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ABSTRACT 
In this paper, we introduce the concept of gδsg-homeomorphisms and study some of their properties. Also the diagram 
of implications is given. 
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1. INTRODUCTION 
 
Levine [8] has generalized the concept of closed sets to generalized closed sets. Devi, Balachandran and Maki [2] 
defined two classes of maps called semi generalized homeomorphisms and generalized semi homeomorphisms and also 
defined two classes of maps called sgc-homeomorphisms and gsc-homeomorphisms. In this paper, we introduce the 
class of maps called gδsg-homeomorphisms and study their properties. 
 
2. PRELIMINARIES 
 
Throughout this paper (X, τ) (or simply X) represent topological spaces on which no separation axioms are assumed 
unless otherwise mentioned. For a subset A of X, cl(A), int(A) and Ac denote the closure of A, the interior of A and the 
complement of A respectively. Let us recall the following definitions, which are useful in the sequel. 
 
Definition 2.1 [5]: A subset A of X is called generalized δ-semiclosed (briefly gδs − closed) set if sCl(A)⊆U whenever 
A ⊆U and U is δ-open in X. 
 
Definition 2.2 [4]: A function f: X → Y is called gδs-continuous if the inverse image of every closed set in Y is gδs-
closed set in X. 
 
Definition 2.3 [6]: A function f: X → Y is said to be gδs-closed (resp.gδs-open) if f(V) is gδs-closed (resp.gδs-open) in 
Y for every closed (resp-open) set V in X. 
 
Definition 2.4 [6]: A function f: X → Y is gδs-irresolute if f−1(V) is gδs-closed in X for every gδs-closed set V in Y 
 
Definition 2.5 [5]: A bijective function f: X → Y is said to be gδs-homoeomorphism if f is both gδs-continuous and 
gδs-open, equivalently, if f and f−1 both are gδs-continuous. 
 
Definition 2.6 [2]: A bijective map f: X → Y is called sgc-homeomorphism if the function f and the inverse function 
f−1 are both sg-irresolute. 
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Definition 2.8 [3]: A bijective map f: X → Y is called gsg-homeomorphism if the function f and the inverse function 
f−1 are both gsg-irresolute. 
 
Definition 2.9 [7]: A topological space X is called Tgδs-space if every gδs-closed set in it is closed. 
 
Definition 2.10 [7]: A topological space X is called gδsT1/2-space if every gδs-closed set in it is semiclosed. 
 
3. GδSG-homeomorphism 
 
Definition 3.1: A bijective map f: X → Y is called gδsc-homeomorphism if the function f and the inverse function f−1 

are both gδs-irresolute. 
 
Example 3.2: Let X = Y = {a, b, c}, τ = {X, φ, {a} and σ = {Y, φ, {b} be topologies on X and Y respectively. Define a 
function f : X → Y by f(a) = a, f(b) = b and f(c) = c. Then f is gδsc-homeomorphism. 
 
Remark 3.3: Every semi-homeomorphism is gδsc-homeomorphism. But converse need not be as shown in the 
following example. 
 
Example 3.4: Let X = Y = {a, b, c}, τ = {X, φ, {a}} and σ = {Y, φ, {a}, {b}, {a, b}} be topologies on X and Y 
respectively. Define a function f: X → Y as f(a) = a, f(b) = b and f(c) = c. Then f is gδsc-homeomorphism but not 
semi-homeomorphism, since for an open set {b} in Y , f−1({b}) = {b} is not open in X. 
 
Remark 3.5: Every homeomorphism is gδsc-homeomorphism. But converse need not be true as shown in the 
following example. 
 
Example 3.6: Let X = Y = {a, b, c}, τ = {X, φ, {b}, {b, c}} and σ = {Y, φ, {a, b}} be topologies on X and Y 
respectively. Then the identity function f: X → Y is gδsc-homeomorphism but not homeomorphism, since for an open 
set {a, b} in Y , f−1({a, b}) = {a, b} is not open in X. 
 
Remark 3.7: Every gsc-homeomorphism is gδsc-homeomorphism. But converse need not be true as shown in the 
following example. 
 
Example 3.8: Let X = Y = {a, b, c}, τ = {X, φ, {b}, {a, b}, {b, c}} and σ = {Y, φ, {a}, {b}} be topologies on X and Y 
respectively. Define a function f: X → Y as f(a) = a, f(b) = b and f(c) = c. Then f is gδsc-homeomorphism but not gsc-
homeomorphism, since the set {a, b} is gs-closed in Y , but the set f−1({a, b}) = {a, b} is gs-closed in X. 
 
Remark 3.9: Every gδsc-homeomorphism is gδs-homeomorphism. But converse need not be true as shown in the 
following example. 
 
