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ABSTRACT 
The purpose of this paper is to study of fixed point theorems in non-Newtonian -metric spaces and obtains new results 
in it. 
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1. INTRODUCTION 

 
Banach [1992] Proved a fixed point theorem for contraction mapping in complete Metric space. It is well known as a 
Banach Fixed point theorem. Every contraction mapping of a complete metric space X into itself has a unique fixed 
point (Bonsall 1962). Aage and Salunke [3] proved the result on fixed point in Dislocated and Dislocated Quasi-Metric 
space. Dass and Gupta [1] generalized Banach's contraction principle in Metric Space. Rohades [2] introduced a partial 
ordering for various definitions contractive mappings. The study of non newtonian calculi have been started in 1972 by 
Grossman and Katz [6]. These provide an alternative to the classical calculus and they include the geometric, 
anageometric and bigeometric calculi, etc. In 2002 Cakmac and Basar [4], have introduced the concept of non 
Newtonian metric space. Also they have given the triangle and Minkowski’s inequalities in the sense of non-Newtonian 
calculus. Recently, Binbasioglu, et al. [5] discussed some topological properties of the non newtonian metric space and 
also introduced the concept of fixed point theory for the non newtonian Metric Space. The non-Newtonian calculi are 
alternatives to the classical calculus of Newton and Leibnitz. They provide a wide variety of mathematical tools for use 
in science, engineering and mathematics. 
 
2. PRELIMINARIES 
 
Proposition 2.1 [4]: The triangle inequality with respect to non-Newtonian distance |∙|𝑁, for any 𝑥,𝑦 ∈ ℝ(𝑁) is given 
by |𝑥+̇𝑦|𝑁 ≤ |𝑥|𝑁+̇|𝑦|𝑁. 
 
The non-Newtonian metric spaces provide an alternative to the metric spaces introduced in [4]. 
 
Definition 2.2 [4]: Let 𝑋 ≠ ∅ be a set. If a function 𝑑𝑁:𝑋 × 𝑋 → ℝ+(𝑁) satisfies the following axioms for all      
𝑥,𝑦, 𝑧 ∈ 𝑋: 
(NM1) 𝑑𝑁(𝑥,𝑦) = 𝛽(0) = 0̇ if and only if 𝑥 = 𝑦, 
(NM2) 𝑑𝑁(𝑥,𝑦) = 𝑑𝑁(𝑦, 𝑥), 
(NM3) 𝑑𝑁(𝑥,𝑦) ≤̇ 𝑑𝑁(𝑥, 𝑧)+̇𝑑𝑁(𝑧,𝑦),  
            then it is called a non-Newtonian metric on 𝑋 and the pair (𝑋,𝑑𝑁) is called a non-Newtonian metric space. 
 
Proposition 2.3 [4]: Suppose that the non-Newtonian metric 𝑑𝑁 on ℝ(𝑁) is such that 𝑑𝑁(𝑥,𝑦) = |𝑥−̇𝑦|𝑁 for all 
𝑥,𝑦 ∈ ℝ(𝑁), then (ℝ(𝑁),𝑑𝑁) is a non-Newtonian metric space. 
 
Proposition 2.4 [5]: Let (𝑋,𝑑𝑁) be a non-Newtonian metric space. Then we have the following inequality: 

|𝑑𝑁(𝑥, 𝑧) −̇ 𝑑𝑁(𝑦, 𝑧)|𝑁  ≤̇  𝑑𝑁(𝑥,𝑦) for all 𝑥,𝑦, 𝑧 ∈ 𝑋. 
 
