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ABSTRACT  
In this present paper investigation on emended relations and varying distance function in fuzzy metric spaces,  
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1. INTRODUCTION  
 
In 1994, Mishra, Sharma and Singh [9] introduced the notion of compatible maps under the name of asymptotically 
commuting maps in FM-spaces. Singh and Jain [17] studied the notion of weak compatibility in FM-spaces (introduced 
by Jungck and Rhoades [6] in metric spaces). However, the study of common fixed points of non compatible maps is 
also of great interest. Pant [10] initiated the study of common fixed points of on compatible maps in metric spaces. In 
2002, Aamri and Moutawakil [1] studied a new property for pair of maps i.e. the so-called property (E.A), which is a 
generalization of the concept of non compatible maps in metric spaces. Recently, Pant and Pant [11] studied the 
common fixed points of a pair of non compatible maps and the property (E. A) In FM-spaces.  
 
Recently, implicit relations are used as a tool for finding common fixed point of contraction maps (see, [2], [8], [12], 
[13], [15], [16]). These implicit relations guarantee coincidence point of pair of maps that ultimately leads to the 
existence of common fixed points of a quadruple of maps satisfying weak compatibility criterion. In 2008, Altun and 
Turkoglu [3] proved two common fixed point theorems on complete FM-space with an implicit relation. In [3], 
common fixed point theorems have been proved for continuous compatible maps of type (α) or (β).  
 
Our objective of this chapter is to prove a common fixed point theorem by removing the assumption of continuity, 
relaxing compatibility to compatible maps of type (α) or (β). weak compatibility and replacing the completeness of the 
space with a set of alternative conditions for functions satisfying an implicit relation in FM-space.   
 
In our paper, we deal with implicit relation used in [3]. In [3], Altun and Turkoglu used the following implicit relation: 
Let I =  [0, 1],∗ be a continuous t-norm and F be the set of all real continuous functions F ∶  I6  →  R satisfying the 
following conditions 

I. F is no increasing in the fifth and sixth variables, 
II. if, for some constant k ∈  (0, 1) we have 

(a)  F �u(kt), v(t), v(t), u(t), 1, u �t
2
 �  ∗  v �t

2
 ��  ≥  1, or 

(b)  F �u(kt), v(t), u(t), v(t), u �t
2
 �  ∗  v �t

2
 � , 1 � ≥ 1 

for any fixed t >  0 and any nondecreasing functions u, v ∶  (0,∞)  →  I with 0 ≤ u(t), v(t) ≤ 1 then there 
exists h ∈  (0, 1) with u(ht)  ≥  v(t)  ∗  u(t),  if, for some constant k ∈  (0, 1) we have  

F(u(kt), u(t), 1, 1, u(t), u(t))  ≥  1 
for any fixed t > 0 and any nondecreasing function u ∶  (0,∞)  → I then u(kt) ≥ u(t). 

 
Lemma 1.1:  In a fuzzy metric space (X, M,⋆)  limit of a sequence is unique. 
 
Lemma 1.2: Let (X, M,⋆) be a fuzzy metric space. Then  

I. Then for all  x, y ∈ X M(x, y,  . ) is a non decreasing function. 
II. If there exists k ∈ (0,1) such that for all x, y ∈  X, M(x, y, kt) ≥ M(x, y, t) ∀t > 0, then x =  y. 

III. If there exists a number k ∈ (0,1) such that  
M(xn+2, xn+1, kt) ≥  M(xn+1, xn , t)  ∀   t >  0  and  n ∈  N 

Then {xn} is a Cauchy sequence in X. 
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Definition 1.3: The only t − norm ⋆ satisfying r ⋆ r = r for all r ∈ [0,1] is the minimum t − norm that is 

a ⋆ b = min{a, b}  for all  a, b ∈ [0,1]. 
 

2. COMMON FIXED POINT THEOREM FOR COMPATIBLE MAPS OF Type (𝛃)  AND Type (𝛂) 
 
In this section we prove a common fixed point theorem for compatible map of type (β) in fuzzy metric space. In fact 
we prove the following theorem. 
 
