋, 𝜏𝜏) be a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space and 𝐴𝐴,𝐵𝐵 be disjointpg**-compact subsets of 𝑋𝑋. Choose 𝑥𝑥 ∈ 𝐴𝐴, then for every 
𝑦𝑦 ∈ 𝐵𝐵  we have 𝑥𝑥 ≠ 𝑦𝑦 , since 𝑋𝑋  is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  there exists disjointpg**-open sets 𝑈𝑈𝑥𝑥  and 𝑉𝑉𝑦𝑦  containing 𝑥𝑥  and 𝑦𝑦 
respectively.Now 𝐵𝐵 = ∪

𝑦𝑦∈𝐵𝐵
{𝑦𝑦} ⊆ ∪

𝑦𝑦∈𝐵𝐵
𝑉𝑉𝑦𝑦 , we get {𝑉𝑉𝑦𝑦/𝑦𝑦 ∈ 𝐵𝐵}  forms a pg**-open cover for 𝐵𝐵 , then there exists 

{𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, … ,𝑦𝑦𝑛𝑛} ∈ 𝑌𝑌 such that𝐵𝐵 ⊆ ∪
𝑖𝑖 = 1

𝑛𝑛
𝑉𝑉𝑦𝑦𝑖𝑖 = 𝑉𝑉 . Define 𝑈𝑈𝑎𝑎 = ∩

𝑖𝑖 = 1

𝑛𝑛
𝑈𝑈𝑥𝑥𝑖𝑖 , then 𝑈𝑈𝑛𝑛  is pg**-open. 𝑥𝑥 ∈ 𝑈𝑈𝑛𝑛 and 𝑈𝑈𝑎𝑎 ∩ 𝑉𝑉 = 𝜑𝜑. 

Seeing as  𝐴𝐴 = ∪
𝑥𝑥∈𝐴𝐴

{𝑥𝑥} ⊆ ∪
𝑥𝑥∈𝐴𝐴

𝑈𝑈𝑛𝑛 , we get {𝑈𝑈𝑎𝑎/𝑎𝑎 ∈ 𝐴𝐴}  forms a pg**-open cover for 𝐴𝐴 . Since 𝐴𝐴  is pg**-compact             

𝐴𝐴 ⊆ ∪
𝑖𝑖 = 1

𝑚𝑚
𝑈𝑈𝑎𝑎 𝑖𝑖 = 𝑈𝑈 (say). Since 𝑋𝑋  is pg**multiplicative 𝑈𝑈  is pg**-open. Since 𝑈𝑈𝑎𝑎 ∩ 𝑉𝑉 = 𝜑𝜑  for every  𝑎𝑎 ∈ 𝐴𝐴 , we get 

𝑈𝑈 ∩ 𝑉𝑉 = 𝜑𝜑. Therefore the pg**-open sets𝑈𝑈 and 𝑉𝑉 are disjoint pg**-open sets containing 𝐴𝐴,𝐵𝐵 respectively. Conversely 
assume that any two disjoint pg**-compact subsets of 𝑋𝑋 can be separated by disjoint pg**-open sets. Let 𝑥𝑥 ≠ 𝑦𝑦 ∈ 𝑋𝑋 
then {𝑥𝑥} and {𝑦𝑦} are disjoint pg**-compact subsets of 𝑋𝑋. By hypothesis there exists disjoint pg**-open sets 𝑈𝑈 and 𝑉𝑉 
such that {𝑥𝑥} ⊆ 𝑈𝑈, {𝑦𝑦} ⊆ 𝑉𝑉. Therefore 𝑋𝑋 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space. 
 
Theorem 8.5: If a nonempty pg**multiplicative pg**-compact𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space 𝑋𝑋 has no pg**-isolated points then 𝑋𝑋 is 
uncountable. 
 
Proof: Let 𝑥𝑥1 ∈ 𝑋𝑋. Since 𝑋𝑋 has no isolated points we can choose 𝑦𝑦 ∈ 𝑋𝑋 such that 𝑥𝑥1 ≠ 𝑦𝑦. Since 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 there exists 
disjointpg**-open sets 𝑈𝑈1  and 𝑉𝑉1  containing 𝑥𝑥1  and 𝑦𝑦  respectively. Therefore 𝑉𝑉1  is a pg**-open set and 𝑥𝑥1 ∉
𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉1). Repeating the same process with 𝑉𝑉1 = 𝑋𝑋 and 𝑥𝑥1 ≠ 𝑥𝑥, then we get a pg**-open set 𝑉𝑉2 and 𝑥𝑥1 ∉ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉2).  
 
