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ABSTRACT 
The purpose of this paper is to introduce and investigate several continuous functions namely gsα** -continuous 
functions and contra gsα** -continuous functions along with their several characterizations. Further we introduce new 
types of graphs called gsα**-closed graphs, contra gsα** -closed graphs and investigated several characterizations of 
such notions. 
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1. INTRODUCTION 
 
In recent literature, we find many topologists have focused their research in the direction of investigating types of 
generalized continuity. The notion of contra-continuity was first investigated by Dontchev[7]. A good number of 
researchers have initiated different types of contra-continuous functions which are found in the papers [4],[5],[6].  In 
1970, Levine [10] discussed the notion of generalized closed sets in topological spaces.  Extensive research on 
generalizing closedness was done in recent years.  In 1963, Levine [11] introduced the concepts of semi-open sets in 
topological spaces.  W. Dunham [9] introduced the concept of generalized closure and defined a new topology τ* and 
investigated some of their properties.  Quite recently the authors Robert.A and Pious Missier.S introduced and studied 
semi−open [15] sets and semi*α−open [15] sets using the generalized closure operator.  Recently Santhini et.al [16] 
introduced gsα** -closed sets in topological spaces.  In 1969, Long [12] introduced closed graphs in topological spaces.  
In this paper, by means of gsα**-closed sets, we introduce namely, gsα**-continuous functions and contra gsα**-
continuous functions along with their several properties, characterizations and mutual relationships. Further we 
introduce new types of graphs, called gsα**-closed graphs, contra gsα**-closed graphs via gsα**-open sets. Several 
characterizations and properties of such notions are investigated. 
 
2. PRELIMINARIES 
 
In this section, we recall some basic definitions and properties used in our paper. 
 
Definition 2.1: A subset A of a space (X, τ) is said to be 

(i) semi-open [11] if A ⊆  cl(intA). 
(ii) semi-open if [15] A ⊆  cl_(intA). 
(iii) semi*α-open [15] if A ⊆  cl_(αintA). 
(iv) a g-closed set [2] if cl(A) ⊆  U whenever A ⊆  U and U is open in X. 
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(v) a ω-closed set [17] if cl(A) ⊆  U whenever A and U is semi-open in X. 
(vi) a generalized-semi closed set(briefly gs-closed) [5] if scl(A)⊆U whenever A⊆U and U is open in X. 
(vii) a g*s -closed set[14] if scl(A) ⊆  U whenever A ⊆  U and U is gs-open in X. 
(viii) a generalized semi pre-closed set(briefly gsp-closed)[8] if spcl(A)⊆U whenever A⊆U and U is open in X. 

 
Definition 2.2: A subset A of a space (X, τ) is called generalized gsα**-closed set (briefly gsα**-closed) [16] if       
scl(A) ⊆  U whenever A ⊆  U and U is semi*α-open in (X, τ ). 
 
The class of all gsα**-open subsets of X is denoted by gsα**O(X, τ) and the class of all gsα**-open subsets of X 
containing x is denoted by gsα**O(X,x). 
 
Definition 2.3: A function f: (X, τ ) → (Y, σ) is called a 

(1) semi-continuous [11] if f-1(V) is semi-closed set in (X, τ ) for every closed set V in (Y, σ). 
(2) semi*-continuous [13] if  f-1 (V) is semi*-closed set in (X, τ) for every closed set V in (Y, σ). 
(3) semi*α-continuous [15] if f-1 (V) is semi*α−closed set in (X, τ) for every closed set V in (Y, σ). 
(4) g-continuous [2] if  f-1 (V) is g-closed set in (X, τ) for every closed set V in (Y, σ). 
(5) generalized semi-continuous(briefly gs-continuous) [5] if  f-1 (V) is gs-closed set in (X, τ) for every closed set 

V in (Y, σ). 
(6) generalized semi-precontinuous (briefly gsp-continuous) [8] if f-1(V) is gsp-closed set in (X, τ) for every 

closed set V in (Y, σ). 
(7) ω-continuous [17] if  f-1 (V) is ω-closed set in (X, τ) for every closed set V in (Y, σ). 
(8) g*s-continuous [14] if  f-1 (V) is g*s-closed set in (X, τ) for every closed set V in (Y, σ). 

 
Definition 2.4: A function f: (X, τ) → (Y, σ) is said to be 

(1) contra-continuous [7] if  f-1 (V) is closed in (X, τ) for every open set V in (Y, σ). 
(2) contra semi-continuous [6] if  f-1 (V) is semi-closed in (X, τ) for every open set V in (Y, σ). 
(3) contra semi*-continuous [13] if  f-1(V) is semi*-closed in (X, τ) for every open set V in (Y, σ). 
(4) contra semi*α-continuous [15] if  f-1(V) is semi*α -closed in (X, τ) for every open set V in (Y, σ). 
(5) contra gs-continuous [3] if  f-1 (V) is gs-closed in (X, τ) for every open set V in (Y, σ). 
(6) contra gsp-continuous [1] if  f-1 (V) is gsp-closed in (X, τ) for every open set V in (Y, σ). 
(7) contra g-continuous [4] if  f-1 (V) is g-closed in (X, τ) for every open set V in (Y, σ). 
(8) contra g*s-continuous [14] if  f-1 (V) is g*s-closed in (X, τ) for every open set V in (Y, σ). 