Definition 2.5 [4]: Let (𝑋,𝑑𝑁𝑁) and (𝑌,𝑑𝑁𝑌) be two non-Newtonian metric spaces and let 𝑓 ∶  𝑋 →  𝑌 be a function. If f 
satisfies the requirement that, for every 𝜀 >̇ 0̇, there exists 𝛿 >̇ 0̇ such that 𝑓(𝐵𝛿𝑁(𝑥)) ⊂  𝐵𝜀𝑁(𝑓(𝑥)), then 𝑓 is said to be 
non-Newtonian continuous at 𝑥 ∈  𝑋. 
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Example 2.6: Given a non-Newtonian metric space(𝑋,𝑑𝑁), define a non-Newtonian metric on 𝑋 × 𝑋 by 
𝑝((𝑥1, 𝑥2), (𝑦1,𝑦2)) =  𝑑𝑁(𝑥1,𝑦1) +̇ 𝑑𝑁(𝑥2,𝑦2). Then the non-Newtonian metric 𝑑𝑁 ∶  𝑋 ×  𝑋 →  (ℝ+(𝑁), | · |𝑁) is 
non-Newtonian continuous on 𝑋 × 𝑋. To show this, let (𝑦1,𝑦2), (𝑥1, 𝑥2)  ∈  𝑋 × 𝑋.  
 
Since we have |𝑑𝑁(𝑦1,𝑦2) −̇ 𝑑𝑁(𝑥1, 𝑥2)|𝑁  ≤̇  𝑑𝑁(𝑥1,𝑦2) +̇ 𝑑𝑁(𝑥2,𝑦2), it is clear that 𝑑𝑁 is non-Newtonian continuous 
on 𝑋 × 𝑋. Now, we emphasize some properties of convergent sequences in a non-Newtonian metric space. 
 
Definition 2.7 [4]: A sequence (𝑥𝑛) in a metric space 𝑋 = (𝑋,𝑑𝑁) is said to be convergent if for every given 𝜀 >̇ 0̇ 
there exist an 𝑛0 =  𝑛0(𝜀) ∈ 𝑁 𝑎𝑛𝑑 𝑥 ∈ 𝑋 such that 𝑑𝑁(𝑥𝑛 , 𝑥) <̇ 𝜀 for all 𝑛 > 𝑛0, and it is denoted by  𝑥𝑛  

𝑁
→  𝑥, as 

𝑛 → ∞ . 
 
Definition 2.8 [5]: A sequence (𝑥𝑛) in a non-Newtonian metric space 𝑋 = (𝑋,𝑑𝑁) is said to be non-Newtonian 
Cauchy if for every 𝜀 >̇ 0̇ there exists an 𝑛0  =  𝑛0(𝜀)  ∈ 𝑁 such that 𝑑𝑁(𝑥𝑛 , 𝑥𝑚) <̇ 𝜀 for all 𝑚,𝑛 > 𝑛0. Similarly, if 
for every non-Newtonian open ball 𝐵𝜀𝑁(𝑥), there exists a natural number 𝑛0 such that 𝑛 > 𝑛0, 𝑥𝑛 ∈ 𝐵𝜀𝑁(𝑥), then the 
sequence (𝑥𝑛) is said to be non-Newtonian convergent to 𝑥. 
 
The space 𝑋 is said to be non-Newtonian complete if every non-Newtonian Cauchy sequence in X converges [4]. 
 
Lemma 2.9 [5]: Let (𝑋,𝑑𝑁) be a non-Newtonian metric space, (𝑥𝑛) a sequence in 𝑋 and 𝑥 ∈ 𝑋. Then  
𝑥𝑛  

𝑁
→  𝑥 (𝑛 → ∞ ) if and only if 𝑑𝑁(𝑥𝑛, 𝑥)  

𝑁
→  0̇ (𝑛 → ∞ ). 

 
Theorem 2.10 [5]: Let (𝑋,𝑑𝑁𝑋) and (𝑌,𝑑𝑁𝑌) be two non-Newtonian metric spaces, 𝑓 ∶  𝑋 →  𝑌 a mapping and (𝑥𝑛) any 
sequence in 𝑋. Then 𝑓 is non-Newtonian continuous at the point 𝑥 ∈  𝑋 if and only if 𝑓(𝑥𝑛)  

𝑁
→  𝑓(𝑥) for every 

sequence (𝑥𝑛) with 𝑥𝑛  
𝑁
→  𝑥 (𝑛 → ∞ ). 