In general for a nonempty pg**-open set 𝑉𝑉𝑛𝑛−1, we get pg**-open set 𝑉𝑉𝑛𝑛  such that 𝑉𝑉𝑛𝑛 ⊆ 𝑉𝑉𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 ∉ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉𝑛𝑛). Thus 
we get a nested sequence of pg**-closed sets such that 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉𝑛𝑛) ⊇ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉𝑛𝑛+1) ⊇ ⋯ , since 𝑋𝑋 is pg**-compact 
there exists 𝑥𝑥 ∈ ∩ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉𝑛𝑛) . Define 𝑓𝑓:ℕ → 𝑋𝑋  such that 𝑓𝑓(𝑛𝑛) = 𝑥𝑥𝑛𝑛 . We show that there exists 𝑥𝑥 ∈ 𝑋𝑋 − 𝑓𝑓(ℕ) . 
𝑥𝑥 ∈ ∩ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉𝑛𝑛) but 𝑥𝑥𝑛𝑛 ∉ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉𝑛𝑛) this implies 𝑥𝑥 ≠ 𝑥𝑥𝑛𝑛  for every 𝑛𝑛. Therefore 𝑥𝑥 ∈ 𝑋𝑋 − 𝑓𝑓(ℕ). 𝑓𝑓:ℕ → 𝑋𝑋 is not onto 
and hence 𝑋𝑋 is uncountable. 
 
Theorem 8.6: Let (𝑋𝑋, 𝜏𝜏) be a pg**multiplicative 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space. Then 𝑋𝑋 is pg**-locally compact if and only if each of 
its points is a pg**-interior point of some pg**-compact subset of 𝑋𝑋. 
 
Proof: Let 𝑋𝑋be pg**-locally compact and 𝑥𝑥 ∈ 𝑋𝑋. Thenthere is some pg**-compact subset 𝐶𝐶 of X that contains a pg**-
neighbourhood 𝑁𝑁 of 𝑥𝑥. Conversely let every point 𝑥𝑥 ∈ 𝑋𝑋 be a pg**-interior point of some pg**-compact subset 𝐶𝐶 of 𝑋𝑋. 
Then 𝐶𝐶 is a pg**-neighbourhood 𝑥𝑥. Since 𝐶𝐶 is pg**-compact it is pg**-closed. Therefore 𝑋𝑋 is pg**-locally compact. 
 
Theorem 8.7: Every pg**- irresolute mapping of a pg**-compact space into a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space is pg**- resolve. 
 
Proof: Let (𝑋𝑋, 𝜏𝜏)be pg**-compact space and (𝑌𝑌,𝜎𝜎) be a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space. Let 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 be a pg**- irresolute map and 𝐹𝐹 
be pg**-closed in 𝑋𝑋. To prove 𝑓𝑓(𝐹𝐹) is pg**-closed in 𝑌𝑌. Since 𝐹𝐹 is a pg**-closed subset of a pg**-compact space 𝑋𝑋, 𝐹𝐹 
is pg**-compact. Also 𝑓𝑓:𝑋𝑋 → 𝑌𝑌is pg**- irresolute and 𝐹𝐹 is pg**-compact implies 𝑓𝑓(𝐹𝐹) is pg**-compact subset of 𝑌𝑌. 
Since 𝑓𝑓(𝐹𝐹) is pg**-compact subset of a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space 𝑓𝑓(𝐹𝐹) is pg**-closed. Therefore 𝑓𝑓 is pg**-resolve. 
 
Theorem 8.8: A one-one pg**-irresolute mapping of a pg**-compact space onto apg**multiplicative 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space is a 
pg**-homeomorphism. 
 
Proof: Let 𝑋𝑋 be pg**-compact, 𝑌𝑌pg**multiplicative 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space and 𝑓𝑓 a one-one pg**-irresolute mapping onto 𝑌𝑌. In 
order to show that 𝑓𝑓 is a pg**-homeomorphism, it is only necessary to show that it carries pg**-open sets into pg**-
open sets or unvaryingly pg**-closed sets into pg**-closed sets. But if 𝐸𝐸 is a pg**-closed subset of 𝑋𝑋, then 𝐸𝐸 is pg**-
compact. Since 𝑓𝑓 is pg**-irresolute 𝑓𝑓(𝐸𝐸) is pg**-compact. Therefore by theorem (8.1) 𝑓𝑓(𝐸𝐸) is pg**-closed. 
 
Theorem 8.9: Let (𝑋𝑋, 𝜏𝜏)be a pg**multiplicative 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space. If 𝐸𝐸 and 𝐹𝐹 are subsets of 𝑋𝑋 and if 𝐸𝐸 is pg**-closed and 
𝐹𝐹 is pg**-compact, then 𝐸𝐸 ∩ 𝐹𝐹 is pg**-compact. 
 