 
Definition 2.5: A space X is locally indiscrete [18] if every open set in X is closed. 
 
Definition 2.6: 

(i) A space (X, τ) is called a αTs** -space [16] if every gsα**-closed set in it is closed. 
(ii) A space (X, τ) is called a Tα

s**-space [16] if every gs-closed set in it is gsα**-closed. 
 
3. gsα**-Continuous and gsα**-Irresolute functions 
 
In this section, the concepts of gsα**-continuity and gsα**-irresoluteness are introduced and studied. 
 
Definition 3.1: A function f: (X, τ) → (Y, σ) is called gsα**-continuous if f-1 (V) is gsα**-closed set in (X, τ) for every 
closed set V in (Y, σ). 
 
Example 3.2: Let X =Y = {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}} and σ = {φ, Y, {a, b}, {a}}. Then f: (X, τ) →(Y, σ) 
defined by f(a) = c, f(b) = a, f(c) = b is gsα**-continuous. 
 
Theorem 3.3: 

(1) Every continuous function is gsα**-continuous. 
(2) Every ω-continuous function is gsα** -continuous. 
(3) Every g*s-continuous function is gsα**-continuous. 
(4) Every semi-continuous function is gsα**-continuous. 
(5) Every semi*α-continuous function is gsα**-continuous. 
(6) Every gsα**-continuous function is gs-continuous. 
(7) Every gsα**-continuous function is gsp-continuous. 

 
Proof: 
(1) Let V be a closed set in Y. Since, f is continuous, f-1 (V) is closed in X. By theorem 3.2 [16], f-1 (V) is gsα**-closed 
in X and so f is gsα**-continuous. 
(2)-(7). Similar to the proof of (1). 
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Remark 3.4: The converses of the above theorems are not be true as seen from the following examples. 
 
Example 3.5: Let X = Y = {a, b, c, d}, τ = {φ, X, {a}, {d}, {a, d}, {c, d}, {a, c, d}} and σ = {φ, Y, {a}, {b}, {a, b},        
{a, b, c}}. Then f: (X, τ) → (Y, σ)  defined by f(a) = b, f(b) = c, f(c) = d, f(d) = a is gsα**-continuous but not 
continuous. 
 
Example 3.6:.Let X = Y = {a, b, c}, τ = {φ, X, {a, b}, {b}} and σ = {φ, Y, {a, b}}. Then f: (X, τ) → (Y, σ) defined by 
f(a) = c, f(b) = a, f(c) = b is gsα**-continuous but not ω-continuous. 
 
Example 3.7: Let X = Y = {a, b, c}, τ = {φ, X, {b, c}, {a}} and σ = {φ, Y, {a, b}}. Then f: (X, τ) → (Y, σ) defined by 
f(a) = b, f(b) = c, f(c) = a is gsα**-continuous but not g*s continuous. 
 
Example 3.8: Let X = Y = {a, b, c}, τ = {φ, X, {b, c}, {a}} and σ = {φ, Y, {a}, {a, b}}. Then f: (X, τ) → (Y, σ) 
defined by f(a) = c, f(b) = a, f(c) = b is gsα**-continuous but not semi-continuous. 
 
Example 3.9:. Let X = Y = {a, b, c, d}, τ = {φ, X, {b, c, d}, {a, d}} and σ = {φ, Y, {a, b}}. Then f: (X, τ) → (Y, σ) 
defined by f(a) = f(b) = a, f(c) = b, f(d) = c is gsα**-continuous but not semi*-continuous. 
 
Example 3.10: Let X = Y = {a, b, c}, τ = {φ, X, {a, b}, {a}} and σ = {φ, Y, {a}, {b, c}}. Then f: (X, τ) → (Y, σ) 
defined by f(a) = c, f(b) = a, f(c) = b is gs-continuous but not gsα**-continuous. 
 
Example 3.11: Let X = Y = {a, b, c}, τ = {φ, X, {a, b}} and σ = {φ, Y, {a}, {a, b}}. Then f: (X, τ) → (Y, σ) defined by 
f(a) = c, f(b) = a, f(c) = b is gsp-continuous but not gsα**-continuous. 
 
Remark 3.12:. gsα** -continuous and g-continuous functions are independent of each other. 
 
