AN INTRODUCTION TO FUZZY NEUTROSOPHIC TOPOLOGICAL SPACES

Y. VEERESWARI*

Research Scholar, Govt. Arts College, Coimbatore, (T.N.), India.

(Received On: 05-02-17; Revised & Accepted On: 23-03-17)

ABSTRACT

In this paper we introduce fuzzy neutrosophic topological spaces and its some properties. Also we provide fuzzy continuous and fuzzy compactness of fuzzy neutrosophic topological space and its some properties and examples.

Keywords: fuzzy neutrosophic set, fuzzy neutrosophic topology, fuzzy neutrosophic topological spaces, fuzzy continuous and fuzzy compactness.

1. INTRODUCTION

Fuzzy sets were introduced by Zadeh in 1965. The concepts of intuitionistic fuzzy sets by K. Atanassov several researches were conducted on the generalizations of the notion of intuitionistic fuzzy sets. Florentin Smarandache [5, 6] developed Neutrosophic set & logic of A Generalization of the Intuitionistic Fuzzy Logic & respectively. A.A.Salama & S.A.Alblowi [1] introduced and studied Neutrosophic Topological spaces and its continuous function in [2]. In this paper, we define thenotion of fuzzy neutrosophic topological spaces and investigate continuity and compactness by using Coker’s intuitionistic topological spaces in [4]. We discuss New examples of FNTS.

2. PRELIMINARIES

Here we shall present the fundamental definitions. The following one is obviously inspired by Haibin Wang and Florentin Smarandache in [7] and A.A.Salama, S.S.Alblow in [1]. Smarandache introduced the neutrosophic set and neutrosophic components. The sets T, I, F are not necessarily intervals but may be any real sub-unitary subsets of $[0, 1]^*$. The neutrosophic components T, I, F represents the truth value, indeterminacy value and falsehood value respectively.

Definition 2.1 [7]: Let X be a non-empty fixed set. A fuzzy neutrosophic set (FNS for short) A is an object having the form $A = \{(x, \mu_A(x), \sigma_A(x), v_A(x)) : x \in X \}$ where the functions

\[
\mu_A: X \to [0, 1]^* \quad \sigma_A: X \to [0, 1]^* \quad v_A: X \to [0, 1]^* \n\]

denote the degree of membership function (namely $\mu_A(x)$), the degree of indeterminacy function (namely $\sigma_A(x)$) and the degree of non-membership (namely $v_A(x)$) respectively of each element $x \in X$ to the set A and $\mu_A(x) + \sigma_A(x) + v_A(x) = 1^+$, for each $x \in X$.

Remark 2.2 [7]: Every fuzzy set A on a non-empty set X is obviously a FNS having the form

\[A = \{(x, \mu_A(x), \sigma_A(x), v_A(x)) : x \in X \} \]

A fuzzy neutrosophic set $A = \{(x, \mu_A(x), \sigma_A(x), v_A(x)) : x \in X \}$ can be identified to an ordered triple $(x, \mu_A, \sigma_A, v_A)$ in $[0, 1]^*$ on X.

Definition 2.3[1]: Let X be a non-empty set and the FNSs A and B be in the form $A = \{(x, \mu_A(x), \sigma_A(x), v_A(x)) : x \in X \}$ and $B = \{(x, \mu_B(x), \sigma_B(x), v_B(x)) : x \in X \}$ on X and let $\mathcal{A} = \{A_i : A_i \subseteq X, \mu A_i, \sigma A_i, v A_i, \forall x \in X \}$ be an arbitrary family of FNS’s in X, where $A_i = \{A_i = \mu A_i, \sigma A_i, v A_i \}$.

\begin{align*}
& a) \quad A \subseteq B \text{ iff } \mu_A(x) \leq \mu_B(x), \sigma_A(x) \leq \sigma_B(x) \text{ and } v_A(x) \geq v_B(x) \text{ for all } x \in X. \\
& b) \quad A = B \text{ iff } A \nsubseteq B \text{ and } B \nsubseteq A. \\
& c) \quad A = \{(x, \mu_A(x), 1 - \sigma_A(x), \mu_A(x)) : x \in X \} \\
& d) \quad \bigcup A_i = \{(x, \bigvee_{\in \mathcal{E}} \mu_{A_i}(x), \bigvee_{\in \mathcal{E}} \sigma_{A_i}(x), \bigwedge_{\in \mathcal{E}} v_{A_i}(x)) : x \in X \}
\end{align*}
Here we shall define the image and preimage of FNS's. Let $\mu_A(x), \sigma_A(x), \nu_A(x): x \in X$