Theorem 2.1: Let (X, M,⋆) be a complete fuzzy metric space and let A, B, S, T, P and Q be mappings from X into itself 
such that the following conditions are satisfied: 

2.1(a)  P(X) ⊂ ST(X) and  Q(X) ⊂ AB(X), 
2.1(b)  (P, AB)  is compatible of type (β)  and (Q, ST)  is weak compatible, 
2.1(c) there exists k ∈ (0,1) such that for every x, y ∈ X and  t >  0 

F �M2(Px, Qy, kt), M2(ABx, STy, t), M2(Px, ABx, t),
M2(Qy, STy, t) , M2(Px, STy, t), M2(ABx, Qy, t) � ≥ 1 

Then A, B, S, T, P and Q have a unique common fixed point in X. 
 
Proof: Let x0 ∈ X, then from (a) we have x1, x2 ∈ X such that  

Px0 = STx1  and   Qx1 = ABx2 
 
Inductively, we construct sequences {xn} and {yn}  in X such that for n ∈ N 

Px2n−2 =  STx2n−1 = y2n−1  and  Qx2n−1 =  ABx2n = y2n 
 
Put  x =   x2n  and  y = x2n+1 in (b) then we have 

F � M2(Px2n, Qx2n+1, kt), M2(ABx2n, STx2n+1, t), M2(Px2n, ABx2n, t)
, M2(Qx2n+1, STx2n+1, t) , M2(Px2n, STx2n+1, t), M2(ABx2n, Q2n+1, t)� > 1 

 

F �M2(y2n+1, y2n+2, kt), M2(y2n, y2n+1, t), M2(y2n+1, y2n, t),
M2(y2n+2, y2n+1, t), M2(y2n+1, y2n+1, t), M2(y2n, y2n+2, t)� > 1 

 

F�
M2(y2n+1, y2n+2, kt), M2(y2n, y2n+1, t), M2(y2n+1, y2n, t),

M2(y2n+2, y2n+1, t), M2(y2n+1, y2n+1, t), M2 �y2n, y2n+1,
t
2
� ⋆ M2 �y2n+1, y2n+2,

t
2

 �
� > 1 

 
From condition (a) we have 

 M2(y2n+1, y2n+2, kt) ≥ M2 �y2n, y2n+1, t
2
� ⋆ M2 �y2n+2, y2n+1, t

2
�  

 
we have 

 M2(y2n+1, y2n+2, kt) ≥ M2 �y2n, y2n+1, t
2
�  

That is  
  M(y2n+1, y2n+2, kt) ≥ M �y2n, y2n+1, t

2
�  

 
Similarly we have 
  M(y2n+2, y2n+3, kt) ≥ M �y2n+1, y2n+2, t

2
�  

 
Thus we have 
  M(yn+1, yn+2, kt) ≥ M �yn, yn+1, t

2
�  

 
  M(yn+1, yn+2, t) ≥ M �yn, yn+1, t

2k
�  

 
  M(yn, yn+1, t) ≥ M �y0, y1, t

2nk
� →   1  as  n →   ∞,  

 
and hence M(yn, yn+1, t) →   1  as n →   ∞ for all  t > 0. 
 
For each ϵ > 0  and  t > 0,  we can choose   n0 ∈ N such that  
  M(yn, yn+1, t)  >   1 − ϵ  for all  n >  n0.   
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For any m, n ∈ N  we suppose that  m ≥ n . Then we have 
  M(yn, ym, t)  ≥  M �yn, yn+1, t

m−n
�  ⋆  M �yn+1, yn+2, t

m−n
�  ⋆ ….  ⋆  M �ym−1, ym, t

m−n
�    

 
  M(yn, ym, t) ≥  (1 − ϵ ) ⋆  (1 − ϵ ) ⋆ … … ⋆  (1 − ϵ )(m − n)times  
 

M(yn, ym, t) ≥  (1 − ϵ ) 
 
And hence {yn}  is a Cauchy sequence in X. 
 
Since (X, M,⋆)  is complete, {yn} converges to some point z ∈ X. Also its subsequences converges to the same point 
z ∈ X. 
 
That is  

{Px2n+2} → z  and  {STx2n+1} → z                                            2.1 (i) 
  

{ Qx2n+1} →   z  and  { ABx2n} → z                                             2.1(ii) 
 
As (P, AB)  is compatible pair of type (β),  we have 

M(PPx2n, (AB)(AB)x2n, t) = 1, for all t > 0 
 

Or     M(PPx2n, ABz, t)  =  1  
 
Therefore,    PPx2n → ABz.  
 