Example 3.13: Let X = {a, b, c, d}, Y = {a, b, c}, τ = {φ, X, {b}, {a, b}} and σ = {φ, Y, {a, b}}. Then f: (X, τ) → 
(Y,σ) defined by f(a) = b, f(b) = f(c) = c, f(d) = a is g-continuous but not gsα**-continuous. 
 
Example 3.14: Let X = Y = {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}} and σ = {φ, Y, {b}, {a, b}}. Then f: (X, τ) →(Y, σ) 
defined by f(a) = b, f(b) = c, f(c) = d, f(d) = a is gsα**–continuous but not g-continuous. 
 
Remark 3.15: gsα**-continuous and semi*α-continuous functions are independent of each other. 
 
Example 3.16: Let X = {a, b, c, d}, Y = {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}, {a, b, c} and σ = {φ, Y, {b, c}, {a}}.Then 
f: (X, τ) → (Y, σ) defined by f(a) = f(d) = b, f(b) = a, f(c) = c is gsα**-continuous but not semi*α-continuous. 
 
Example 3.17: Let X = {a, b, c, d},Y = {a, b, c}, τ = {φ, X, {b}, {a, b}} and σ = {φ, Y, {a, b}}. Then f: (X, τ) → (Y,σ) 
defined by f(b) = f(c) = a, f(a) = c, f(d) = b is semi*α-continuous but not gsα** -continuous. 
 
4. Characterizations of gsα**-continuous functions 
 
Theorem 4.1: The following are equivalent for a function f: (X, τ) → (Y, σ). Assume that gsα**O(X, τ) is closed under 
any union. 

(i) f is gsα**-continuous. 
(ii) For each x ∈  X and each open set F in Y containing f(x), there exists a gsα**-open set U in X containing x 

such that f(U) ⊆  F. 
 
Proof: 
(i)⇒ (ii): Let x ∈  X and F be an open set in Y containing f(x). Since f is gsα**-continuous, f-1 (F) is gsα**-open in X 
containing x. Take U = f-1(F) then U is a gsα**-open set in X containing x such that f(U) ⊆  F. 
 
(ii) ⇒  (i): Let F be an open set in Y such that x ∈  f-1 (F). Then F is an open set containing f(x). By (i), there exists a 
gsα**-open set Ux in X containing x such that f(U) ⊆  F which implies U ⊆  f-1 (F). Therefore f-1 (F) = ∪ {Ux :              
x ∈f-1 (F)}. Since Ux is gsα**-open and gsα**O(X,τ ) is closed under any union. Hence f-1 (F) is open and so f is gsα**-
continuous. 
 
Theorem 4.2: A function f: (X, τ) → (Y, σ) is gsα**-continuous if and only if f-1 (V) is gsα**-open in X for every open 
set V in Y. 
 
Proof: Since f-1 (Vc) = (f-1 (V))c, proof  follows. 
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Remark 4.3: The composition of two gsα**-continuous functions is not gsα**-continuous. 
 
Example 4.4: Let X = Y = Z = {a, b, c}, τ = {φ, X, {a}, {a, b}}, σ = {φ, Y, {a, b}} and μ = {φ, Z, {a}}. Then f: (X, τ) 
→ (Y, σ) defined by f(a) = a, f(b) = c, f(c) = b and g: (Y, σ) → (Z, μ) defined by g(a) = b, g(b) = a, g(c )= c. Then f and 
g are gsα**-continuous but g ◦ f: (X, τ) → (Z, μ) is not gsα**-continuous. 
 
Theorem 4.5: Let f: (X, τ) → (Y, σ) and g: (Y, σ) → (Z, μ) be any functions. Then 

(i) g ◦ f: (X, τ) → (Z, μ) is gsα**-continuous if g is continuous and f is gsα**-continuous. 
(ii) g ◦ f: (X, τ) → (Z, μ) is gsp-continuous if g is continuous and f is gsα**-continuous. 

 
Proof: 

(i) Let V be any closed set in Z. Since g is continuous, g-1(V) is closed in Y. Since f is gsα**-continuous,              
f-1(g-1 (V)) = (g ◦ f)-1(V ) is gsα**-closed set in X. Hence g ◦ f is gsα**-continuous. 

(ii) Similar to the proof of (i). 
 
Theorem 4.6: Let X and Z be any topological spaces and Y be a αTs** -space then the following hold. 

(i) g ◦ f : (X, τ) → (Z, μ) is gsα**-continuous if g is gsα**-continuous and f is gsα**-continuous. 
(ii) g ◦ f : (X, τ) → (Z, μ) is semi-continuous if g is gsα**-continuous and f is semicontinuous. 
(iii) g ◦ f : (X, τ) → (Z, μ) is g*s-continuous if g is gsα**-continuous and f is g*s-continuous. 