Corollary 2.5:

\begin{align*}
\mathcal{A} &= \{x, \mu_A(x), \sigma_A(x), \nu_A(x): x \in X\} \\
\mathcal{B} &= \{x, \mu_B(x), \sigma_B(x), \nu_B(x): x \in X\} \\
\mathcal{C} &= \{x, \mu_C(x), \sigma_C(x), \nu_C(x): x \in X\} \\
\mathcal{D} &= \{x, \mu_D(x), \sigma_D(x), \nu_D(x): x \in X\}
\end{align*}

Here $\mathcal{A} = (\mu_A(x), \sigma_A(x), \nu_A(x): x \in X)$ and $\mathcal{A} \subseteq \mathcal{C}$ because $\mu_A(x) \leq \mu_B(x), \sigma_A(x) \leq \sigma_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$. Further,

\begin{align*}
\mathcal{A} \cup \mathcal{B} &= \{x, \mu_A(x) \lor \mu_B(x), \sigma_A(x) \lor \sigma_B(x), \nu_A(x) \land \nu_B(x): x \in X\} \\
&= (\mu_A(x), \sigma_A(x), \nu_A(x): x \in X)
\end{align*}

Here we shall define the image and preimage of FNS's. Let X, Y be two non-empty sets and $f: X \rightarrow Y$ a function.

Definition 2.6[4]:

a) If $\mathcal{B} = \{y, \mu_B(y), \sigma_B(y), \nu_B(y): y \in Y\}$ is an FNS in Y then the preimage of \mathcal{B} under f, denoted by $f^{-1}(\mathcal{B})$, is the FNS in X defined by

\begin{align*}
f^{-1}(\mathcal{B}) &= \{x, f^{-1}(\mu_B(x)), f^{-1}(\sigma_B(x)), f^{-1}(\nu_B(x)): x \in X\}
\end{align*}

Where $f^{-1}(\mu_B(x)) = \mu_{f(x)}$, $f^{-1}(\sigma_B(x)) = \sigma_{f(x)}$, and $f^{-1}(\nu_B(x)) = \nu_{f(x)}$

b) If $\mathcal{A} = \{x, \mu_A(x), \sigma_A(x), \nu_A(x): x \in X\}$ is a FNS in X, then the image of \mathcal{A} under f, denoted by $f(\mathcal{A})$, is the FNS in Y defined by

\begin{align*}
f(\mathcal{A}) &= \{y, f(\mu_A(y)), f(\sigma_A(y)), f(1 - f(1 - \nu_A))\}: y \in Y\}
\end{align*}

For the sake of simplicity, let us use the symbol f_μ, f_σ, f_ν for $(1 - f(1 - \nu_A))$.

Corollary 2.7[4]: Let $A_1, A_2, \ldots, A_n \in \mathcal{N}$ be FNS’s in $X, B_1, B_2, \ldots, B_n \in \mathcal{N}$ be FNS’s in Y, and $f: X \rightarrow Y$ a function.

a) If $A_1 \subseteq A_2 \Rightarrow f(A_1) \subseteq f(A_2)$, $B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2)$,

b) If f is injective then $A = \{x, f(A_1)\}$

c) $f^{-1}(f(B)) \subseteq B$, and if f is surjective, then $f^{-1}(f(B)) = B$

d) $f^{-1}(B_1) \cup f^{-1}(B_2) = f^{-1}(B_1 \cup B_2)$, $f^{-1}(B_1) \cap f^{-1}(B_2) = f^{-1}(B_1 \cap B_2)$

e) $f(\cup A_1) = \cup f(A_1)$, $f(\cap A_1) \subseteq \cap f(A_1)$; and if f is injective, then $f(\cap A_1) = \cap f(A_1)$

f) $f^{-1}(1_N) = 1_N, f^{-1}(0_N) = 0_N$

g) $f(0_N) = 0_N, f(1_N) = 1_N, f$ is surjective
3. FUZZY NEUTROSOPHIC TOPOLOGICAL SPACES

Definition 3.1: A fuzzy neutrosophic topology (FNT for short) a non-empty set X is a family τ of fuzzy neutrosophic subsets in X satisfying the following axioms.