 
Theorem 2.11 [5]: Let (𝑋,𝑑𝑁) be a non-Newtonian metric space and 𝑆 ⊂ 𝑋. Then 

(i) a point 𝑥 ∈  𝑋 belongs to 𝑆̅ if and only if there exists a sequence (𝑥𝑛) in 𝑆 such that 𝑥𝑛  
𝑁
→ 𝑥 (𝑛 → ∞ ), 

(ii) the set 𝑆 is non-Newtonian closed if and only if every non-Newtonian convergent sequence in 𝑆 has a non-
Newtonian limit point that belongs to 𝑆. 

 
We now define the fixed point theorem on non-Newtonian metric spaces and give some examples. 
 
Definition 2.12 [5]: Let 𝑋 be a set and 𝑇 a map from 𝑋 to 𝑋. A fixed point of 𝑇 is a point 𝑥 ∈ 𝑋 such that 𝑇𝑥 = 𝑥. In 
other words, a fixed point of 𝑇 is a solution of the functional equation 𝑇𝑥 = 𝑥, 𝑥 ∈ 𝑋. 
 
Definition 2.13 [5]: Suppose that (𝑋,𝑑𝑁) is a non-Newtonian complete metric space and 𝑇 ∶  𝑋 →  𝑋 is any mapping. 
The mapping 𝑇 is said to satisfy a non-Newtonian Lipchitz condition with 𝑘 ∈ ℝ(𝑁) if  

𝑑𝑁(𝑇(𝑥),𝑇(𝑦))  ≤̇  𝑘 ×̇  𝑑𝑁(𝑥,𝑦) holds for all 𝑥,𝑦 ∈ 𝑋. 
 
If  𝑘 <̇ 1̇, then 𝑇 is called a non-Newtonian contraction mapping. 
 
Theorem 2.14 [5]: Let 𝑇 be a non-Newtonian contraction mapping on a non-Newtonian complete metric space 𝑋. Then 
𝑇 has a unique fixed point. 
 
Theorem 2.15 [5]: Let 𝑇 be a mapping on a non-Newtonian complete metric space 𝑋 into itself. Let 𝑇 be a non-
Newtonian contraction on a closed ball 𝐵��̇�𝑁(𝑥0) = {𝑥 ∈ 𝑋 ∶  𝑑𝑁(𝑥, 𝑥0) ≤̇ �̇�}. 
 
Suppose that 𝑑𝑁(𝑥0,𝑇𝑥0) <̇  (1̇−̇ 𝑘)�̇�. Then the iterative sequence defined by 𝑥𝑛 = 𝑇𝑛𝑥0 =  𝑇𝑥𝑛−1 converges to an 
𝑥 ∈ 𝐵��̇�𝑁(𝑥0) and this 𝑥 is the unique fixed point of 𝑇. 
 
3. MAIN RESULTS 

 
Theorem 3.1: Let (X, dN) be a complete non-Newtonian metric space and suppose there exist non negative constants 
𝛼1,𝛼2 ,𝛼3 𝑤𝑖𝑡ℎ 𝛼1  ∔ 𝛼2  ∔ 𝛼3  < 1̇. Let f: X → X be a continuous mapping satisfying 

𝑑𝑁(𝑓𝑥, 𝑓𝑦) ≤̇  𝛼1ẋ𝑑𝑁 (𝑥,𝑦) ∔ 𝛼2ẋ𝑑𝑁 (𝑥, 𝑓𝑥) ∔ 𝛼3ẋ𝑑𝑁 (𝑦, 𝑓𝑦)                                                                    (3.1) 
 
For all x, y ∈ 𝑋. Then f has a unique fixed point. 
 