Example 3.10: Let X = Y = {a, b, c}, τ = {X, φ, {a}, {c}, {a, c}} and σ = {Y, φ, {b}, {a, c}} be topologies on X and Y 
respectively. Define a function f: X → Y as f(a) = a, f(b) = b and f(c) = c. Then f is gδs-homeomorphism but not gδsc-
homeomorphism, since for an open set {b} in Y, f−1({b}) = {b} is not gδs-open in X. 
 
Remark 3.11: Every sgc-homeomorphism is gδsc-homeomorphism. But converse need not be true as shown in the 
following example. 
 
Example 3.12: Let X = Y = {a, b, c}, τ = {X, φ, {b}, {b, c}} and σ = {Y, φ, {a}, {b}, {a, b}} be topologies on X and Y 
respectively. Define a function f: X → Y as f(a) = a, f(b) = b and f(c) = c. Then f is gδsc-homeomorphism but not sgc-
homeomorphism, since the set {b} is sg-closed in Y, f−1({b}) = {b} is not sg-closed in X. 
 
Theorem 3.13: If f: X → Y and g: Y → Z be two gδsc-homeomorphism functions, then (g ◦ f) is gδsc-
homeomorphism. 
 
Proof: Let f: (X, τ) → (Y, σ) be bijective map. 
 
(i)To prove (g ◦ f) is gδs-irresolute map. 
Let V be gδs-closed set in Z. Since g is gδs-irresolute map, g−1(V ) is gδs-closed set in Y . Since f is gδs-irresolute map, 
f−1(g−1(V )) = (g ◦ f)−1(V ) is gδs-closed set in X. Therefore (g ◦ f) is gδs-irresolute. 
 
(ii)To prove (g ◦ f)−1 is gδs-irresolute map. 
Let V be gδs-closed set in X. Since f−1 is gδs-irresolute, (f−1)−1(V) = f(V) is gδs-closed set in Y . Since g−1 is gδs-
irresolute (g−1)−1(f(V )) = gf(V ) = g ◦ f(V ) is gδs-closed set in Z. Therefore (g ◦ f)−1 is gδs-irresolute map.   
Hence from (i) and (ii) (g ◦ f) is gδsc-homeomorphism. 
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Definition 3.14: A bijection map f : X → Y is said to be gδsg-irresolute map, if f−1(A) is sg-closed in X for every gδs-
closed set A of Y 
 
Example 3.15: Let X = Y = {a, b, c}, τ = {X, φ, {b}, {a, c}} and σ = {Y, φ, {a}, {b, c}} be topologies on X and Y 
respectively. Define a function f: X → Y as f(a) = b, f(b) = a and f(c) = c. Then f is gδsg-irresolute map. 
 
Definition 3.16: A bijection map f: X → Y is said to be gδsg-homeomorphism if the function f and the inverse function 
f−1 are both gδsg-irresolute maps. If there exists a gδsg-homeomorphism from X to Y, then the spaces (X, τ) and (Y, σ) 
are said to be gδsg-homeomorphic. 
 
The family of all gδsg-homeomorphism of any topological spaces (X, τ) is denoted by gδsgh(X, τ) 
 
Remark 3.17: The following two examples shows that the concepts of homeomorphism and gδsg-homeomorphism are 
independent of each other. 
 
Example 3.18: Let X = {a, b, c}, τ = {X, φ, {a}, {a, c}} be topology on X. Define a function fX : (X, τ ) → (X, τ ) as 
fX(a) = a, fX(b) = b and fX(c) = c. Then fX is homeomorphism but not gδsg-homeomorphism, since the set {a, b} is gδs-
closed but the set fX

−1 ({a, b}) = {a, b} is not sg-closed in X. 
 
Example 3.19: Let X be any set which contains at least two elements, τ and σ be discrete and indiscrete topologies on 
X respectively. The identity map IX: (X, τ) → (X, σ) is a gδsg-homeomorphism but is not a homeomorphism. 
 
Remark 3.20: Every gδsg-homeomorphism is gsc-homeomorphism. But converse need not be true as shown in the 
following example. 
 
Example 3.21: Let X = {a, b, c}, τ = {X, φ, {a}, {a, b}} be topologies on X. Define a function fX : (X, τ ) → (X, τ ) as 
fX(a) = a, fX(b) = b and fX(c) = c. Then f is gsc-homeomorphism but not gδsg-homeomorphism, since the set {a, b} is 
gδs-closed set but the set fX

−1 ({a, b}) = {a, b} is not sg-closed in X. 
 
Theorem 3.22: Every gδsg-homeomorphism is gδsc-homeomorphism. 
 
Proof: Let f: (X, τ) → (Y, σ) be bijective map. 
 