Proof: Since 𝑋𝑋 is a pg**multiplicative 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space 𝐸𝐸 ∩ 𝐹𝐹 is pg**-closed. Also 𝐸𝐸 ∩ 𝐹𝐹is a pg**-closed subset of a 
pg**-compact space 𝐹𝐹. Therefore 𝐸𝐸 ∩ 𝐹𝐹 is pg**-compact. 
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9. 𝒑𝒑𝒑𝒑∗∗𝑻𝑻𝟐𝟐 modulo I space 
 
Definition 9.1: An ideal topological space (𝑋𝑋, 𝜏𝜏, I ) is said to be 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 modulo I if for every pair of points 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 
and 𝑥𝑥 ≠ 𝑦𝑦 there exists pg**-open set 𝑈𝑈,𝑉𝑉 such that𝑥𝑥 ∈ 𝑈𝑈 − 𝑉𝑉,𝑦𝑦 ∈ 𝑉𝑉 − 𝑈𝑈 and 𝑈𝑈 ∩ 𝑉𝑉 ∈ 𝐼𝐼. 
 
Example 9.2: For any ideal 𝐼𝐼 an indiscrete topological space (𝑋𝑋, 𝜏𝜏, I ) is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo I space. 
 
Example 9.3: Let(𝑋𝑋, 𝜏𝜏, I) be an infinite co finite ideal topological space with 𝐼𝐼 = {𝜑𝜑}. It is not possible to find two 
disjoint pg**-open sets of 𝑋𝑋 such that 𝑥𝑥 ∈ 𝑈𝑈 − 𝑉𝑉,𝑦𝑦 ∈ 𝑉𝑉 − 𝑈𝑈 and 𝑈𝑈 ∩ 𝑉𝑉 ∈ 𝐼𝐼. Therefore 𝑋𝑋 is not 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo I space. 
 
Theorem 9.4: Every 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo I space for every ideal I but not conversely. 
 
Proof is obvious since 𝜑𝜑 ∈ 𝐼𝐼. 
 
Example 9.5: Let 𝑋𝑋 be an infinite ideal topological space with cofinite topology and 𝐼𝐼 = 𝓅𝓅(𝑋𝑋), then the space is not 
𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 but it is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo I space. 
 
Remark 9.6: If𝐼𝐼 = {𝜑𝜑} then both 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 space and 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo I space coincide. 
 
Theorem 9.7: Let (𝑋𝑋, 𝜏𝜏, I) be 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo I and 𝐽𝐽 be an ideal of 𝑋𝑋 with 𝐼𝐼 ⊆ 𝐽𝐽, then (𝑋𝑋, 𝜏𝜏, 𝐽𝐽) is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo 𝐽𝐽.     
 
Proof is obvious. 
 
Theorem 9.8: Every ideal topological space which is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo I is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo I space. 
 
Proof follows from the definitions. 
 
Remark 9.9: The converse of the above theorem need not be true as seen in the following example. 
 
Example 9.10: Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝜏𝜏 = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}} , 𝑃𝑃𝑃𝑃∗∗𝑂𝑂(𝑋𝑋) = {𝜑𝜑,𝑋𝑋, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}} and 𝐼𝐼 = 𝓅𝓅(𝑋𝑋)  then    
(𝑋𝑋, 𝜏𝜏, 𝐼𝐼) is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1modulo I  but not 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo I space. 
 
Theorem 9.11: Let (𝑋𝑋, 𝜏𝜏, I) and (𝑌𝑌,𝜎𝜎, J) be two ideal topological spaces and 𝑓𝑓 ∶ (X, τ, 𝐼𝐼) → (Y,σ, 𝐽𝐽) be a bijection 
where J = 𝑓𝑓(𝐼𝐼) is an ideal in 𝑌𝑌 then, 

1. 𝑓𝑓 is pg**-resolute and 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo I space⟹ 𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo 𝐽𝐽 space. 
2. 𝑓𝑓 is pg**-continuous and 𝑌𝑌 is a 𝑇𝑇2modulo 𝐽𝐽 space⟹ 𝑋𝑋 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo I space. 
3. 𝑓𝑓 is continuous and 𝑌𝑌 is a 𝑇𝑇2modulo 𝐽𝐽 space⟹  𝑋𝑋 is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo I space. 
4. 𝑓𝑓 is pg**-irresolute and 𝑌𝑌 is 𝑇𝑇2modulo 𝐽𝐽 space ⟹ 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo I space. 
5. 𝑓𝑓 is pg**-open and𝑋𝑋 is a 𝑇𝑇2 space⟹  𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo 𝐽𝐽 space. 
6. 𝑓𝑓 is open and 𝑋𝑋 is a 𝑇𝑇2 space⟹  𝑌𝑌 is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo 𝐽𝐽 space. 