Put  x = (AB)x2n   and   y = x2n+1   in 2.1(c) we have 

F �M2(P(AB)x2n, Qy, kt), M2(AB(AB)x2n, STx2n+1, t), M2(P(AB)x2n, AB(AB)x2n, t)
M2(Qx2n+1, STx2n+1, t), M2(P(AB)x2n, STx2n+1, t), M2(AB(AB)x2n, Qx2n+1, t) � > 1 

 
Taking n → ∞ and 2.1(a) we get 

M2�(AB)z, z, kt� ≥ M2�(AB)z, z, t�  
 
That is                  M�(AB)z, z, kt� ≥  M�(AB)z, z, t�     
 
Therefore we have 

 ABz = z.                              2.1(iii)  
 
Put  x = z  and  y =  x2n+1  in 3.2.1(c) we have 

F � M2(Pz, Q x2n+1, kt), M2(ABz, ST x2n+1, t) ⋆ M2(Pz, ABz, t)
M2(Q x2n+1, ST x2n+1, t), M2(Pz, ST x2n+1, t), M2(ABz, Q x2n+1, t)� > 1 

 
Taking  n →  ∞  (a) and using equation 2.1 (i) we have 
 
That is   M2(Pz, z, kt) ≥  M2(Pz, z, t)  
 
And hence   M(Pz, z, kt) ≥  M(Pz, z, t)   
 
Therefore by using lemma 3.1.6, we get  Pz = z   
 
So we have    ABz = Pz = z.  
 
Putting x = Bz  and  y =   x2n+1  in   2.1(d), we get 

F � M2(PBz, Qx2n+1, kt), M2(ABBz, STx2n+1, t), M2(PBz, ABBz, t)
M2(Qx2n+1, STx2n+1, t), M2(PBz, STx2n+1, t), M2(ABBz, Qx2n+1, t)� > 1 

 
Taking  n → ∞, (a) and using 2.1(i) we get 

M2(Bz, z, kt) ≥   M2(Bz, z, t) 
 
That is   M(Bz, z, kt) ≥  M(Bz, z, t)  
 
Therefore by Lemma1.1.we have   Bz = z  
 
 



Srinivas, M. Vijaya Kumar* / Embedded Relations and Varying Distance Function in Fuzzy Metric Spaces / IJMA- 8(4), April-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                       140  

 
And also we have   ABz = z  implies  Az = z  
 
Therefore  Az = Bz = Pz = z.                                              2.1 (iv) 
 
As  P(X) ⊂ ST(X)  there exists u ∈ X such that  

z = Pz = STu 
 
Putting x = x2n and  y = u in 2.1(c) we get 

F �M2(Px2n, Qu, kt), M2(ABx2n, STu, t), M2(Px2n, ABx2n, t)
M2(Qu, STu, t), M2(Px2n, STu, t), M2(ABx2n, Qu, t) � > 1 

 
Taking n → ∞  and using 3.2.1(i) and 3.2.1(ii) we get 

F � M2(z, Qu, kt), M2(z, STu, t), M2(z, z, t)
M2(Qu, STu, t), M2(z, STu, t), M2(z, Qu, t)� > 1 

 
M2(z, Qu, kt) ≥  M2(z, Qu, t)   

 
That is                  M(z, Qu, kt) ≥  M(z, Qu, t)  
 
we have               Qu = z  
 
Hence                  STu = z = Qu. 
 
Hence (Q, ST)  is weak compatible, therefore, we have  

QSTu = STQu 
 
Thus   Qz = STz. 
 
Putting x = x2n and  y = z in 2.1(c)we get 

 F �M2(Px2n, Qz, kt), M2(ABx2n, STz, t), M2(Px2n, ABx2n, t)
M2(Qz, STz, t), M2(Px2n, STz, t), M2(ABx2n, Qz, t) 

� > 1 

 
Taking n → ∞  and using 2.1(ii) we get 

F � M2(z, Qz, kt), M2(z, STz, t), M2(z, z, t)
M2(Qz, STz, t), M2(z, STz, t), M2(z, Qz, t)� > 1 

 
M2(z, Qz, kt) ≥  M2(z, Qz, t) 

 
And hence           M(z, Qz, kt) ≥  M(z, Qz, t)  

 
we get                  Qz = z.  
 
