pg*- Connected space

Dr. A. PUNITHATHARANI
Associate Professor, St. Mary’s College, Thoothukudi – 628001, (T.N.), India.

Mrs. G. PRISCILLA PACIFICA*
Assistant Professor, St. Mary’s College, Thoothukudi – 628001, (T.N.), India.

(Received On: 01-03-17; Revised & Accepted On: 27-03-17)

ABSTRACT

In this paper we introduce **pg***- connected space, **pg***-component, **pg***- connected modulo I space and establish results about the relation between them.

Key words: **pg***- connected space, **pg***-component, **pg***- connected modulo I space.

1. **INTRODUCTION**

2. **PRELIMINARIES**

Definition 2.1: A subset A of a topological space \((X, \tau)\) is called a pre-open set [4] if \(A \subseteq int(cl(A))\) and a pre-closed set if \(cl(int(A)) \subseteq A\).

Definition 2.2: A subset A of topological space \((X, \tau)\) is called

1. a generalized closed set (g-closed) [3] if \(cl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \((X, \tau)\).
2. a g*-closed set [7] if \(cl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is g-open in \((X, \tau)\).
3. a g***-closed set [5] if \(cl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is g*-open in \((X, \tau)\).
4. a **pg***- closed set [6] if \(pcl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is g*-open in \((X, \tau)\).

Definition 2.3: A function \(f: (X, \tau) \rightarrow (Y, \sigma)\) is called

1. **pg***-irresolute[6] if \(f^{-1}(V)\) is a **pg***-closed set of \((X, \tau)\) for every **pg***-closed set \(V\) of \((Y, \sigma)\).
2. **pg***-continuous[6] if \(f^{-1}(V)\) is a **pg***-closed set of \((X, \tau)\) for every closed set \(V\) of \((Y, \sigma)\).
3. **pg***-resolute[6] if \(f(U)\) is **pg***-open in \(Y\) whenever \(U\) is **pg***-open in \(X\).

Definition 2.4: An ideal [2] \(I\) on a nonempty set \(X\) is a collection of subsets of \(X\) which satisfies the following properties.

1. \(A
\in I, B
\in I \Rightarrow A \cup B
\in I\)
2. \(A
\in I, B
\subseteq A \Rightarrow B
\in I\). A topological space \((X, \tau)\) with an ideal \(I\) on \(X\) is called an ideal topological space and is denoted by \((X, \tau, I)\).

3. **pg***- Connected space

Definition 3.1: Let \(X\) be a topological space. A **pg***-separation of \(X\) is a pair \(A\) and \(B\) of disjoint nonempty **pg***- open subsets of \(X\) whose union is \(X\). The space \(X\) is said to be **pg***- Connected if there does not exist a **pg***-separation of \(X\). If there exist a **pg***-separation then \(X\) is said to be **pg***-disconnected.

Note: If \(X = A \cup B\) is a **pg***-separation then \(A^c = B\) and \(B^c = A\) and hence \(A\) and \(B\) are **pg***- closed.

Corresponding Author: Mrs. G. Priscilla Pacifica*

Assistant Professor, St. Mary's College, Thoothukudi – 628001, (T.N.), India.
Remark 3.2: A space X is pg**-connected if and only if the only subsets of X that are both pg**-open and pg**-closed in X are the empty set and X itself.

Proof is obvious.

Example 3.3: An infinite set with finite complement topology is pg**-connected since it is impossible to find two disjoint pg**-open sets.

Example 3.4: Any indiscrete topological space (X, τ) with more than one point is pg**-disconnected since every subset is pg**-open.

Theorem 3.5: Every pg**-connected space is connected but not conversely.

Proof: Obvious, since every open set is pg**-open.

Theorem 3.6: Every pg**-connected space is g**-connected but not conversely.

Proof: Obvious, since every g**-open set is pg**-open.

Example 3.7: The space in example (3.4) is connected but not pg**-connected.

Example 3.8: The space $X = \{a, b, c\}$ with topology $\tau = \{\varnothing, X, \{a, c\}\}$ is g**-connected but not pg**-connected.

Example 3.9: \mathbb{R} with usual topology is connected and g**-connected but not pg**-connected.

Since \mathbb{Q} and \mathbb{Q}^c are pg**-open but not open and g**-open.