Proof: Let {xn} be a sequence in X, defined as follows. Let x0 ∈ 𝑋, 𝑓(𝑥0) = 𝑥1, 𝑓(𝑥1) = 𝑥2, … . , 𝑓(𝑥𝑛) = 𝑥𝑛+1, ….  
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Consider 

𝑑𝑁 (𝑥𝑛 , 𝑥𝑛+1) = 𝑑𝑁 (𝑓𝑥𝑛−1, 𝑓𝑥𝑛) 
≤̇ 𝛼1ẋ𝑑𝑁 (𝑥𝑛−1, 𝑥𝑛) ∔  𝛼2ẋ𝑑𝑁 (𝑥𝑛−1, 𝑓𝑥𝑛−1) ∔ 𝛼3ẋ𝑑𝑁 (𝑥𝑛 , 𝑓𝑥𝑛) 
= 𝛼1ẋ𝑑𝑁 (𝑥𝑛−1, 𝑥𝑛) ∔  𝛼2ẋ𝑑𝑁 (𝑥𝑛−1, 𝑥𝑛) ∔ 𝛼3ẋ𝑑𝑁 (𝑥𝑛 , 𝑥𝑛+1) 

Therefore, 

𝑑𝑁 (𝑥𝑛 , 𝑥𝑛+1) ≤
𝛼1 ∔  𝛼2
1 ∸ 𝛼3

 𝑑𝑁 (𝑥𝑛−1, 𝑥𝑛) 
̇

 

= 𝜆𝑑𝑁 (𝑥𝑛−1, 𝑥𝑛), 
Where  𝜆 =𝛼1∔ 𝛼2

1∸𝛼3
.     

 
Similarly, we have 𝑑𝑁 (𝑥𝑛−1, 𝑥𝑛)  ≤ ̇ 𝜆 𝑑𝑁 (𝑥𝑛−2, 𝑥𝑛−1). In this way, we get 

𝑑𝑁 (𝑥𝑛 , 𝑥𝑛+1)  ≤ ̇ 𝜆𝑛 𝑑𝑁 (𝑥0, 𝑥1). 
 
Since 0 ̇ ≤̇ 𝜆 < 1̇, so for n → ∞, 𝜆𝑛 → ∞ we have 𝑑𝑁 (𝑥𝑛 , 𝑥𝑛+1) → 0̇. 
 
Hence {xn} is a Cauchy sequence in the complete non nutonian metric space X, so there is a point t0 ∈ 𝑋, such that      
xn  →  t0. Since f is continuous  

f(t0) = limf(xn) = limxn+1 =  t0 
 
Thus f(t0) = t0, so f  has a fixed point. 
 
Uniqueness: If x ∈ X is a fixed point of f, then x = f(x), by (3.1) 

𝑑𝑁(𝑥, 𝑥) =  𝑑𝑁(𝑓𝑥,𝑓𝑥) ≤̇ (𝛼1 ∔ 𝛼2 ∔ 𝛼3)𝑑𝑁(𝑥, 𝑥) 
𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑑𝑁(𝑥, 𝑥) = 0̇, 𝑠𝑖𝑛𝑐𝑒 0̇  ≤̇ 𝛼1+̇𝛼2+̇𝛼3 < 1̇ 𝑎𝑛𝑑  𝑑𝑁(𝑥, 𝑥) ≥̇ 0̇.𝑇ℎ𝑢𝑠  𝑑𝑁(𝑥, 𝑥) = 0̇  𝑓𝑜𝑟  
𝑎 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑥 𝑜𝑓 𝑓 
 
Let x, y be fixed points f. Then by (3.1)   

𝑑𝑁(𝑥,𝑦) = 𝑑𝑁(𝑓𝑥, 𝑓𝑦) 
≤̇ 𝛼1𝑑𝑁(𝑥,𝑦)+̇𝛼2𝑑𝑁(𝑥, 𝑥)+̇𝛼3𝑑𝑁(𝑦,𝑦)  

 
i.e. 𝑑𝑁(𝑥,𝑦) ≤̇ 𝛼1𝑑𝑁(𝑥,𝑦) 𝑎𝑛𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑖𝑠 𝑖𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 𝑑𝑁(𝑥,𝑦) =  0̇, 𝑠𝑖𝑛𝑐𝑒 𝑑𝑁(𝑥,𝑦) ≥̇  0̇, 0̇ ≤̇ 𝛼1 < 1̇,. 
 