 
Proof: (i) Let U be any closed set in Z. Since g is gsα**-continuous,  g-1(U) is gsα**-closed in Y. But Y is a αTs**-space 
implies g-1(U) is closed in Y. Since f is gsα** -continuous, f-1(g-1(U)) = (g ◦ f)-1(U) is gsα**-closed in X and hence g ◦ f 
is gsα**-continuous. 
(ii)-(iii) similar to the proof of (i). 
 
Theorem 4.7: If a function f: X →Y is gsα**-continuous where X is a αTs**-space then f is continuous.(resp.semi-
continuous) 
 
Proof: Let V be a closed set in Y. Since f is gsα**-continuous, f-1(V) is gsα**-closed in X.  Since X is a αTs**-space,      
f-1(V) is closed in X and so f is continuous. 
 
Theorem 4.8: If a function f: X →Y is gsα**-continuous where X is a αTs**-space then f is gs-continuous. 
 
Proof: Let V be a closed set in Y. Since f is gsα**-continuous, f-1(V) is gsα**-closed in X. Since X is a αTs**-space,        
f-1(V) is closed in X By theorem 3.2[16], f-1(V) is gs-closed in X and so f is gs-continuous. 
 
Definition 4.9: A function f: (X, τ) → (Y, σ) is called a gsα**-irresolute if  f-1(V) is gsα**- closed set in (X,τ ) for every 
gsα**-closed set V in (Y, σ). 
 
Example 4.10: Let X = Y = {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}, {b, c}} and σ = {φ, Y, {a, b}}. Then f: (X, τ ) →     
(Y, σ) defined by f(a) = b, f(b) = a, f(c) = c is g gsα** -irresolute. 
 
Theorem 4.11: 

(1) Every gsα** -irresolute function is gsα**-continuous. 
(2) Every  gsα** -irresolute function is gs-continuous. 
(3) Every gsα**-irresolute function is gsp-continuous. 

 
Proof: 
(1) Let V be a closed set in Y. By theorem 3.2[16], V is gsα**-closed in Y. Since f is gsα**-irresolute, f-1(V) is gsα**-
closed set in X and so f is gsα**-continuous. 
(2)-(3) similar to the proof of (1). 
 
Remark 4.12: The converses of the above theorems are not true as seen from the following example. 
 
Example 4.13: Let X = Y = {a, b, c}, τ = {φ, X, {a, b}} and σ = {φ, Y, {a}, {a, b}}. 
Then f: (X, τ) → (Y, σ) defined by f(a) = b, f(b) = a, f(c) = c, is gsα**-continuous but not gsα**-irresolute. 
 
Example 4.14: Let X = Y = {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}, {b, c}} and σ = {φ, Y, {a}, {b, c}}. Then f: (X, τ) → 
(Y, σ) defined by f(a) = a, f(b) = c, f(c) = b, is gs-continuous but not gsα**-irresolute. 
 
Example 4.15: Let X = Y = {a, b, c}, τ = {φ, X, {a, b}} and σ = {φ, Y, {a}, {b, c}}. 
Then f: (X, τ) → (Y, σ) defined by f(a) = a, f(b) = c, f(c) = b, is gsp-continuous but not gsα**-irresolute. 
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Theorem 4.16: Let f: (X, τ) → (Y, σ) and g: (Y, σ) → (Z, μ) be any functions. Then the following holds. 

(i) g ◦ f: (X, τ) → (Z, μ) is gsα**-irresolute if g is gsα**-irresolute and f is gsα**-irresolute. 
(ii) g ◦ f: (X, τ) → (Z, μ) is gsα**-continuous if g is gsα**-continuous and f is gsα**-irresolute. 

 
Proof: 

(i) Let V be gsα**-irresolute in Z . Then g-1 (V) is gsα**-closed in Y. Also f is gsα**-irresolute,  
f-1(g-1 (V)) = (g ◦ f)-1(V) is gsα**-closed set in X. Hence g ◦ f is gsα**-irresolute. 

(ii) Similar to the proof of (i). 
 
Theorem 4.17: A function f: (X, τ) → (Y, σ) is gsα**-irresolute if and only if   f-1(V) is gsα**-open in X for every 
gsα**-open set V in Y. 
 
Proof: Since f-1(Vc) = (f-1(V))c, the proof follows. 
 
Theorem 4.18: If a function f: X →Y is gsα**-continuous where X is a αTs** -space then f is gsα**-irresolute. 
 
Proof: Let U be a gsα**-closed set in Y. Since Y is a αTs**-space, then U is closed in Y. By theorem 3.2 [16], U is 
gsα**-closed set in Y. Since f is gsα**-irresolute, f-1(U) is gsα**-closed in X and so f is gsα**-irresolute. 
 
Theorem 4.19: Let X and Z be any topological spaces and Y be a αTs**-space then g ◦ f : (X, τ) → (Z, μ) is gsα**-
continuous if g is gsα**-irresolute and f is gsα**-continuous. 
 