 
Proof:  (1) Let 𝑦𝑦1 ≠ 𝑦𝑦2 ∈ 𝑌𝑌. Since 𝑓𝑓  is a bijection there exists 𝑥𝑥1 ≠ 𝑥𝑥2 ∈ 𝑋𝑋 such that 𝑓𝑓(𝑥𝑥1) = 𝑦𝑦1 and 𝑓𝑓(𝑥𝑥2) = 𝑦𝑦2 . 
Since 𝑋𝑋  is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2 modulo I space there exists pg**- open sets 𝑈𝑈and 𝑉𝑉  in 𝑋𝑋  such that 𝑥𝑥1 ∈ 𝑈𝑈 − 𝑉𝑉, 𝑥𝑥2 ∈ 𝑉𝑉 − 𝑈𝑈 and 
𝑈𝑈 ∩ 𝑉𝑉 ∈ 𝐼𝐼. 
 
This implies 𝑦𝑦1 ∈ 𝑓𝑓(𝑈𝑈) − 𝑓𝑓(𝑉𝑉), 𝑓𝑓(𝑉𝑉) − 𝑓𝑓(𝑈𝑈)  and 𝑓𝑓(𝑉𝑉) ∩ 𝑓𝑓(𝑉𝑉) ∈ 𝐽𝐽 where 𝑓𝑓(𝑈𝑈)  and 𝑓𝑓(𝑉𝑉)  are pg**- open in 𝑌𝑌 . 
Therefore (Y,σ, 𝐽𝐽) is a 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2modulo 𝐽𝐽 space. 
 
Proofs for (2) to (6) are similar to (1). 
 
10. pg**regular spaces  
 
Definition 10.1: A 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space (𝑋𝑋, 𝜏𝜏) is said to be 𝑝𝑝𝑝𝑝∗∗regularif 𝐹𝐹 is a pg**- closed set and 𝑥𝑥 ∈ 𝑋𝑋 is a point such that 
𝑥𝑥 ∉ 𝐹𝐹, there exists disjoint pg**- open sets 𝑈𝑈𝐹𝐹 ,𝑈𝑈𝑥𝑥  containing 𝐹𝐹 and 𝑥𝑥respectively. 
 
Example 10.2: Every indiscrete topological space is 𝑝𝑝𝑝𝑝∗∗regular. 
 
If 𝐹𝐹  is a pg**-closed subset of 𝑋𝑋  and 𝑥𝑥 ∉ 𝐹𝐹  then {𝑥𝑥}  and 𝐹𝐹  are disjoint pg**- open sets containing 𝑥𝑥  and 𝐹𝐹 
respectively, Since every subset of a indiscrete topological space is pg**- open. 
 
Example 10.3: Any infinite co finite topological space is not 𝑝𝑝𝑝𝑝∗∗regular, since it is impossible to find disjoint pg**- 
open sets. 
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Theorem 10.4: Every 𝑝𝑝𝑝𝑝∗∗regular space is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space. 
 
Proof: Follows from {𝑥𝑥} is pg**- closed for all 𝑥𝑥 ∈ 𝑋𝑋. 
 
Theorem 10.5: Let (𝑋𝑋, 𝜏𝜏) be a 𝑝𝑝𝑝𝑝∗∗multiplicative 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space, then the following are equivalent. 

(i) 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗regular. 
(ii) For every 𝑥𝑥 ∈ 𝑋𝑋 and for every pg**-neighbourhood 𝑈𝑈 of 𝑥𝑥 there exists a pg**-neighbourhood 𝑉𝑉 of 𝑥𝑥 such that 

𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) ⊆ 𝑈𝑈.  
(iii) For every 𝑥𝑥 ∈ 𝑋𝑋 and for every pg**-closed set not containing 𝑥𝑥there exists pg**-neighbourhood 𝑉𝑉 of 𝑥𝑥 such 

that 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) ∩ 𝐹𝐹 = 𝜑𝜑. 
 
Proof (𝒊𝒊) ⇒ (𝒊𝒊𝒊𝒊): Let (𝑋𝑋, 𝜏𝜏) be𝑝𝑝𝑝𝑝∗∗regular. Let 𝑥𝑥 ∈ 𝑋𝑋 and 𝑈𝑈 be a pg**-neighbourhood of 𝑥𝑥, then 𝐹𝐹 = 𝑋𝑋 − 𝑈𝑈 is pg**-
closed. Then there exists disjoint pg**- open sets 𝑉𝑉 and 𝑊𝑊such that 𝑥𝑥 ∈ 𝑉𝑉 and 𝐹𝐹 ⊆ 𝑊𝑊. Let 𝑦𝑦 ∈ 𝐹𝐹 = 𝑋𝑋 − 𝑈𝑈. Therefore 
𝑦𝑦 ∉ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉). Therefore𝑥𝑥 ∈ 𝑉𝑉 ⊆ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) ⊆ 𝑈𝑈.  
 
