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ABSTRACT. 
A hyper surface M⊂Rn+1 is  pointwise Osserman surface if the eigenvalues of the Jacobi operator J(X)= R(u,X,X), 
where R is the curvature tensor of M, are  pointwise constants, for any tangent vector X in the tangent space Мp, at any 
point p∈М. In this short note we prove that M is Osserman surface if and only if M is locally Euclidean hyper surface 
or hyper surface of constant sectional curvature. 
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Let (N, g) be a Riemannian manifold with metric tensor g, and curvature tensor 'R , defined by the formula: 

( )' ' ', ,R X Y Y XX Y X Y 
 

= ∇ −∇ −∇ , 

where '∇  is the Levi-Civita connection on N, and X,Y are arbitrary tangent vector fields in the tangent bundle ( )Nℵ , 
on the manifold N.  
 
Let (М, g) be an n-dimensional Riemannian manifold, which is isometric embedding in (N, g), and let dim N=n+m.           
If we consider locally in a neighborhood Up, at a point p∈М, then we always can choose a smooth intersections 

, , ...,1 2 mξ ξ ξ  in the normal bundle ( )Mℵ ⊥ , which are independent vector fields, and which form an orthonormal 

basis at any point p∈Up.  If X, Y are smooth vector fields in the tangent bundle ( )Mℵ , then  

( ) ( ) ( )' , ,Y Y X YX X ppp
α∇ = ∇ +  

where YX∇  is the covariant derivation, defined for the Riemannian connection ∇  on the submanifold (М, g), 

respectively α (X, Y) is the second fundamental form of (М, g). Also           

( ), ( , )
1

m iX Y h X Y
i

i
α ξ= ∑

=
 

is the decomposition of α (X, Y), with respect to the orthonormal basis , , ...,1 2 mξ ξ ξ ∈ M p , at a point p∈М.                     

According to the definition, for any smooth vector field ξ∈ ( )Mℵ ⊥ , holds                 

'( ) ( ) ( )( )A X D X
X p pp
ξ

ξ ξ
∇ = − + , 

where Aξ  is a linear symmetric Weingarten operator  in  Мp,  at a point p∈М, such that  

( ), ( , ), .( ) ( )g A X Y g X Yα ξ
ξ

=  
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The following formulae and equations are well known) [3]: 
 
I.  The Gauss formula: 

    ' ( , )Y Y X Y
X X

α∇ = ∇ + ; 

II. The Weingarten formula:  

   '( ) ( ) ( )A X D X
X
ξ

ξ ξ
∇ = − + ; 

III. The Gauss equation: 
' ( , , ) ( , , ) ( , ) ( , ) ( , ) ( , ) ,( ) ( ) ( ) ( )g R X Y Z U g R X Y Z U g X Z Y U g Y Z X Uα α α α= + −  

where R is the curvature tensor of the Riemannian manifold (М,g), and where X,Y,Z,U are the tangent vector fields           
in the tangent bundle ( )Mℵ  . 
 
Further we consider the case, when the Riemannian manifold N coincide with Euclidean vector space Rn+1, and the 
Riemannian submanifold  M is a hyper surface  in Rn+1. Then the Gauss equation has the form [3]: 

( ) ( ) ( ), , , ,R X Y Z g AY Z AX g AX Z AY= −    . 
 
In the next we will use the Jacobi operator 

J(X) = R(u,X,X)       , 
 

which is a linear symmetric operator, defined for any unit tangent vector X∈Mp, at a point p∈M [1], [2], [4].  Following 
the terminology in [2] we introduce  
 
Definition 1: A hyper surface M⊂Rn+1  is  pointwise Osserman surface if the eigenvalues of the Jacobi operator J(Х) 
are  pointwise constants,  for any tangent vector X∈Мp, at any point p∈М.  
 
Let М   be a pointwise Osserman hyper surface in the Euclidean vector space Rn+1.  
 
Let А be the Weingarten operator in Мp, and let  X1, X2,…,Xn  be the eigenvector basis of А.  
 