Proof: Let U be any closed set in Z. Since g is gsα**-irresolute, g-1(U) is gsα**-closed in Y. But X is a αTs**-space 
which implies g-1(U) is closed in Y. Since f is gsα**-continuous, f-1(g-1(U)) = (g ◦ f)-1(U) is gsα**-closed in X and hence 
g ◦ f is gsα**-continuous. 
 
Theorem 4.20: Let X and Z be any topological spaces and Y be a αTs**-space then g ◦ f: (X, τ) → (Z, μ) is gsα**-
continuous if g is gs-continuous and f is gsα**-irresolute. 
 
Proof: Let U be any closed set in Z. Since g is gs-continuous, g-1(U) is gs-closed in Y. But Y is a αTs**-space implies    
g-1(U) is gsα**-closed in Y. Since f is gsα** -irresolute, f-1(g-1(U)) = (g ◦ f)-1(U) is gsα**-closed in X . Consequently       
g ◦ f is gsα**-continuous. 
 
5. Contra gsα** -continuous functions 
      
In this section, we define contra gsα**-continuous functions and derives some of their properties. 
 
Definition 5.1: A function f: X → Y is said to be contra gsα** -continuous if f−1(V) is gsα**-closed in X for every open 
set V in Y. 
 
Example 5.2: Let X = Y = {a, b, c}, τ = {φ, X, {a}, {b, c}} and σ = {φ, Y, {a}}. Then f: (X, τ) → (Y, σ) defined by   
f(a) = c, f(b) = a, f(c) = b is a contra gsα** -continuous. 
 
Theorem 5.3: The following are equivalent for a function f: (X, τ) → (Y, σ). 
Assume that gsα**O(X, τ ) is closed under any union. 

(1) f is contra gsα**-continuous. 
(2) For every closed set F of Y, f−1(F) is gsα**-open in X. 
(3) For each x  X and each closed set F of Y containing f(x), there exists gsα**-open set U containing x in X 

such that f(U)  F. 
 
Proof: 
(1) (2):  Let F be a closed set in Y. Then Y–F is an open set in Y.  By (1), f−1(Y − F) = X − f−1(F) is gsα**-closed in 
X. which implies f−1(F) is gsα**-open in X. 
 
(2)  (1):  Similar to the proof of (1). 
 
(2)  (3):  Let F be a closed set in Y containing f(x). Then x  f−1(F).  By (2), f−1(F) is gsα**-open in X containing x.  
 
Let U = f−1(F). Then U is gsα**-open in X containing x and f(U) = f(f−1(F))  F. 
(3)  (2):  Let F be a closed set in Y containing f(x) which implies x  f−1(F). From (3), there exists gsα**-open set Ux 
in X containing x such that f(Ux)  F which implies Ux  f−1(F).  Therefore f−1(F) = ∪ {Ux : x  f−1(F)} , Since Ux is 
gsα**-open and gsα**O(X,τ ) is closed under any union, f−1(F) is gsα**-open in X. 
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Remark 5.4: Composition of two contra gsα**-continuous function is not contra gsα**-continuous. 
 
Example 5.5: X = {a, b, c, d}, Y = Z = {a, b, c}, τ = {φ, X, {a, b}, {a, b, c}, {a, b, d}}, and σ = {φ, Y, {a}, {a, b}} and 
μ = {φ, Z, {a}}. Then f: (X, τ ) → (Y, σ) defined by f(a) = f(b)= c, f(c) = b, f(d) = a and g: (Y, σ) → (Z, μ) defined by 
g(a) = b, g(b) = c, g(c) = a are gsα**-continuous but g ◦ f: (X, τ ) → (Z, μ) is not gsα**-continuous. 
 
Theorem 5.6:  

(i) Every contra-continuous function is contra gsα**-continuous. 
(ii) Every contra semi-continuous function is contra gsα**-continuous. 
(iii) Every contra semi*-continuous function is contra gsα**-continuous. 
(iv) Every contra gsα**-continuous function is contra gs-continuous. 
(v) Every contra gsα**-continuous function is contra gsp-continuous. 

 
Proof:  
(i) Let V be any open set in Y. Since f is contra-continuous, f−1(V) is closed in X. By theorem 3.2[16], f−1(V) is gsα**-
closed in X. Hence f is contra gsα**irresolute. 
 
(ii) - (v).  Similar to the proof of (i). 
 
Remark 5.7: The converses of the above theorems are not true as seen from the following examples. 
 
Example 5.8: Let X = Y = {a, b, c}, τ = {φ, X, {a}, {a, b}} and σ = {φ, Y, {a}}. Then f: (X, τ) → (Y, σ) defined by 
f(a) = c, f(b) = a, f(c) = b is contra gsα**-continuous but not contra-continuous. 
 