(𝒊𝒊𝒊𝒊) ⇒ (𝒊𝒊𝒊𝒊𝒊𝒊): Let 𝑥𝑥 ∈ 𝑋𝑋 and 𝐹𝐹 be a pg**-closed set with 𝑥𝑥 ∉ 𝐹𝐹. Then 𝑥𝑥 ∈ 𝑋𝑋 − 𝐹𝐹 which is pg**- open. Then there exists 
pg**-neighbourhood 𝑉𝑉 of 𝑥𝑥 such that 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) ⊆ 𝑋𝑋 − 𝐹𝐹. Therefore 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) ∩ 𝐹𝐹 = 𝜑𝜑. 
 
(𝒊𝒊𝒊𝒊𝒊𝒊) ⇒ (𝒊𝒊): Let 𝑥𝑥 ∈ 𝑋𝑋 and 𝐹𝐹 be a pg**-closed set with 𝑥𝑥 ∉ 𝐹𝐹. Then by hypothesis there exists a pg**-neighbourhood 
𝑉𝑉 of 𝑥𝑥 such that 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) ∩ 𝐹𝐹 = 𝜑𝜑. Therefore  𝐹𝐹 ⊂ 𝑋𝑋 − 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) = 𝑊𝑊.  
 
Now 𝑉𝑉 ∩ (𝑋𝑋 − 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉)) ⊂ 𝑉𝑉 ∩ (𝑋𝑋 − 𝑉𝑉) = 𝜑𝜑. Therefore 𝑉𝑉 and 𝑊𝑊 are disjoint pg**- open sets containing 𝑥𝑥 and 𝐹𝐹 
respectively.Therefore 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗regular. 
 
Theorem 10.6: Every pair of points in a 𝑝𝑝𝑝𝑝∗∗ regular space have pg**-neighbourhoods whose pg**-closures are 
disjoint. 
 
Proof: Let 𝑥𝑥 and 𝑦𝑦 be distinct points in 𝑋𝑋. Then by the definition of 𝑝𝑝𝑝𝑝∗∗regularity {𝑦𝑦} is pg**-closed and there exists 
disjoint pg**- open sets 𝑈𝑈,𝑉𝑉  containing 𝑥𝑥  and 𝑦𝑦  respectively. Then by theorem (10.5) there exists a pg**-
neighbourhood 𝑈𝑈𝑥𝑥  of 𝑥𝑥 such that𝑥𝑥 ∈ 𝑈𝑈𝑥𝑥 ⊆ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑈𝑈𝑥𝑥) ⊆ 𝑈𝑈. Similarly there exists a pg**-neighbourhood 𝑉𝑉𝑥𝑥  of 𝑥𝑥 such 
that 𝑥𝑥 ∈ 𝑉𝑉𝑥𝑥 ⊆ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉𝑥𝑥) ⊆ 𝑉𝑉 . Therefore 𝑈𝑈𝑥𝑥  and 𝑉𝑉𝑥𝑥  are pg**-neighbourhoods of 𝑥𝑥  and 𝑦𝑦  whose pg**-closures are 
disjoint. 
 
Theorem 10.7: Let 𝐴𝐴 be a pg**-compact subset of a 𝑝𝑝𝑝𝑝∗∗multiplicative 𝑝𝑝𝑝𝑝∗∗regular space (𝑋𝑋, 𝜏𝜏) then for any pg**-
open set 𝐺𝐺 containing 𝐴𝐴 there exists a pg**-closed set 𝐹𝐹 such that 𝐴𝐴 ⊆ 𝐹𝐹 ⊆ 𝐺𝐺. 
 
Proof: If 𝑎𝑎 ∈ 𝐴𝐴 then 𝑎𝑎 ∈ 𝐺𝐺 . Since  𝑋𝑋  is 𝑝𝑝𝑝𝑝∗∗ regular there exists a pg**-neighbourhood 𝑉𝑉𝑎𝑎  of 𝑎𝑎  such that                       
𝑎𝑎 ∈ 𝑉𝑉𝑎𝑎 ⊆ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉𝑎𝑎) ⊆ 𝐺𝐺. Now 𝐴𝐴 = ∪

𝑎𝑎∈𝐴𝐴{𝑎𝑎} ⊆ ∪
𝑎𝑎∈𝐴𝐴 𝑉𝑉𝑎𝑎  and {𝑉𝑉𝑎𝑎 }𝑎𝑎∈𝐴𝐴  forms a pg**-open cover for a pg**-compact set 𝐴𝐴. 

Hence 𝐴𝐴 ⊆
𝑛𝑛
∪

𝑖𝑖 = 1
𝑉𝑉𝑎𝑎𝑖𝑖 . Now 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉𝑎𝑎 𝑖𝑖) ⊆ 𝐺𝐺 for al 𝑖𝑖, 1≤ 𝑖𝑖 ≤ 𝑛𝑛implies 𝐹𝐹 =

𝑛𝑛
∪

𝑖𝑖  = 1
𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉𝑎𝑎 𝑖𝑖). Since 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗multiplicative 

F is pg**-closed such that𝐴𝐴 ⊆ 𝐹𝐹 ⊆ 𝐺𝐺. 
 