Theorem 3.10: Let (X, τ) be a topological space. The following conditions are equivalent:

(i) X is pg**-connected.
(ii) If A and B are disjoint pg**-open subsets of X with $X = A \cup B$, then either $A = \varnothing$ (hence $B = X$) or $B = \varnothing$ (hence $A = X$).
(iii) If C and D are disjoint pg**-closed subsets of X with $X = C \cup D$, then either $C = \varnothing$ (hence $D = X$) or $D = \varnothing$ (hence $C = X$).

Proof:

(i) \Rightarrow (ii): Let X be pg**-connected and let A and B be pg**-open subsets of X with $X = A \cup B$ and $A \cap B = \varnothing$. Since $X = A \cup B$, A is also pg**-closed, so either $A = \varnothing$ or $A = X$, (ii) follows.

(ii) \Rightarrow (i): Assume (ii) and let G be a subset of X which is both pg**-open and pg**-closed and hence $X \setminus G$ is also both pg**-open and pg**-closed. Since $X = G \cup X \setminus G$, (ii) gives that either $G = \varnothing$ or $G = X$.

(ii) \iff (iii): This follows from the fact that if A and B are disjoint pg**-open sets with $X = A \cup B$, then A and B are also pg**-closed. Similarly if A and B are disjoint pg**-closed sets with $X = A \cup B$, then A and B are also pg**-open.

Definition 3.11: Let Y be a subset of a topological space X. A pg**-separation of Y is a pair of disjoint nonempty pg**-open subsets A and B of X whose union is Y. The space Y is said to be pg**-connected if there does not exist a pg**-separation of Y is said to be pg**-disconnected if there exist a pg**-separation of Y.

Theorem 3.12: If the sets A and B form a pg**-separation of X, and if Y is a pg**-open and pg**-connected subset of X, then Y lies entirely within either A or B.

Proof: $X = A \cup B$ is a pg**-separation of X. Suppose Y intersects both A and B then $Y = (A \cap Y) \cup (B \cap Y)$ is a pg**-separation of Y which is a contradiction.

Theorem 3.13: Let C be a pg**-connected subset of a topological space X and let D be a subset such that $C \subset D \subset pg^{**}cl(C)$, then D is pg**-connected.

Proof: Suppose D is pg**-disconnected, then $D = A \cup B$ is a pg**-separation of D. Since C is pg**-connected and $C \subset D = A \cup B$, then either $C \subset A$ or $C \subset B$. To be specific, that C is disjoint from B. This implies $pg^{**}cl(C) \cap B = \varnothing$, and $D \subset pg^{**}cl(C)$. Therefore $D \cap B = \varnothing$, this is not true. Hence D is pg**-connected.
Theorem 3.14: Let \(C \) be a pg*-connected subset of a topological space \(X \). Then pg ** cl(\(C \)) is also pg**-connected.

Proof follows from taking \(D = pg ** cl(C) \) in theorem (3.13).

Theorem 3.15: If \(C \) is a pg**-dense subset of a topological space \((X, \tau)\) and if \(C \) is also pg**-connected, then \(X \) is pg**-connected.

Proof: Follows from \(pg ** cl(C) = X \).

Theorem 3.16: Let \((X, \tau)\) and \((Y, \sigma)\) be two topological spaces and \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a function. Then,

1. \(f \) is onto, pg**- continuous and \(X \) is pg**- connected \(\Rightarrow \) \(Y \) is connected.
2. \(f \) is onto, continuous and \(X \) is pg**- connected \(\Rightarrow \) \(Y \) is connected.
3. \(f \) is strongly pg**- continuous and \(X \) is connected \(\Rightarrow \) \(Y \) is pg**- connected.
4. \(f \) is onto and pg**- irresolute then \(Y \) is pg**- connected \(\Rightarrow \) \(X \) is connected.
5. \(f \) is a bijection and pg**- connected \(\Rightarrow \) \(X \) is connected.
6. \(f \) is onto, pg**- irresolute and \(X \) is pg**- connected \(\Rightarrow \) \(Y \) is pg**- connected.
7. \(f \) is a bijection and pg**- irresolute then \(Y \) is pg**- connected \(\Rightarrow \) \(X \) is pg**- connected.