Example 5.9: Let X = {a, b, c, d}, Y = {a, b, c}, τ = {φ, X, {a, b}, {a, b, c}, {a, b, d}} and σ = {φ, Y, {a}, {a, b}}.Then 
f: (X, τ) → (Y, σ) defined by f(a) = f(d) = b, f(c) = a, f(b) =c is contra gsα**-continuous but not contra semi-continuous. 
 
Example 5.10: Let X = {a, b, c, d}, Y = {a, b, c}, τ = {φ, X, {c}, {a, d}, {a, c, d}} and σ = {φ, Y, {a}, {a, b}}. Then   
f: (X, τ) → (Y, σ) defined by f(a) = b, f(b) =a, f(c) = d, f(d) = c is contra gsα**-continuous but not contra semi*-
continuous. 
 
Example 5.11: Let X = Y = {a, b, c}, τ = {φ, X, {a}, {a, b}} and σ = {φ, Y, {a, b}}. Then f: (X, τ) →(Y, σ) defined by 
f(a) = b, f(b) = c, f(c) = a is contra gs-continuous but not contra gsα**-continuous. 
 
Example 5.12: Let X = Y = {a, b, c}, τ = {φ, X, {a, b}} and σ = {φ, Y, {a}, {a, b}}. Then f: (X, τ) →(Y, σ) defined by 
f(a) = c, f(b) = a, f(c) = b is contra gsp-continuous but not contra gsα**-continuous. 
 
Remark 5.13: From the above results we have the following diagram. 

 
 
In the above diagram A → B denotes A implies B but not conversely. 
 
Remark 5.14: Contra g-continuous function and contra gsα**-continuous functions are independent of each other. 
 
Example 5.15: Let X = {a, b, c, d}, Y = {a, b, c}, τ = {φ, X, {a}, {d}, {a, d}, {c, d}, {a, c, d}} and σ = {φ, Y, {a, 
b}}.Then f: (X, τ ) → (Y, σ) defined by f(a) = f(b) = a, f(c) = d, f(d) = b is contra g-continuous but not contra gsα**-
continuous. 
 
Example 5.16: Let X = Y = {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}, {b, c}} and σ = {φ, Y, {a, b}}. Then f: (X, τ) →      
(Y, σ) defined by f(a) = c, f(b) = a, f(c) = b is contra gsα**-continuous but not contra g-continuous. 
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Remark 5.17: Contra gsα**-continuous function and contra semi*α-continuous functions are independent of each 
other. 
 
Example 5.18: Let X = {a, b, c, d}, Y = {a, b, c}, τ = {φ, X, {a}, {b},{a, b}, {a, b, c}} and σ = {φ, Y, {a},{b, c}}.Then 
f: (X, τ ) → (Y, σ) defined by f(a) = f(d) = b, f(b) = a, f(c) = c is contra gsα**-continuous but not contra semi*α-
continuous. 
 
Example 5.19: Let X = {a, b, c, d}, Y = {a, b, c}, τ = {φ, X, {b}, {a, b}} and σ ={φ, Y, {a, b}}. Then f: (X, τ)→ (Y, σ)  
defined by f(a) = f(c) = a, f(a) = c, f(d) = b is contra semi*α-continuous but not contra gsα**-continuous. 
 
Theorem 5.20:  

(i) If f: X → Y is gsα**-continuous and h: Y → Z is contra-continuous then h ◦ f: X → Z is contra gsα**-
continuous. 

(ii) If f: X → Y is contra gsα**-continuous and h: Y → Z is continuous then h ◦ f: X → Z is contra gsα**-
continuous. 

(iii) If f: X → Y is contra gsα**-continuous and h: Y → Z is conrta-continuous then h ◦ f: X → Z is gsα**-
continuous. 

 
Proof: 
(i) Let V be an open set in Z. Since h is contra-continuous, h−1(V) is closed in Y. Since f is gsα**-continuous,     
f−1(h−1(V )) = (h ◦ f)−1(V ) is gsα**-closed in X and hence h ◦ f is gsα**-continuous. 
(ii) - (iii) Similar to the proof of (i). 
 
Remark 5.21: The concept of gsα**-continuity and contra gsα**-continuity are independent. 
 
Example 5.22: Let X = Y = {a, b, c}, τ = {φ, X, {a, b}, {a}} and σ = {φ, Y, {a, b}}. Then f: (X, τ ) → (Y, σ) defined 
by f(a) = c, f(b) = a, f(c) = b is contra gsα**-continuous but not gsα**-continuous. 
 
Example 5.23: Let X = Y = {a, b, c}, τ = {φ, X, {a, b}} and σ = {φ, Y, {a}, {a, b}}. Then f: (X, τ) → (Y, σ) defined by 
f(a) = b, f(b) = a, f(c) = c is gsα**-continuous but not contra gsα**-continuous. 
 