- $\tau_1(n,1_N) \in \tau$
- $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$
- $\cup G_i \in \tau$, $\forall (G_i ; i \in J)$ \[J \subseteq \tau \]

The neutrosophic set in τ is known as fuzzy neutrosophic open set (FNOS for short) in τ. The complement of FNOS in the FNTS of τ is called fuzzy neutrosophic closed set (FNCS for short).

Example 3.2: Let $X = \{a, b, c\}$ and consider the value of A, B, C, D are defined in Example 2.4, the family $\tau = \{0_N, 1_N, A, B, C, D\}$ of FNS in X. Then (X, τ) is FNTS on X.

Example 3.3: Let (X, τ) be a fuzzy topological space such that τ is not indiscrete. Suppose now that $\tau = \{0, 1\} \cup \{G_i ; i \in J\}$. Then we can construct two FNT’s on X as follows:

- $\tau_1 = \{0_N, 1_N\} \cup \{(x, G_i, \sigma(x), 0) ; i \in J\}$, $\tau_2(0_N, 1_N) \cup \{(x, 0, \sigma(x), G_i) ; i \in J\}$

Proposition 3.4: Let (X, τ) be a FNTS on X. Then we can also construct several FNTS’s on X in the following way

- $\tau_{0.1} = \{\{G ; G \in \tau\}\}$
- $\tau_{0.2} = \{\{G ; G \in \tau\}\}$

Definition 3.5: Let $(X, \tau_1), (X, \tau_2)$ be two FNTS’s on X. They are said to be contained in τ_2 (in symbols, $\tau_1 \subseteq \tau_2$), if $G \in \tau_2$ for each $G \in \tau_1$. In this case, we also say that τ_1 is coarser than τ_2.

Proposition 3.6: Let $\{\tau_i ; i \in J\}$ is a family of FNT’s on X. Then $\cap_{i \in J} \tau_i$ is FNT on X. Furthermore, $\cap_{i \in J} \tau_i$ is the coarsest FNT on X containing all τ_i’s.

Definition 3.7: Let (X, τ) be a FNTS on X.

- a) A family $\beta \subseteq \tau$ is called a base for (X, τ) iff each member of τ can be written as a union of elements of β.
- b) A family $\gamma \subseteq \tau$ is called a subbase for (X, τ) iff the family of finite intersections of elements in γ forms a base for (X, τ).

Definition 3.8: Let (X, τ) be a FNTS and $A = \langle x, \mu_A, \sigma_A, \nu_A \rangle$ be a FNS in X. Then the fuzzy interior and fuzzy closure of A are defined by

- $cl(A) = \cap \{K ; K \text{ is a FNS in } X \text{ and } A \subseteq K\}$
- $int(A) = \cup \{G ; G \text{ is a FNOS in } X \text{ and } G \subseteq A\}$

Now that $cl(A)$ is a FNCS and $int(A)$ is a FNOS in X. Further,

- a) A is a FNCS in X iff $cl(A) = A$
- b) A is a FNOS in X iff $int(A) = A$

Example 3.9: Consider the FNTS (X, τ) is defined in Example 3.2. If

- $F = \langle x, \left(\begin{array}{ccc} a & b & c \\ 0.4 & 0.5 & 0.4 \\ 0.4 & 0.3 & 0.2 \\ 0.2 & 0.3 & 0.3 \end{array}\right) \rangle$

Then, $int(A) = D$ and $cl(A) = 1_N$.

Proposition 3.10: For any FNS A in (X, τ), we have $cl(A) = int(A), int(A) = \overline{cl(A)}$.