Proof: (1) Suppose \(Y = A \cup B \) is a separation of \(Y \) then \(X = f^{-1}(Y) = f^{-1}(A) \cup f^{-1}(B) \) is a pg**- separation of \(X \) which is a contradiction. Therefore \(Y \) is connected.

Proofs for (2) to (7) are similar to the above proof.

Remark 3.17: The property of being “pg**- connected” is a pg**- topological property. This follows from (6) and (7) of theorem (3.16).

Theorem 3.18: A topological space \((X, \tau)\) is pg**- disconnected if and only if there exists a pg**- continuous map of \(X \) onto discrete two point space \(Y = \{0, 1\} \).

Proof: Let \(\cup A_{\alpha} = B \cup C \) be pg**- separation of \(\cup A_{\alpha} \). Then \(B \) and \(C \) are disjoint non empty pg**- open sets in \(X \). If \(p \in \cap A_{\alpha} \Rightarrow p \in B \) or \(p \in C \). Assume that \(p \in B \). Then by theorem (3.12), \(A_{\alpha} \) lies entirely within \(B \) for all \(\alpha \) (since \(p \in B \)). Therefore \(C \) is empty which is a contradiction.

Corollary 3.20: Let \(\{A_{\alpha}\} \) be a sequence of pg**- open pg**- connected subsets of \(X \) such that \(A_{\alpha} \cap A_{\alpha+1} \neq \varnothing \), for all \(n \). Then \(\cup A_{\alpha} \) is pg**- connected.

Proof: This can be proved by induction on \(n \). By theorem (3.14), the result is true for \(n = 2 \). Assume that the result to be true when \(n = k \). Now to prove the result when \(n = k + 1 \). By the hypothesis \(\cup_{i=1}^{k} A_{i} \) is pg**- connected. Now \(\cup_{i=1}^{k+1} A_{i+1} \neq \varnothing \). Therefore \(\cup_{i=1}^{k+1} A_{i} \) is pg**- connected. By induction hypothesis the result is true for all \(n \).

Corollary 3.21: Let \(\{A_{\alpha}\}_{\alpha \in \mathbb{A}} \) be an arbitrary collection of pg**-open pg**-connected subsets of \(X \). Let \(A \) be a pg**-open pg**- connected subset of \(X \). If \(A \cap A_{\alpha} \neq \varnothing \), for all \(\alpha \) then \(\cup \cup A_{\alpha} \) is pg**- connected.

Proof: Suppose that \(A \cup \cup A_{\alpha} = B \cup C \) be a pg**- separation of the subset \(A \cup \cup A_{\alpha} \). Since \(A \subseteq B \cup C \), by theorem (3.10) \(A \subseteq B \) or \(A \subseteq C \). Without loss of generality assume that \(A \subseteq B \). Let \(A_{\alpha} \subseteq B \cup C \Rightarrow A_{\alpha} \subseteq B \). But \(A \cap A_{\alpha} \neq \varnothing \Rightarrow A_{\alpha} \subseteq B \). Hence \(A \cup \cup A_{\alpha} \subseteq B \). Contradicting the fact that \(C \) is nonempty. Therefore \(A \cup \cup A_{\alpha} \) is pg**- connected.

Definition 3.22: A space \((X, \tau)\) is said to be totally pg**- disconnected if its only pg**- connected subsets are one point sets.
Example 3.23: Let \((X, \tau)\) be an indiscrete topological space with more than one point. Here all subsets are \(pg**\)-open. If \(A = \{x_1, x_2\}\) then \(A = \{x_1\} \cup \{x_2\}\) is a \(pg**\)-separation of \(A\). Therefore any subset with more than one point is \(pg**\)-disconnected. Hence \((X, \tau)\) is totally \(pg**\)-disconnected.

Example 3.24: An infinite subset with finite complement topology is not totally \(pg**\)-disconnected.

Remark 3.25: Totally \(pg**\)-disconnectedness implies \(pg**\)-disconnectedness.

Definition 3.26: A point \(x \in X\) is said to be in \(pg**\)-boundary of \(A\) (\(pg**Bd(A)\)) if every \(pg**\)-open set containing \(x\) intersects both \(A\) and \(X - A\).

Example 3.27: Any infinite subset \(A\) of \(\mathbb{R}\) whose complement is also infinite has every real number as its \(pg**\)-boundary point.