Theorem 5.24: If f: (X, τ) → (Y, σ) is gsα**-irresolute and g: (Y, σ) → (Z, μ) is a contra gsα**-continuous function 
then g ◦ f: X → Y is contra gsα**-continuous. 
 
Proof: Let V be an open set in Z. Since g is contra gsα**-continuous, g−1(V) is gsα –closed in Y. Since f is contra gsα**-
irresolute, f−1(g−1(V )) = (g◦ f)−1(V ) is gsα**-closed in X and hence g ◦ f is contra gsα**-continuous. 
 
Theorem 5.25: If a function f: X → Y is contra gsα**-continuous and Y is regular, then f is gsα**-continuous. 
 
Proof: Let x  X and V be an open set in Y containing f(x). Since Y is regular there exists an open set W in Y 
containing f(x) such that cl(W)  V. Since f is contra gsα**-continuous. By theorem 4.1, there exists gsα**-open set V 
in X containing x such that f(U)  cl(W). Then f(U)  cl(W)  V. Therefore f is gsα**-continuous. 
 
Theorem 5.26: Let f: (X, τ ) → (Y, σ) be a function and X is a αTs**-space. Then the following are equivalent. 

(i) f is contra semi-continuous. 
(ii) f is contra gsα**-continuous. 

 
Proof: 
(i)  (ii): By theorem 5.6, proof follows. 
 
(ii)  (i): Let V be any open set in Y. Since f is contra gsα**-continuous, f−1(V) is gsα**-closed in X. Since X is αTs**-
space, f−1(V ) is closed in X and hence f−1(V ) is semi-closed in X f is contra semi-continuous. 
 
Theorem 5.27: Let f: (X, τ) → (Y, σ) be a function and X is a αTs**-space. Then the following are equivalent. 

(i) f is contra gsα**-continuous. 
(ii) f is contra gs-continuous. 

 
Proof: Similar to the proof of theorem 5.26. 
 
Theorem 5.28: If  f is gsα**- continuous  and  if  Y is locally indiscrete then f is contra gsα** - continuous. 
 
Proof: Let V be an open set in Y. Since Y is locally indiscrete, V is closed in X. Since f is gsα**-continuous , f−1(V) is 
gsα**- closed in X hence f is contra gs α** -continuous.  
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Theorem 5.29: If a function f: (X, τ) → (Y,  σ) is continuous and X is locally indiscrete then f is contra gsα** -
continuous. 
 
Proof: Let V be an open set in (Y, σ). Since f is continuous, f−1(V) is open in X. Since X is locally indiscrete, f−1(V) is 
closed set in X. By theorem 3.2[16], f−1(V ) is gsα** -closed in X and hence f is contra gs α** -continuous. 
 
Theorem 5.30: If a function f: (X, τ) → (Y,  σ) is contra gsα** -continuous and X is a  αTs** - space then f: (X, τ) → 
(Y,σ) is contra gs-continuous. 
 
Proof: Let V be an open set in Y. Since f is contra gsα** -continuous, f−1(V) is gsα** -closed in X. Since X is αTs**-
space, f−1(V) is closed in X and so gs-closed in X and hence f is contra gsα** -continuous.  
 
Definition 5.31: A space X is called locally gsα** -indiscrete if every gsα** -open set is closed in X.  
 
Theorem 5.32: If a function f: (X, τ) → (Y, σ) is gsα** -continuous and the space X is locally gsα**-indiscrete then f is 
contra continuous. 
 
Proof: Let V be an open set in Y. Since f is gsα** -continuous, f−1(V) is gsα** -open in X. Since X is locally gsα** -
indiscrete, f−1(V) is closed in X and by theorem 3.2[16] ,f−1(V ) is gsα** -closed in X. Consequently f is contra gsα** -
continuous.  
 
Theorem 5.33: If a function f: (X, τ) → (Y,  σ) is gsα**-irresolute where Y is a locally gsα**-indiscrete space and        
g: (Y, σ) → (Z, μ) is contra gsα** -continuous function then g ◦ f is gsα** -continuous.  
 
Proof: Let V be any closed set in Z. Since g is contra gsα**-continuous, g−1(V) is gsα**-open in Y. But Y is locally 
gsα**-indiscrete implies g−1(V ) is closed in Y. By theorem 3.2[16], g−1(V) is gsα**-closed in Y. Since f is gsα**-
irresolute, f−1(g−1(V )) = (g ◦ f)−1(V) is gsα**-closed in X and hence g ◦ f is gsα**-continuous.  
 
Theorem 5.34: If a function f: (X, τ) → (Y,  σ) is gsα**-continuous and the space (X, τ) is locally gsα**-indiscrete 
space then f is contra gsα**-continuous. 
 