Proposition 3.11: Let (X, τ) be a FNTS and A, B be FNS’s in X. Then the following properties hold:

- a) $int(A) \subseteq A, A \subseteq cl(A)$
- b) $A \subseteq B \Rightarrow int(A) \subseteq int(B), A \subseteq B \Rightarrow cl(A) \subseteq cl(B)$
- c) $int(int(A)) = int(A), cl(cl(A)) = cl(A)$
- d) $int(A \cap B) = int(A) \cap int(B), cl(A \cup B) = cl(A) \cup cl(B)$
- e) $int(1_N) = 1_N, cl(0_N) = 0_N$
Proposition 3.12: Let (X, τ) be a FNTS. If $A = (x, \mu_A, \sigma_A, \nu_A)$ be a FNS in X. Then we have
\begin{enumerate}
\item $\text{int}(A) \subseteq (x, \text{int}_{\tau_1}(\mu_A), \text{int}_{\tau_2}(\sigma_A), \text{cl}_{\tau_2}(\nu_A)) \subseteq A$
\item $A \subseteq (x, \text{cl}_{\tau_1}(\mu_A), \text{cl}_{\tau_2}(\sigma_A), \text{int}_{\tau_2}(\nu_A)) \subseteq \text{cl}(A)$
\end{enumerate}
where τ_1 and τ_2 are FTS on X defined by $\tau_1 = \{\mu_A: G \in \tau\}$, $\tau_2 = \{1 - \nu_A: G \in \tau\}$.

Corollary 3.13: Let $A = (x, \mu_A, \sigma_A, \nu_A)$ be a FNS in (X, τ)
\begin{enumerate}
\item If A is a FNCS, then μ_A is fuzzy closed in (X, τ_2) and ν_A is fuzzy open in (X, τ_1).
\item If A is a FNOS, then μ_A is fuzzy open in (X, τ_1) and ν_A is fuzzy closed in (X, τ_2).
\end{enumerate}

Example 3.14: Consider the FNTS (X, τ) is defined in Example 3.2. If $F = (x, (a, b, c), (0.4' 0.5' 0.4), (0.4' 0.3' 0.2), (0.2' 0.3' 0.3))$ Then, $\text{int}(A) = D$. Noting that we have
\begin{align*}
\tau_1 &= \{0, 1, \frac{a}{0.3' 0.4' 0.5}, \frac{b}{0.5' 0.5' 0.4}, \frac{c}{0.3' 0.4' 0.4}\} \\
\tau_2 &= \{0, 1, \frac{a}{0.7' 0.8' 0.8}, \frac{b}{0.8' 0.8' 0.8}, \frac{c}{0.7' 0.6' 0.6}\}
\end{align*}
and $\text{int}_{\tau_1} = \frac{a}{0.3', 0.4', 0.4}, \text{cl}_{\tau_2} = \frac{a}{0.3', 0.4', 0.4}$.

4. FUZZY NEUTROSOPHIC CONTINUITY

Definition 4.1: Let (X, τ) and (Y, φ) be two FNTSs and let $f: X \rightarrow Y$ be a function. Then f is said to be fuzzy continuous iff the preimage of each FNS in φ is a FNS in τ.

Definition 4.2: Let (X, τ) and (Y, φ) be two FNTSs and let $f: X \rightarrow Y$ be a function. Then f is said to be fuzzy open iff the image of each FNS in τ is a FNS in φ.

Example 4.3: Let (X, τ_0) and (Y, φ_0) be two fuzzy topological spaces.
\begin{enumerate}
\item If $f: X \rightarrow Y$ is fuzzy continuous in the usual sense, then in this case, f is fuzzy continuous iff the preimage of each FNS in φ_0 is a FNS in τ_0.
\end{enumerate}

Proposition 4.4: $f: (X, \tau) \rightarrow (Y, \varphi)$ is fuzzy continuous iff the preimage of each FNCS in φ is a FNCS in τ.

Proposition 4.5: The following are equivalent to each other
\begin{enumerate}
\item $f: (X, \tau) \rightarrow (Y, \varphi)$ is fuzzy continuous
\item $f^{-1}(\text{int}(B)) \subseteq \text{int}(f^{-1}(B))$ for each FNS B in Y.
\item $\text{cl}(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B))$ for each FNS B in Y.
\end{enumerate}

Example 4.6: Let (Y, φ) be a FNTS and X be a non-empty set and $f: X \rightarrow Y$ a function. In this case $\tau = \{f^{-1}(H): H \in \varphi\}$ is a FNT on X. Indeed, τ is the coarsest FNT on X which makes the function $f: X \rightarrow Y$ continuous. One may call the FNT τ on X the initial FNT with respect to f.