Theorem 3.28: Let \((X, \tau)\) be a topological space and let \(A\) be a subset of \(X\). If \(C\) is \(pg**\)-open \(pg**\)-connected subset of \(X\) that intersects both \(A\) and \(X - A\) then \(C\) intersects \(pg**Bd(A)\).

Proof: Given that \(C \cap A \neq \emptyset\) and \(C \cap A^c \neq \emptyset\). Now \(C = (C \cap A) \cup (C \cap A^c)\) is a nonempty disjoint union. Suppose both are \(pg**\)-open then it is a contradiction to the fact that \(C\) is \(pg**\)-connected. Hence either \(C \cap A\) or \(C \cap A^c\) is not \(pg**\)-open. Suppose that \(C \cap A\) is not \(pg**\)-open. Then there exist \(x \in C \cap A\) which is not \(pg**\)-interior point of \(C \cap A\). Let \(U\) be a \(pg**\)-open set containing \(x\). Then \(U \cap A\) is a \(pg**\)-open set containing \(x\) and hence \((U \cap C) \cap (C \cap A^c) \neq \emptyset\). This implies \(U\) intersects both \(A\) and \(A^c\) and therefore \(x \in pg**Bd(A)\). Hence \(C \cap pg**Bd(A) \neq \emptyset\).

Next we extend the intermediate value theorem for \(pg**\)-connected space.

Theorem 3.29: (Generalisation of Intermediate value theorem) Let \(f : X \rightarrow \mathbb{R}\) be a \(pg**\)-continuous map, where \(X\) is \(pg**\)-connected space and \(\mathbb{R}\) with usual topology. If \(x, y\) are two points of \(X\) and \(a = f(x)\) and \(b = f(y)\) then for every real number \(r\) between \(a\) and \(b\), there exists a point \(c\) of \(X\) such that \(f(c) = r\).

Proof: Assume the hypothesis of the theorem. Suppose there is no point \(c\) of \(X\) such that \(f(c) = r\), then \(A = (-\infty, r)\) and \(B = (r, \infty)\) are disjoint open sets in \(\mathbb{R}\) and \(X = f^{-1}(A) \cup f^{-1}(B)\) which is a \(pg**\)-separation of \(X\), contradicting the fact that \(X\) is \(pg**\)-connected. Therefore there exists \(c \in X\) such that \(f(c) = r\).

Remark 3.30: The above theorem holds even if,
- \(f\) is continuous and \(X\) is \(pg**\)-connected.
- \(f\) is \(pg**\)-irresolute and \(X\) is \(pg**\)-connected.
- \(f\) is \(pg**\)-continuous and \(X\) is \(pg**\)-connected.
- \(f\) is strongly \(pg**\)-continuous and \(X\) is \(pg**\)-connected.

4. \(pg**\)-components

Definition 4.1: Let \((X, \tau)\) be a topological space. Define an equivalence relation on \(X\) by setting \(x \sim y\) if and only if there exists a \(pg**\)-connected subset of \(X\) containing both \(x\) and \(y\). The equivalence classes are called \(pg**\)-components of \(X\). A \(pg**\)-component containing \(x\) is denoted by \(C_x = \{y \in X \mid x \sim y\}\).

(i) \(x \sim x\), since \((x)\) is \(pg**\)-connected. Hence \(\sim\) is reflexive.

(ii) If \(x \sim y\), then there exists a \(pg**\)-connected subset of \(X\) containing both \(x\) and \(y\) and hence \(y \sim x\). Therefore \(\sim\) is symmetric.

(iii) Let \(x \sim y\) and \(y \sim z\). Then there exists a \(pg**\)-connected subset \(A\) of \(X\) containing both \(x\) and \(y\) and a \(pg**\)-connected subset \(B\) of \(X\) containing both \(y\) and \(z\). Since \(A\) and \(B\) are \(pg**\)-connected have a point \(y\) in common \(A \cup B\) is a \(pg**\)-connected subset of \(X\) containing \(x, y\) and \(z\). Therefore \(\sim\) is transitive.

Example 4.2: Let \((X, \tau)\) be an indiscrete topological space with more than one point. Then each \(pg**\)-component of \(X\) consists of a single point.

Theorem 4.3: Any two \(pg**\)-components are either identical or disjoint.

Proof: Follows from the definition of \(pg**\)-component.