(i)To prove f is gδs-irresolute map. 
Let V be a gδs-closed set in Y. Since f is gδs-irresolute map, f−1(V) is sg-closed set in X. We know that, every sg-
closed set is gδs-closed set. Therefore, f−1(V) is gδs-closed set in X. Hence f is gδs-irresolute map. 
 
(ii)To prove f−1 is gδs-irresolute map. 
 
Let V be a gδs-closed set in X. Since f−1 is gδsg-irresolute map, (f−1)−1(V) = f(V) is sg-closed set in Y. We know that, 
every sg-closed set is gδs-closed set. 
 
Therefore, f(V) is gδs-closed set in Y. Hence f−1 is gδs-irresolute map. 
 
Hence from (i) and (ii) f is gδsc-homeomorphism. 
 
Remark 3.23: Converse of the above theorem need not be true as shown in the following example. 
 
Example 3.24: Let X = {a, b, c}, τ = {X, φ, {b}, {a, b}} be topology on X. Define a function fX : (X, τ) → (X, τ) as 
fX(a) = a, fX(b) = b and fX(c) = c. Then fX is gδsc-homeomorphism but not gδsg-homeomorphism, since the set {a, b} is 
gδs-closed but the set fX

−1 ({a, b}) = {a, b} is not sg-closed in X. 
  
Theorem 3.25: Every gδsc-homeomorphism from gδsT1/2 space onto itself is gδsg-homeomorphism. 
 
Proof: Let f: (X, τ) → (Y, σ) be bijective map. 
 
(i)To prove f is gδsg-irresolute map. 
Let V be a gδs-closed set in Y. Since f is gδs-irresolute map, f−1(V ) is gδsclosed set in X. Since X is gδsT1/2 space, 
f−1(V) is semiclosed in X. We know that every semiclosed set is sg-closed set. Therefore, f−1(V ) is sg-closed set in X. 
(ii)To prove f−1 is gδsg-irresolute map. 
Let V be a gδs-closed set in X. Since f−1 is gδs-irresolute map, (f−1)−1(V ) = f(V ) is gδs-closed set in Y. Since Y is 
gδsT1/2 space, f(V ) is semiclosed. We know that, every semiclosed set is sg-closed set. Therefore, f(V ) is sg-closed set 
in Y . Hence from (i) and (ii) f is gδsg − homeomorphism. 
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Theorem 3.26: Every gδsg-homeomorphism is gδs-homeomorphism. 
 
Proof: Let f : (X, τ ) → (Y, σ) be bijective map. 
 
(i)To prove f is gδs-continuous map. 
Let V be a closed set in Y. Since f is gδsg-irresolute map, f−1(V) is sg-closed set in X. We know that, every sg-closed 
set is gδs-closed set. Therefore, f−1(V) is gδs-closed set in X. 
 
(ii)To prove f−1 is gδs-continuous map. 
Let V be a closed set in X. We know that every closed set is gδs-closed set. Since f−1 is gδsg-irresolute map,     
(f−1)−1(V) = f(V ) is sg-closed set in Y, but we know that, every sg-closed set is gδs-closed set. Therefore, f(V) is gδs-
closed set in Y. 
 
Hence from (i) and (ii) f is gδs-homeomorphism. 
 
Remark 3.27: Converse of the above theorem need not be true as shown in the following example. 
 
Example 3.28: Let X = Y = {a, b, c}, τ = {X, φ, {b}, {c}, {b, c}} and σ = {Y, φ, {a}, {b, c}} be topology on X. Define 
a function f: (X, τ) → (Y, σ) as f(a) = a, f(b) = b and f(c) = c. Then f is gδs-homeomorphism but not gδsg-
homeomorphism, since the set {b, c} is gδs-closed set in Y, but the set f−1({b, c}) = {b, c} is not sg-closed in X. 
 
Theorem 3.29: Every gδs-homeomorphism from Tgδs space onto itself is gδsg-homeomorphism. 
 
Proof: Let f : (X, τ ) → (Y, σ) be bijective map. 
 
(i)To prove f is gδsg-irresolute map. 
Let V be a gδs-closed set in Y. Since f is gδs-continuous map, f−1(V ) is gδs-closed set in X. Since X is Tgδs space, 
f−1(V) is closed in X. We know that every closed set is sg-closed set. Therefore, f−1(V ) is sg-closed set in X. 
 
(ii)To prove f−1 is gδsg-irresolute map. 
Let V be a gδs-closed set in X. Since f−1 is gδs-continuous map, (f−1)−1(V) = f(V) is gδs-closed set in Y. Since Y is gδsT 
space, f(V ) is closed. We know that, every closed set is sg-closed set. Therefore, f(V ) is sg-closed set in Y . 
Hence from (i) and (ii) f is gδsg-homeomorphism. 
 
Remark 3.30: From the all above statement, we have the following diagram. 
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