5. FUZZY NEUTROSOPHIC COMPACTNESS

Definition 5.1: Let (X, τ) be a FNCS.
\begin{enumerate}
\item If a family $G_i = \{x, \mu_{G_i}, \sigma_{G_i}, \nu_{G_i}: i \in I\}$ of FNCS is X satisfy the condition $\bigcup G_i = 1_X$, then it is called a fuzzy open cover of X. A finite subfamily of fuzzy open cover G_i of X, which is also a fuzzy open cover of X is called a finite subcover of G_i.
\item A family $K_i = \{x, \mu_{K_i}, \sigma_{K_i}, \nu_{K_i}: i \in I\}$ of FNCSs in X satisfies the finite intersection property iff every finite subfamily $\{x, \mu_{K_i}, \sigma_{K_i}, \nu_{K_i}: i = 1, 2, \ldots, n\}$ of the family satisfies the condition $\bigcap_{i=1}^n (x, \mu_{K_i}, \sigma_{K_i}, \nu_{K_i}) \neq 0_X$.
\end{enumerate}

Definition 5.2: A FNTS (X, τ) is fuzzy compact iff every fuzzy open cover of X has a finite subcover.
Definition 5.7: Consider Example 5.3: obtain $\gamma \leq \mu_{G_i} \cup G_j = \{0, 1\}$. Note that $\bigcup_{n \in \mathbb{N}} G_n$ is an open cover for X, but this cover has no finite subcover. Consider

$$G_1 = (x, \{0.5, 0.3, 0.25\}, \{0.7, 0.75, 0.8\}, \{0.3, 0.25, 0.2\}),$$

$$G_2 = (x, \{0.7, 0.5, 0.4\}, \{0.75, 0.8, 0.9\}, \{0.25, 0.2, 0.2\}),$$

$$G_3 = (x, \{0.75, 0.6, 0.5\}, \{0.8, 0.8, 0.9\}, \{0.2, 0.2, 0.1\}),$$

and observe that $G_1 \cup G_2 \cup G_3 = G_3$. So, for any finite subcollection $\{G_n : i \in I\}$, $\bigcup_{n \in I} G_n = G_m \neq 1_n$, where $m = \max\{n_i : n_i \in I\}$. Therefore the FNTS (X, τ) is not compact.

Proposition 5.4: Let (X, τ) be a FNTS on X. Then (X, τ) is fuzzy compact iff the FNTS $(X, \tau_{0,1})$ is fuzzy compact.

Proof: Let (X, τ) be fuzzy compact and consider fuzzy open cover $\{G_j : j \in J\}$ of X in $(X, \tau_{0,1})$. Since $\bigcup \{G_j : j \in J\} = 1_n$. We obtain $\bigvee G_j = 1 \vee \sigma_{G_j} = 1$ and hence, by $v_{G_j} \leq 1 - \mu_{G_j} \implies \vee v_{G_j} \leq 1 - \mu_{G_j} = 0 \implies \vee v_{G_j} = 0$, we deduce $\bigvee_{j \in J} = 1_n$. Since (X, τ) is fuzzy compact there exist $G_1, G_2, G_3, ... G_n$ such that $\bigvee_{i=1}^n G_i = 1_n$ from which we obtain $v_{G_i} = 1, v_{G_i} \sigma_{G_i} = 1$ and $\Lambda = 1 - (1 - \mu_{G_i} = 0$. That is, $(X, \tau_{0,1})$ is fuzzy compact.

Suppose that $(X, \tau_{0,1})$ be fuzzy compact and consider a fuzzy open cover $\{G_j : j \in J\}$ of X in (X, τ). Since $\bigvee_{j \in J} G_j = 1_n$, we obtain $\bigvee \mu_{G_j} = 1 \vee \sigma_{G_j} = 1$ and $1 - \vee \mu_{G_j} = 0$. Since $(X, \tau_{0,1})$ is fuzzy compact, there exist $G_1, G_2, G_3, ... G_n$ such that $\bigvee_{i=1}^n \Gamma = 1_n$, that is, $v_{G_i} = 1, v_{G_i} \sigma_{G_i} = 1$ and $\Lambda = 1 - (1 - \mu_{G_i} = 0$. Hence $\mu_{G_i} \leq 1 - v_{G_i} = 1 = v_{G_i} = 1 \leq 1 - \mu_{G_i} = 0 = \Lambda = 1 - (1 - \mu_{G_i} = 0$. Hence $\bigvee_{i=1}^n G_i = 1_n$. Therefore (X, τ) is fuzzy compact.