Theorem 4.4: The \(pg**\)-components of \(X\) are \(pg**\)-connected subsets of \(X\) whose union is \(X\), such that each nonempty \(pg**\)-connected subset of \(X\) intersects only one of the \(pg**\)-components.
Proof: Each pg*-connected subset A of X intersects only one of the pg*-components. For, if A intersects the pg*-components C_1 and C_2 of X, say in points x_1 and x_2 then $x_1 \sim x_2$, this implies $C_1 = C_2$. To prove the pg*-component C is pg*-connected, choose a point $x_0 \in C$.

Now for every $x \in C$, $x_0 \sim x$. Therefore there exists a pg*-connected subset A_x containing x and x_0, implies $A_x \subset C$. Therefore $\bigcup_{x \in A_x} A_x = C$. Since A_x are pg*-connected subsets having the point x_0 in common, C is pg*-connected.

Corollary 4.5: C_x is the union of all pg*-connected sets containing x.

Theorem: C_x is the largest pg*-connected set containing x. If there is another pg*-connected subset A of X such that $x \in A$, then $A \subset C_x$.

Proof: Let $t \in A \Rightarrow x, t \in A$, where A is pg*-connected, this implies $t \sim x$. Therefore $t \in C_x$ and hence $x \in C_x$. Hence C_x is the largest pg*-connected set containing x.

Theorem 4.6: Let (X, τ) be a topological space, then the following are true.

(i) Each point in X is contained in exactly one pg*-component of X.
(ii) Each pg*-connected subset of X is contained in a pg*-component of X.
(iii) A pg*-connected subset of X which is pg*-open is a pg*-component of X.
(iv) If C is pg*-component of X then $C = pg^* \text{cl}(C)$. If (X, τ) is a pg*-multiplicative space then every pg*-component is pg*-closed.

Proof:

(i) Let $x \in X$ and consider the collection $\{C_i\}$ of all pg*-connected subsets of X containing x, this collection is non-empty since $\{x\}$ itself is pg*-connected. $C = \bigcup C_i$ is a maximal pg*-connected subset of X which contains x and therefore a pg*-component of X. Suppose C^* is another pg*-component of X containing x, it clearly among the C_i’s and is therefore contained in C, since C^* is also pg*-component we must have $C = C^*$.
(ii) A pg*-connected subset of X is contained in the pg*-component which contains any one of its points.
(iii) Let A be a pg*-connected subset of X which is pg*-open, then (by (ii)) A is contained in some pg*-component C. If A is a proper subset of C, then $C \cap A$ and $C \cap A^\circ$ forms a pg*-separation of C which is a contradiction to the fact that C, being a pg*-component, is pg*-connected. Therefore $A = C$.
(iv) If the pg*-component $C \neq pg^* \text{cl}(C)$ then its pg*-closure ($pg^* \text{cl}(C)$) is a pg*-connected subset (3.14) subset of X which properly contains C, this is the contradiction to the maximality of C as pg*-connected subset of X. Hence $C = pg^* \text{cl}(C)$. If X is a pg*-multiplicative space, then C is pg*-closed.

Theorem 4.7: Let X be a totally pg*-disconnected space. Then $C_x = \{x\}$, where C_x is a pg*-component of x.

Proof: Let X be a totally pg*-disconnected space, and then its only pg*-connected subsets are one point sets. Suppose $y \in C_x$ such that $x \neq y$ then C_y is not pg*-connected which is contradiction to the fact that the pg*-components of X are pg*-connected subsets of X (4.4). Therefore in a totally pg*-disconnected space the pg*-component of x is $\{x\}$.

5. pg*-connected modulo I

Definition 5.1: Let (X, τ, I) be an ideal topological space then $X = A \cup B$ is said to be pg*-separation modulo I if A and B are non empty pg*-open sub sets of X such that $A \cap B \in I$. (X, τ, I) is said to be pg*-connected modulo I if there is no pg*-separation modulo I for X.

Definition 5.2: Let Y be a subset of X. $Y = A \cup B$ is said to be pg*-separation modulo I of Y if A and B are non empty pg*-open sub sets of X and $A \cap B \in I$.

If there is no pg*-separation modulo I for Y then we say Y is pg*-connected modulo I subset.

Theorem 5.3: $X = A \cup B$ is pg*-separation of X implies $X = A \cup B$ is a pg*-separation modulo I of X for any ideal I.