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑑𝑁(𝑥,𝑦) = 0̇. 
 
𝐻𝑒𝑛𝑐𝑒 𝑥 = 𝑦, 𝑖. 𝑒.𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 
 
Theorem 3.2: Let (X, dN) be a complete non-Newtonian metric space and let f: X → X be a continuous mapping 
satisfying 

𝑑𝑁(𝑓𝑥, 𝑓𝑦) ≤̇ 𝛼 max{𝑑𝑁(𝑥,𝑦),𝑑𝑁(𝑥, 𝑓𝑥),𝑑𝑁(𝑦, 𝑓𝑦) }                                                                                 (3.2) 
For all x, y 𝜖 X. If 0̇ ≤̇ 𝛼 < 1̇, then f has a unique fixed point. 
 
Proof: Let {𝑥𝑛} be a sequence in X, defined as follows. 
 
Let x0 ∈ 𝑋,  f(x0) = 𝑥1,   f(𝑥1) = 𝑥2,   f(xn) = xn+1,…. 
 
Consider            𝑑𝑁(𝑥𝑛 , 𝑥𝑛+1) = 𝑑𝑁(𝑓𝑥𝑛−1, 𝑓𝑥𝑛) 

≤̇ 𝛼max{𝑑𝑁(𝑥𝑛−1, 𝑥𝑛 ),𝑑𝑁(𝑥𝑛−1, 𝑓𝑥𝑛−1),𝑑𝑁(𝑥𝑛 , 𝑓𝑥𝑛)} 
= 𝛼max{𝑑𝑁(𝑥𝑛−1, 𝑥𝑛 ),𝑑𝑁(𝑥𝑛−1, 𝑥𝑛),𝑑𝑁(𝑥𝑛 , 𝑥𝑛+1)} 

Hence 
𝑑𝑁(𝑥𝑛 , 𝑥𝑛+1) ≤̇  𝛼 {𝑑𝑁 (𝑥𝑛−1, 𝑥𝑛)} 

 
Similarly we will show that 

𝑑𝑁(𝑥𝑛−1, 𝑥𝑛) ≤̇ 𝛼 𝑑𝑁(𝑥𝑛−2, 𝑥𝑛−1) 
And 

𝑑𝑁(𝑥𝑛 , 𝑥𝑛+1) ≤̇ 𝛼2𝑑𝑁(𝑥𝑛−2, 𝑥𝑛−1) 
Thus 

𝑑𝑁(𝑥𝑛 , 𝑥𝑛+1) ≤̇ 𝛼𝑛 𝑑𝑁(𝑥0, 𝑥1) 
       
Since 0̇ ≤̇ 𝛼 < 1̇, as n → ∞, 𝛼𝑛→ ∞. Hence {xn} is a Cauchy sequence in X. Thus {xn} converges to some t0. Since f is 
continuous, we have 

f(t0) = lim f(xn) = lim xn+1 = t0 
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Uniqueness: Let x be a fixed point of f, then by (3.2) 

 dN(x, x) = dN(f x, f x) ≤̇  α max{dN(x, x)} 
 
i.e. dN(x, x) ≤̇  αdN(x, x), which gives dN(x, x) = 0̇, Since 0̇ ≤̇ α < 1̇ and dN(x, x) ≥̇ 0̇. Thus  dN(x, x) = 0̇ if x is a fixed 
point of  f. 
 
Let,   x, y ϵ X be fixed points of f. That is, fx = x, fy = y. Then by (3.2), 

 dN(x, y) = dN(fx,  fy) 
  ≤̇ max{dN(x, y), dN(x, x), dN(y, y)} 
  = αdN(x, y) 

 

𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑑𝑁(𝑥,𝑦) = 0̇  (𝑠𝑖𝑛𝑐𝑒 𝑑𝑁(𝑥, 𝑥) = 0̇ =  𝑑𝑁(𝑦,𝑦), 0̇ ≤̇ 𝛼 < 1̇. 
 
Similarly dN(y, x) = 0̇ and hence x = y. Thus x is a fixed point of f is unique. 
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