Putting x = x2n  and y = Tz  in 2.1(c) we get 

F �M2(Px2n, QTz , kt), M2(ABx2n, STTz , t), M2(Px2n, ABx2n, t)
M2(QTz, STTz, t), M2(Px2n, STTz, t), M2(ABx2n, QTz, t) 

� > 1  

 
As                        QT = TQ and  ST = TS we have 

QTz = TQz = Tz 
 
And                      ST(Tz)  = T(STz) = TQz = Tz.  
 
Taking  n → ∞  we get 

F �M2(z, Tz , kt), M2(z, Tz , t), M2(z, z, t)
M2(Tz, Tz, t), M2(z, Tz, t), M2(z, Tz, t)� > 1   

 
M2(z, Tz , kt) ≥  M2(z, Tz , t)  

 
Therefore   M(z, Tz , kt) ≥  M(z, Tz , t)   
 
Therefore by Lemma 1.1. we have   Tz = z  
 
Now STz = Tz = z   implies  Sz = z. 



Srinivas, M. Vijaya Kumar* / Embedded Relations and Varying Distance Function in Fuzzy Metric Spaces / IJMA- 8(4), April-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                       141  

 
Hence   Sz = Tz = Qz = z                                             2.1(v) 
 
Combining 2.1(iv) and 2.1(v) we have 

Az = Bz = Pz = Sz = Tz = Qz = z 
 
Hence z is the common fixed point of A, B, S, T, P and Q. 
 
Uniqueness:  Let u be another common fixed point of A, B, S, T, P and Q. Then  

Au = Bu = Su = Tu = Pu = Qu = u 
 
Putting  x = u  and  y = z in 3.2.1(c) then we get 

F �M2(Pu, Qz, kt), M2(ABu, STz, t), M2(Pu, ABu, t)
M2(Qz, STz, t), M2(Pu, STz, t), M2(ABu, Qz, t) � > 1 

 
Taking limit both side then we get 

F �M2(u, z, kt), M2(u, z, t), M2(u, u, t)
M2(z, z, t), M2(u, z, t), M2(u, z, t) 

� > 1 

 
M2(u, z, kt) ≥  M2(u, z, t) 

 
And hence     M(u, z, kt) ≥  M(u, z, t)   
 
we get                  z =  u.  
 
That is z   is a unique common fixed point of A, B, S, T, P and Q in X. 
 
Remark 3.2.2: If we take B = T = I identity map on X in Theorem 2.1 then we get following Corollary 
 
Corollary 2.1: Let (X, M,⋆) be a complete fuzzy metric space and let A, S, P and Q be mappings from X into itself such 
that the following conditions are satisfied: 

2.1(a)  P(X) ⊂ S(X) and  Q(X) ⊂ A(X), 
2.2(b)  (P, A)  is compatible of type (β)  and (Q, S)  is weak compatible, 
2.3(c) there exists k ∈ (0,1) such that for every x, y ∈ X and  t >  0 

F �M2(Px, Qy, kt), M2(Ax, Sy, t), M2(Px, Ax, t),
M2(Qy, Sy, t) , M2(Px, Sy, t), M2(Ax, Qy, t) � ≥ 1 

Then A, S, P and Q have a unique common fixed point in X. 
 
Remark 3.2.4: If we take weakly compatible mapping in place of compatible mapping of type (β) then we get 
following result. 
 
Corollary 2.2: Let (X, M,⋆) be a complete fuzzy metric space and let A, B, S, T, P and Q be mappings from X into itself 
such that the following conditions are satisfied: 

2.1(a)  P(X) ⊂ ST(X) and  Q(X) ⊂ AB(X), 
2.2(b)  (P, AB)  and (Q, ST)  is are weak compatible, 
2.3(c) there exists k ∈ (0,1) such that for every x, y ∈ X and  t > 0 

F �M2(Px, Qy, kt), M2(ABx, STy, t), M2(Px, ABx, t),
M2(Qy, STy, t) , M2(Px, STy, t), M2(ABx, Qy, t) � ≥ 1 

Then A, B, S,T, P and Q have a unique common fixed point in X. 
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