Proof: Let V be any open set in (Y, σ). Since f is gsα**-continuous, f−1(V) is gsα**-open in X. Since X is locally gsα** 
-indiscrete, f−1(V) is closed in X. By theorem 3.2 [16], f−1(V) is gsα** -closed set in X and hence f is contra gsα**-
continuous. 
 
6. Contra gsα∗∗ -closed graph  
 
Definition 6.1: The graph G(f) of a function f: X→Y is said to be gs α** -closed (resp.contra gsα** -closed) if for each 
(x, y) ∈ (X×Y) - G(f), there exist an U ∈ gsα**O(X,x) and an open (resp.closed) set V in Y such that (U×V) ∩ G(f) = φ.  
 
Lemma 6.2: A function f: X →  Y is gs α**-closed (resp.contra gsα**-closed) if for each (x, y) ∈ (X×Y)-G(f) there 
exists U ∈ gsα**O(X,x) and an open set (resp.closed set) V in Y containing y such that f(U) ∩ V = φ.  
 
Proof: We shall prove that f(U) ∩ V = φ iff (U×V) ∩ G(f) = φ. Let (U×V) ∩ G(f) ≠ φ. Then there exists (x, y) ∈ (U×V) 
and (x, y) ∈ G(f) which implies x ∈ U, y ∈ V and y = f(x) ∈ V. Therefore f(U) ∩ V ≠ φ. 
 
Theorem 6.3: If a function f: X → Y is gsα** -continuous and Y is a T1-space then G(f) is contra gsα**-closed in X×Y.  
 
Proof: Let (x, y) ∈ (X×Y)-G(f). Then y ≠ f(x). Since Y is T1, there exists an open set V of Y such that f(x) ∈ V, y ∉  V. 
Since f is gsα**-continuous, by theorem 4.1 there exists a gsα**-open set U of X containing x such that f(U) ⊂ V. 
Therefore f(U) ∩ (Y –V) = φ where Y–V is closed in Y containing y. By lemma 6.2, G(f) is a gsα**-closed graph in 
X×Y.  
 
Theorem 6.4: Let f: X → Y be a function and g: X × Y be the graph of  f defined by g(x) = (x, f(x)) for every x ∈ X. If 
g is contra gsα**-continuous, then f is contra gsα**- Continuous. 
 
Proof: Let U be an open set in Y, then X×U is an open set in X×Y. Since g is contra gsα**-continuous,  
f−1(U) = g−1(X × U) is gsα**-closed in X. Thus f is contra gsα**-continuous. 
 
 
 
 
 



C. Santhini1, S. Lakshmi Priya*2 / Some new concepts of continuity in topological spaces / IJMA- 8(4), April-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                         36  

 
Definition 6.5: 

(i) gsα** - T0 if for every pair of distinct points x, y in X there exists a gsα** -open set U containing one of the 
points but not the other. 

(ii) gsα** -T1 if for every pair of distinct points x, y in X there exists a gsα** -open set U containing x not y and a 
gsα** -open set V containing y but not x. 

(iii) gsα** -T2 if for every pair of distinct points x, y in X there exists disjoint gsα** -open sets U and V containing 
x and y respectively. 

 
Theorem 6.6: If f: (X, τ) → (Y, σ) is an injective function with the gsα**-closed graph G(f) then X is gsα** -T1.  
 
Proof: Let x and y be two distinct points of X, then f(x) ≠ f(y). Thus (x,  f(y)) ∈ X × Y-G(f). Since G(f) is gsα**-closed, 
there exists a gsα**-open set U containing x and an open set V containing f(y) such that f(U) ∩ V = φ. By theorem 3.2  
[16], U and V are gsα**-open sets containing x and f(y) such that f(U) ∩ V = φ . Hence y ∈ U. Similarly there exist 
gsα**-open sets M and N containing y and f(x) such that f(M) ∩ N = φ. Hence x∉  M. It follows that X is gsα**-T1.  
 
Theorem: 6.7: If f: (X, τ) → (Y, σ) is an surjective function with the gsα**-closed graph G(f) then Y is gsα**-T1. 
 
Proof: Let y and z be two distinct points of Y. Since f is surjective there exist a point x in X such that f(x) = z. 
Therefore (x, y) ∉G(f), by lemma 6.2, there exists a gsα**-open set U containing x and an open set V containing y 
such that f(U) ∩ V = φ. By theorem 3.2[16], U and V are gsα**-open sets containing x and y such that f(U) ∩ V = φ . It 
follows that z ∉V. Similarly there exist w ∈ X such that f(w) = y. Hence (w,z) ∉  G(f). Similarly there exist gsα**-
open sets M and N containing w and z respectively such that f(M) ∩ N = φ. Thus y ∉  N. Hence the space Y is gsα**-
T1. 
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