Let λ1, λ2, ... , λn  be the eigenvalues, corresponding to the eigenvectors X1, X2,…,Xn . Then for any indexes I < j                  
(i, j = 1, 2,…,n)  holds: 

( ) ( ) ( ), , , ,

0 , , ;
, ;

.,

R X X X g AX X AX g AX X AXi j j i ik k k j

k i j
k ii j
k ji j

λ λ

λ λ

= − =

≠
= − =

=







                                               (1) 

 
It is easy to see that the matrix of the Jacobi operator J(Х1), with respect to the orthonormal basis X1, X2,…,Xn , has the 
form:  

( )( )

0 0 0 01 2
0 0 0 01 3
0 0 0 01 1 4
... ... ... ... ...
0 0 0 0 1

J X

n

λ λ

λ λ

λ λ

λ λ

=

 
 
 
 
 
  
 

, 

where ( )1J X  we consider as a linear symmetric operator in the tangent subspace  

( ){ }, , ...,1 2 3
X span X X X Mn p
⊥ = ⊂ , p∈М . 

 

Similarly we can check that the matrix of the Jacobi operator ( )2J X , with respect to the orthonormal basis                    

X1, X2,…,Xn ,  has the form:  
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( )( )

0 0 0 02 1
0 0 0 02 3
0 0 0 02 2 4
... ... ... ... ...
0 0 0 0 2

J X

n

λ λ

λ λ

λ λ

λ λ

=

 
 
 
 
 
  
 

  , 

where ( )2J X  we consider as a linear symmetric operator in the tangent  subspace  

( ){ }2 1 3X span X , X ,..., X Mn p
⊥ = ⊂ ,  p∈М . 

 
From our condition М to be pointwise Osserman hyper surface in Rn+1, it follows that the eigenvalues 

1 2 1 3 1, ,..., nλ λ λ λ λ  and     2 1 2 3 2, ,..., nλ λ λ λ λ  of the Jacobi operators ( )1J X  and ( )2J X  coincide, hence  

1 2s sλ λ λ λ= ,      s=3, 4, …, n .                                                                                                          (2) 
 
From this equality it follows that at least one 0

s
λ = , for any  indexes s=3, 4,…, n, and then all eigenvalues              

K
sj

(s≠j=1, 2,…, n),  of  the  Jacobi operator ( )J X s ,  are equal to 0.  Since we assume М to be pointwise Osserman 

hyper surface in Rn+1,  then all eigenvalues of any Jacobi operator ( )J X s (s=1, 2,…, n) are equal to 0. That means that 

the matrix of the curvature operator ℜ on the second exterior product 2 M
p

∧ , with respect to the orthonormal                 

2-vector basis ( ), , 1, 2, ...,X X s t s t ns tΛ < = ∈ 2 M
p

∧ , is zero matrix,  which means that ℜ ≡ 0. From the last 

equality it follows that the curvature tensor R of hyper surface M is vanishing, which means that М is locally Euclidean 
hyper surface in Rn+1[3].  If all 0

s
λ ≠ , for any indexes s = 3, 4,…, n in the equalities (2),  then  λ1=λ2  and if these 

values are equal to 0,  then all eigenvalues of the Jacobi operators  ( )1J X  and ( )2J X  are equal to 0. Now from the 

assumption М to be pointwise Osserman hyper surface in Rn+1,  it follows that all eigenvalues of any Jacobi operator 

( )J X s  (s=1,2,…,n), are equal to 0, and then М is locally Euclidean hyper surface in Rn+1, again. If 0
1 2
λ λ= ≠ , then 

using all Jacobi operators ( )J X s (s=3,4,…,n), we get ... 0
1 2 n
λ λ λ= = = ≠  , which means that М is hyper surface of 

constant sectional curvature[3]. Thus we prove  
 
Theorem 1:  M is pointwise Osserman hyper surface in Rn+1 if and only if one of the following cases is true:    

1) М is a locally Euclidean hyper surface; 

2) М is a hyper surface of constant sectional curvature . 
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