Theorem 10.8: Let (𝑋𝑋, 𝜏𝜏) be a𝑝𝑝𝑝𝑝∗∗finitely multiplicative 𝑝𝑝𝑝𝑝∗∗regular space. Let 𝐴𝐴 and 𝐵𝐵 be disjoint subsets of 𝑋𝑋 such 
that 𝐴𝐴 is pg**-closed and 𝐵𝐵 is pg**-compact in 𝑋𝑋. Then there exists disjoint pg**-open sets in 𝑋𝑋 containing 𝐴𝐴 and 𝐵𝐵 
respectively. 
 
Proof: If 𝑏𝑏 ∈ 𝐵𝐵 then 𝑏𝑏 ∉ 𝐴𝐴 . Since 𝑋𝑋  is 𝑝𝑝𝑝𝑝∗∗ regularthere exists disjoint pg**-open sets 𝑉𝑉𝐴𝐴 ,𝑈𝑈𝑏𝑏  containing 𝐴𝐴  and 
𝑏𝑏respectively for each 𝑏𝑏 ∈ 𝐵𝐵. Therefore ∪

𝑏𝑏∈𝐵𝐵{𝑏𝑏} ⊆ ∪
𝑏𝑏∈𝐵𝐵 𝑈𝑈𝑏𝑏and {𝑈𝑈𝑏𝑏}𝑏𝑏∈𝐵𝐵forms a pg**-open cover for 𝐵𝐵. Since 𝐵𝐵 is pg**-

compact 𝐵𝐵 ⊆
𝑛𝑛
∪

𝑖𝑖 = 1
𝑈𝑈𝑏𝑏𝑖𝑖 . Define 𝑈𝑈 =

𝑛𝑛
∪

𝑖𝑖 = 1
𝑈𝑈𝑏𝑏𝑖𝑖  which is pg**- open. Find corresponding𝑉𝑉𝐴𝐴𝑖𝑖  for all 𝑖𝑖 , then 𝐴𝐴 ⊆

𝑛𝑛
∩

𝑖𝑖  = 1
𝑉𝑉𝐴𝐴𝑖𝑖 . 

Define 𝑉𝑉 =
𝑛𝑛
∩

𝑖𝑖 = 1
𝑉𝑉𝐴𝐴𝑖𝑖  which is pg**-open. Therefore there exists disjoint pg**-open sets such that 𝐴𝐴 ⊆ 𝑉𝑉 and 𝐵𝐵 ⊆ 𝑈𝑈. 

 
Theorem 10.9: 𝑝𝑝𝑝𝑝∗∗closure of a pg**-compact subset of a𝑝𝑝𝑝𝑝∗∗multiplicative 𝑝𝑝𝑝𝑝∗∗regular space is pg**-compact. 
 
Proof: Let (𝑋𝑋, 𝜏𝜏) be a 𝑝𝑝𝑝𝑝∗∗regular space and 𝐴𝐴 be a pg**-compact subset of 𝑋𝑋. Let {𝐺𝐺𝛼𝛼 } be a pg**-open cover for 

𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝐴𝐴). Then {𝐺𝐺𝛼𝛼} is also a pg**-open cover for 𝐴𝐴. Since 𝐴𝐴 is pg**-compact  𝐴𝐴 ⊆
𝑛𝑛
∪

𝑖𝑖 = 1
𝐺𝐺𝛼𝛼𝑖𝑖 = 𝐺𝐺 which is pg**-open. 

Then by theorem (10.7) there exist a pg**-closed set 𝐹𝐹 such that 𝐴𝐴 ⊆ 𝐹𝐹 ⊆ 𝐺𝐺. Since 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗multiplicative and 𝐹𝐹 is 

pg**-closed, 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝐹𝐹) = 𝐹𝐹 ⊆ 𝐺𝐺 =
𝑛𝑛
∪

𝑖𝑖 = 1
𝐺𝐺𝛼𝛼 𝑖𝑖 . Therefore the open cover {𝐺𝐺𝛼𝛼 }  of 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝐴𝐴)  has a finite 

subcover. Hence 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝐴𝐴) is pg**-compact. 
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11. pg**normal spaces  
 
Definition 11.1: A 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space (𝑋𝑋, 𝜏𝜏) is said to be 𝑝𝑝𝑝𝑝∗∗normal if for each pair 𝐴𝐴 and 𝐵𝐵 of disjoint pg**- closed sets in 
𝑋𝑋, there exist disjoint pg**- open sets 𝑈𝑈𝐴𝐴 ,𝑈𝑈𝐵𝐵  containing 𝐴𝐴 and 𝐵𝐵respectively. 
 
Example 11.2: Every indiscrete topological space is 𝑝𝑝𝑝𝑝∗∗normal, since every subset of a indiscrete topological space 
ispg**-open. 
 