Proof: It follows since $\tau \in I$.

Theorem 5.4: (X, τ, I) is pg*-connected modulo I for some ideal I implies (X, τ) is pg*-connected. Equivalently If (X, τ) is pg*-disconnected then (X, τ, I) is pg*-disconnected modulo I for some ideal I.

Proof follows from theorem (5.3).
Remark 5.5: The converse is false as seen in the following example.

Example 5.6: Let \((X, \tau)\) be infinite cofinite topological space and \(I = p(X)\). Then \(X\) is \(pg^*-\) connected. On the other hand \(X - \{x\}, X - \{y\}\) are \(pg^*-\)open and non empty, and \((X - \{x\}) \cup (X - \{y\})\) is a \(pg^*-\)separation modulo \(I\) of \(X\). Therefore \((X, \tau, I)\) is not \(pg^*-\) connected modulo \(I\).

Theorem 5.7: Let \((X, \tau, I)\) be an ideal topological space, \(X = A \cup B\) is a \(pg^*-\)separation modulo \(I\) of \(X\) and \(Y\) is \(pg^*-\)open \(pg^*-\) connected subset of \(X\) modulo \(I\) then \(Y\) lies entirely within either \(A\) or \(B\).

Proof: \(X = A \cup B\) is a \(pg^*-\)separation of \(X\) modulo \(I\). Therefore \(A\) and \(B\) are nonempty \(pg^*-\) open sets and \(A \cap B \in I\).

Now \(Y = (Y \cap A) \cup (Y \cap B), (Y \cap A)\) and \((Y \cap B)\) are \(pg^*-\)open sets and \((Y \cap A) \cap (Y \cap B) = Y \cap (A \cap B) \in I\). If \((Y \cap A)\) and \((Y \cap B)\) are both non empty then \(Y = (Y \cap A) \cup (Y \cap B)\) is a \(pg^*-\)separation of \(Y\) modulo \(I\) which is a contradiction. Therefore \((Y \cap A) = \emptyset\) or \((Y \cap B) = \emptyset\) and hence \(Y\) lies entirely within either \(A\) or \(B\).

Theorem 5.8: Let \((X, \tau, I)\) and \((Y, \sigma, J)\) be two ideal topological spaces and \(f: (X, \tau, I) \rightarrow (Y, \sigma, J)\) be a bijection where \(J = f(I)\), then

1. \(f\) is \(pg^*-\) continuous and \(X\) is \(pg^*-\) connected modulo \(I\) \(\Rightarrow\) \(Y\) is connected modulo \(J\).
2. \(f\) is continuous and \(X\) is \(pg^*-\) separated modulo \(I\) \(\Rightarrow\) \(Y\) is connected modulo \(J\).
3. \(f\) is strongly \(pg^*-\) continuous and \(X\) is connected \(\Rightarrow\) \(Y\) is \(pg^*-\) connected modulo \(J\).
4. \(f\) is \(pg^*-\) irresolute then \(Y\) is \(pg^*-\) connected modulo \(J\) \(\Rightarrow\) \(X\) is connected modulo \(f\).
5. \(f\) is a bijection and open then \(Y\) is \(pg^*-\) connected modulo \(J\) \(\Rightarrow\) \(X\) is connected modulo \(I\).
6. \(f\) is \(pg^*-\) irresolute and \(X\) is \(pg^*-\) connected modulo \(I\) \(\Rightarrow\) \(Y\) is \(pg^*-\) connected modulo \(J\).
7. \(f\) is \(pg^*-\) irresolute then \(Y\) is \(pg^*-\) connected modulo \(J\) \(\Rightarrow\) \(X\) is \(pg^*-\) connected modulo \(I\).

Proof: (1) Assume that \(Y\) is not connected modulo \(J\). Let \(Y = A \cup B\) be a \(pg^*-\) separation modulo \(J\). Therefore \(A\) and \(B\) are nonempty \(pg^*-\) open subsets of \(Y\) such that \(A \cap B \notin J\). Then \(X = f^{-1}(A) \cup f^{-1}(B)\) is a \(pg^*-\) separation modulo \(I\) since \(f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) \subseteq I\) which is a contradiction. Therefore \(Y\) is connected modulo \(J\).

Proofs for (2) to (7) are similar to the above proof.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared.

© 2017, IJMA. All Rights Reserved