Corollary 5.5: Let (X, τ) and (Y, φ) be two FNTSs and let $f: X \rightarrow Y$ be a fuzzy continuous surjection. If (X, τ) is fuzzy compact, then so is (Y, φ).

Corollary 5.6: A FNTS (X, τ) is fuzzy compact iff every family $\{(x, \mu_{G_i}, \sigma_{G_i}, v_{G_i}) : i \in I\}$ of FNSs in X having the FNP has a non-empty intersection.

Definition 5.7: a) Let (X, τ) be a FNTS and A a FNS in X. If a family $G_i = \{(x, \mu_{G_i}, \sigma_{G_i}, v_{G_i}) : i \in I\}$ of FNSs in X satisfies the condition $A \subseteq \bigcup G_i$, then it is called a fuzzy open cover of A. A finite subfamily of the fuzzy open cover G_i of A, which is also fuzzy open cover of A, is called a finite subcover of G_i.

b) A FNS $A = (x, \mu_A, \sigma_A, v_A)$ in a FNTS (X, τ) is called fuzzy compact iff every fuzzy open cover of A has a finite subcover.

Corollary 5.8: A FNS $A = (x, \mu_A, \sigma_A, v_A)$ in a FNTS (X, τ) is fuzzy compact iff each family $G = \{G_i : i \in I\}$ where $G = \{(x, \mu_{G_i}, \sigma_{G_i}, v_{G_i}) : i \in I\}$ of FNSs in X with properties $\mu_A \leq \bigvee G_i, \sigma_A \leq \bigvee G_i$ and $1 - v_A \leq \bigvee G_i$ there exists a finite subfamily $\{G_i : 1, 2, ..., n\}$ of G such that $\mu_A \leq \bigvee_{i=1}^n G_i, \sigma_A \leq \bigvee_{i=1}^n G_i$ and $1 - v_A \leq \bigvee_{i=1}^n (1 - v_{G_i})$.

Example 5.9: Let $X = \mathbb{I}$ and consider the FNSs $(G_n)_{n \in \mathbb{Z}_2}$, where $G_n = (x, \mu_{G_n}, \sigma_{G_n}, v_{G_n}) \in 2, 3, ...$ and $G = (x, \mu_G, \sigma_G, v_G)$ defined by

$$\mu_{G_n}(x) = \begin{cases} 0.7, & \text{if } x = 0 \\ 0.8, & \text{if } 0 < x < \frac{1}{n}, \\ (n+1)x, & \text{if } 0 < x < \frac{1}{n}, \end{cases}$$

and

$$\sigma_{G_n}(x) = \begin{cases} 0.8, & \text{if } x = 0 \\ 1, & \text{if } \frac{1}{n} < x \leq 1 \end{cases}$$

and

$$\nu_{G_n} = \begin{cases} 1, & \text{otherwise} \end{cases}$$

Then $\tau = \{0_n, 1_n, G\} \cup \{G_i : i \in \mathbb{Z}_2\}$ is a FNT on X, and consider the FNSs $C_{\alpha, \beta, \gamma}$ in (X, τ) defined by $C_{\alpha, \beta, \gamma} = (x, \alpha, \beta, \gamma) : x \in X$, where $\alpha, \beta, \gamma, 1 \in I$ are arbitrary and $\alpha + \beta + \gamma \leq 2$. Then the FNSs $C_{0.75, 0.85, 0.05}, C_{0.65, 0.75, 0.15}, C_{0.85, 0.85, 0.05}$ are all compact.
Corollary 5.10: Let (X, τ) and (Y, φ) be two FNTSs and let $f: X \rightarrow Y$ be a fuzzy continuous function. If A is fuzzy compact in (X, τ), then so is $f(A)$ in (Y, φ).

REFERENCES

Source of support: Nil, Conflict of interest: None Declared.

(Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.)