Example 11.3: Any infinite co finite topological space is not 𝑝𝑝𝑝𝑝∗∗normal, since it is impossible to find disjoint pg**-
open sets. 
 
Theorem 11.4: Every 𝑝𝑝𝑝𝑝∗∗normal space is 𝑝𝑝𝑝𝑝∗∗regular space. 
 
Proof: Follows from {𝑥𝑥} is pg**-closed for all 𝑥𝑥 ∈ 𝑋𝑋. 
 
Theorem 11.5: Let (𝑋𝑋, 𝜏𝜏) be a 𝑝𝑝𝑝𝑝∗∗multiplicative 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1  space, then 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗normal if and only if for every pg**-
closed set 𝐴𝐴 and a pg**-open set𝑈𝑈containing 𝐴𝐴 there exists a pg**-open set 𝑉𝑉 containing 𝐴𝐴 such that 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) ⊆ 𝑈𝑈.  
 
Proof: Let 𝐴𝐴  be a pg**-closed set and  𝑈𝑈be a pg**-open set containing 𝐴𝐴 . Then 𝐵𝐵 = 𝑋𝑋 − 𝐴𝐴  is pg**-closed and             
𝐴𝐴 ∩ 𝐵𝐵 = 𝜑𝜑 . Since 𝑋𝑋  is 𝑝𝑝𝑝𝑝∗∗normalthere exists disjoint pg**- open sets 𝑉𝑉,𝑊𝑊  containing 𝐴𝐴  and 𝐵𝐵 respectively. Now 
𝐴𝐴 ⊆ 𝑉𝑉 ⊆ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) . Let 𝑦𝑦 ∈ 𝑋𝑋 − 𝑈𝑈 = 𝐵𝐵 ⊆ 𝑊𝑊 and 𝑉𝑉 ∩𝑊𝑊 = 𝜑𝜑 . Therefore 𝑦𝑦 ∉ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) . Hence 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) ⊆ 𝑈𝑈 . 
Conversely let 𝐴𝐴  and 𝐵𝐵  be two pg**-closed subsets of 𝑋𝑋 . Then 𝑈𝑈 = 𝑋𝑋 − 𝐵𝐵  is pg**-open set containing 𝐴𝐴 . By 
hypothesis there exists a pg**-open set 𝑉𝑉 containing 𝐴𝐴  such that 𝐴𝐴 ⊆ 𝑉𝑉 ⊆ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) ⊆ 𝑈𝑈 . Since 𝑋𝑋  is 
𝑝𝑝𝑝𝑝∗∗multiplicative 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) is pg**-closed. Therefore 𝑋𝑋 − 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) = 𝑊𝑊 is a pg**-open set containing 𝐵𝐵 and 𝑉𝑉 is 
a pg**-open set containing 𝐴𝐴 such that 𝑉𝑉 ∩𝑊𝑊 = 𝜑𝜑. Therefore (𝑋𝑋, 𝜏𝜏) is 𝑝𝑝𝑝𝑝∗∗normal. 
 
Theorem 11.6: A 𝑝𝑝𝑝𝑝∗∗multiplicative space 𝑋𝑋 in which every singleton set is a pg**-isolated point is 𝑝𝑝𝑝𝑝∗∗normal. 
 
Proof: follows from every subset is pg**-clopen. 
 
Theorem 11.7: Every pg**-compact 𝑝𝑝𝑝𝑝∗∗finitely multiplicative𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space is 𝑝𝑝𝑝𝑝∗∗normal.  
 
Proof: Let 𝑋𝑋 be a pg**-compact 𝑝𝑝𝑝𝑝∗∗finitely multiplicative 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2  space. Let 𝐴𝐴 and 𝐵𝐵 be two pg**-closed subsets of 
𝑋𝑋. Since 𝐵𝐵 is a pg**-closed subset of a pg**-compact space 𝐵𝐵 is pg**-compact, also by theorem (8.1) for every 𝑥𝑥 ∈ 𝐵𝐵 
there exists disjoint pg**-open sets 𝑈𝑈𝑥𝑥 ,𝑉𝑉𝑥𝑥  such that  𝑥𝑥 ∈ 𝑈𝑈𝑥𝑥  and 𝐴𝐴 ⊆ 𝑉𝑉𝑥𝑥 . Now {𝑈𝑈𝑥𝑥/𝑥𝑥 ∈ 𝐵𝐵} is a pg**-open cover for 𝐵𝐵. 

Then 𝐵𝐵 ⊆
𝑛𝑛
∪

𝑖𝑖 = 1
𝑈𝑈𝑥𝑥𝑖𝑖 = 𝑈𝑈(say) which is pg**-open. Let 𝑉𝑉 =

𝑛𝑛
∩

𝑖𝑖 = 1
𝑉𝑉𝑥𝑥𝑖𝑖  which is pg**-open. Then𝑉𝑉 and 𝑈𝑈 are disjoint pg**-

open sets containing 𝐴𝐴 and 𝐵𝐵 respectively. Also every 𝑝𝑝𝑝𝑝∗∗𝑇𝑇2space is 𝑝𝑝𝑝𝑝∗∗𝑇𝑇1. Hence 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗normal.  
 
Theorem 11.8: Every metrizable space (𝑋𝑋, 𝜏𝜏) is 𝑝𝑝𝑝𝑝∗∗normal. 
 
Proof: Let (𝑋𝑋, 𝜏𝜏) be metrizable space with metric 𝑑𝑑. Let 𝐴𝐴 and 𝐵𝐵 be two pg**-closed subsets of 𝑋𝑋. For every 𝑎𝑎 ∈ 𝐴𝐴, 
choose 𝜀𝜀𝑎𝑎  such that 𝐵𝐵(𝑎𝑎, 𝜀𝜀𝑎𝑎) ∩ 𝐵𝐵 = 𝜑𝜑. Correspondingly for every 𝑏𝑏 ∈ 𝐵𝐵, choose 𝜀𝜀𝑏𝑏  such that 𝐵𝐵(𝑏𝑏, 𝜀𝜀𝑏𝑏) ∩ 𝐴𝐴 = 𝜑𝜑. Let 
𝑈𝑈 = ∪

𝑎𝑎∈𝐴𝐴  𝐵𝐵 �𝑎𝑎, 𝜀𝜀𝑎𝑎
2
� ,𝑉𝑉 = ∪

𝑏𝑏∈𝐵𝐵  𝐵𝐵 �𝑏𝑏, 𝜀𝜀𝑏𝑏
2
� . 𝑈𝑈 and 𝑉𝑉  are pg**-open, since 𝑈𝑈  and 𝑉𝑉  are open in 𝑋𝑋 . In 𝑧𝑧 ∈ 𝑈𝑈 ∩ 𝑉𝑉  then             

𝑧𝑧 ∈ 𝐵𝐵 �𝑎𝑎, 𝜀𝜀𝑎𝑎
2
� ∩ 𝐵𝐵 �𝑏𝑏, 𝜀𝜀𝑏𝑏

2
�  for some 𝑎𝑎 ∈ 𝐴𝐴and 𝑏𝑏 ∈ 𝐵𝐵 . Therefore (𝑎𝑎, 𝑏𝑏) ≤ 𝑑𝑑(𝑎𝑎, 𝑧𝑧) + 𝑑𝑑(𝑧𝑧, 𝑏𝑏) ≤ 𝜀𝜀𝑎𝑎+𝜀𝜀𝑏𝑏

2
 . Without loss of 

generality let 𝜀𝜀𝑎𝑎 ≤ 𝜀𝜀𝑏𝑏 . Then 𝑑𝑑(𝑎𝑎, 𝑏𝑏) < 𝜀𝜀𝑏𝑏 , this implies 𝑎𝑎 ∈ 𝐵𝐵(𝑏𝑏, 𝜀𝜀𝑏𝑏) which is a contradiction. Therefore 𝑈𝑈 ∩ 𝑉𝑉 = 𝜑𝜑. 
Since 𝑋𝑋 is metrizable, every singleton set is closed and hence pg**-closed. Hence 𝑋𝑋 is 𝑝𝑝𝑝𝑝∗∗normal. 
 
Theorem 11.9: In a 𝑝𝑝𝑝𝑝∗∗normal space (𝑋𝑋, 𝜏𝜏) every pair of disjoint pg**-closed sets have pg**-neighbourhoods whose 
𝑝𝑝𝑝𝑝∗∗closures are disjoint. 
 
Proof: Let 𝐴𝐴 and 𝐵𝐵  be disjoint pg**-closed subsets of 𝑋𝑋 . Then by definition of 𝑝𝑝𝑝𝑝∗∗normality there exist disjoint             
pg**- open sets 𝑈𝑈𝐴𝐴 ,𝑈𝑈𝐵𝐵  containing 𝐴𝐴 and 𝐵𝐵respectively. Then there exists a pg**-open set 𝑉𝑉containing 𝐴𝐴 such that               
𝐴𝐴 ⊆ 𝑉𝑉 ⊆ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑉𝑉) ⊆ 𝑈𝑈𝐴𝐴 . Likewise, there exists a pg**-open set 𝑊𝑊containing 𝐵𝐵 such that 𝐵𝐵 ⊆ 𝑊𝑊 ⊆ 𝑝𝑝𝑝𝑝∗∗𝑐𝑐𝑐𝑐(𝑊𝑊) ⊆
𝑈𝑈𝐵𝐵 . Therefore 𝑉𝑉 and 𝑊𝑊 are the required pg**-neighbourhoods. 
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