On b\# generalized Closed Sets in Topological Spaces

K. ABSANA BANU*1, Dr. S. PASUNKILIPANDIAN2

1M.phil scholar, Aditanar College of Arts and Science, Tiruchendur - (T.N), India.

2Associate professor Department of Mathematics,
Aditanar College of Arts and Science, Tiruchendur - (T.N), India.

(Received On: 11-04-17; Revised & Accepted On: 16-05-17)

ABSTRACT

In this paper a new class of generalized closed sets, namely b\#g-closed sets is introduced in topological spaces. We prove that this class lies between the class of b#-closed sets and the class of bg- closed sets. Also we find some basic properties and characterizations of b\# g –closed sets.

Keywords: g-closed, gb –closed sets, b#-closed sets, b\#g-closed set.

Subject classification No 2010: 54A05.

1. INTRODUCTION

2. PRELIMINARIES

Throughout this paper X denotes a topological space on which no separation axiom is assumed. For any subset A of X, cl(A) denotes the closure of A and int(A) denotes the interior of A in the topological space X. Further X \ A denotes the complement of A in X.

The following definitions and results are very useful in the subsequent sections.

Definition 2.1 A subset A of a space X is called
(i) α-open [4] if $A \subseteq \text{int}(\text{cl}(\text{int}(A)))$ and α-closed if $\text{cl}(\text{int}(\text{cl}(A))) \subseteq A$,
(ii) semi-open [8] if $A \subseteq \text{cl}(\text{int}(A))$ and semi-closed if $\text{int}(\text{cl}(A)) \subseteq A$,
(iii) pre-open [4] if $A \subseteq \text{int}(\text{cl}(A))$ and pre-closed if $\text{cl}(\text{int}(A)) \subseteq A$,
(iv) semi-pre-open [5] or β-open [1] if $A \subseteq \text{cl}(\text{int}(\text{cl}(A)))$ and semi-pre-closed or β-closed if $\text{int}(\text{cl}(\text{int}(A))) \subseteq A$,
(v) regular open [7] if $A = \text{int}(\text{cl}(A))$ and regular closed if $A = \text{cl}(\text{int}(A))$.

Definition 2.2: Let (X,τ) be a topological space and $A \subseteq X$. The $b^\#$-closure of A, denoted by $b^\#\text{cl}(A)$ and is defined by the intersection of all $b^\#$-closed sets containing A.

Definition 2.3: Let (X,τ) be a topological space and $A \subseteq X$. The $b^\#$-interior of A, denoted by $b^\#\text{int}(A)$ and is defined by the union of all $b^\#$-open sets contained in A.

**Corresponding Author: K. Absana banu*1,
1M.phil scholar, Aditanar College of Arts and Science, Tiruchendur - (T.N), India.**
Definition 2.4: A subset A of space X is said to be
(i) b-open [4] if $A \subseteq \text{cl}(\text{int}(A)) \cup \text{int}(\text{cl}(A))$ and b-closed if $\text{cl}(\text{int}(A)) \cap \text{int}(\text{cl}(A)) \subseteq A$,
(ii) b^g-open [19] if $A = \text{cl}(\text{int}(A)) \cup \text{int}(\text{cl}(A))$ and b^g-closed if $A = \text{cl}(\text{int}(A)) \cap \text{int}(\text{cl}(A))$,
(iii) a p-set [17] if $\text{cl}(\text{int}(A)) \cap \text{int}(\text{cl}(A)) \subseteq A$,
(iv) a q-set [18] if $\text{int}(\text{cl}(A)) \subseteq \text{cl}(\text{int}(A))$,
(v) π-open [20] if A is a finite union of regular open sets.

Lemma 2.5 [5]: Let A be a subset of a space X. Then
(i) $\text{scl}(A) = A \cup \text{int}(\text{cl}(A))$,
(ii) $\text{pcl}(A) = A \cup \text{cl}(\text{int}(A))$,
(iii) $\text{spcl}(A) = A \cup \text{int}(\text{cl}(\text{int}(A)))$.

Definition 2.6: A subset A of a space X is called
(i) generalized closed [9] (briefly g-closed) if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X,
(ii) generalized semi-pre-closed [6] (briefly gsp-closed) if $\text{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X,
(iii) π-generalized pre-closed [15] (briefly π gp-closed) if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is π-open in X,
(iv) regular weakly generalized closed [13] (briefly rwg-closed) if $\text{cl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X,
(v) generalized b-closed set [2] (briefly gb-closed) if $\text{bcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X,
(vi) regular generalized b-closed set [11] (briefly rgb-closed) if $\text{bcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X,
(vii) π-generalized b-closed set [3] (briefly πgb-closed) if $\text{bcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is π-open in X,
(viii) π-generalized b^g-closed set [10] (briefly πgbg-closed) if $\text{bcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is π-open in X,
(ix) regular generalized b^g-closed set [14] (briefly rg-b^g-closed) if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X,
(x) π-generalized b^g-closed set [3] (briefly πgbg-closed) if $\text{int}(\text{bcl}(A)) \subseteq U$ whenever $A \subseteq U$ and U is π-open in X.

The complements of the above mentioned closed sets are their respective open sets.

Remark 2.7:

\[\text{Regular-closed} \]
\[\downarrow \]
\[\text{Closed} \quad \text{b-closed} \quad \text{gb-closed} \quad \text{spcl}(A) \]

Lemma 2.8[4]: Let A be a sub set of a space X. Then $\text{bcl}(A) = \text{scl}(A) \cup \text{pcl}(A)$.

3. b^g-generalized closed set:

Definition 3.1: Let X be a space. A subset A of X is called b^g-generalized closed (briefly b^gg-closed) if $b^g \text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is b^g-open.

Theorem 3.2: Every b^g-closed set is b^gg-closed.

Proof: Let A be a b^g-closed set in X. Let $A \subseteq U$ where U is b^g-open. Since A is b^g-closed, $b^g \text{cl}(A) = A \subseteq U$. Thus we have $b^g \text{cl}(A) \subseteq U$. Therefore A is b^gg-closed set.

Remark 3.3: The converse of the above Theorem need not be true.

Example 3.4: Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b\}, \{a, b, d\}, \{a, c, d\}, X\}$. Consider $A = \{b\}$. A is not a b^g-closed, However A is a b^gg-closed.

Theorem 3.5: Every b^gg-closed set is gb-closed.

Proof: Let A be b^gg-closed set in X. Let $A \subseteq U$ where U is open. Thus U is b^g-open. Since A is b^gg-closed, $b^g \text{cl}(A) \subseteq U$. But $\text{bcl}(A) \subseteq b^g \text{cl}(A)$. Thus we have $\text{bcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is b^g-open. Therefore A is gb-closed set.
Remark 3.6: The converse of the above Theorem need not be true.

Example 3.7: Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b\}, \{a, b, d\}, \{a, c, d\}, X\}$. Consider $A = \{c\}$. A is not a b^g-closed, However A is a gb-closed.

Theorem 3.8: Every b^g-closed set is πgb-closed.

Proof: proof is straightforward

Remark 3.9: The converse of the above theorem need not be true.

Example 3.10: Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b\}, \{a, b, d\}, \{a, c, d\}, X\}$. Consider $A = \{a\}$. A is not a b^g-closed, However A is a πgb-closed.

Theorem 3.11: Every b^g-closed set is rgb-closed.

Proof: proof is straightforward

Remark 3.12: The converse of the above theorem need not be true.

Example 3.13: Let $X = \{a, b, c, d\}$ with $\tau = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b\}, \{a, b, d\}, \{a, c, d\}, X\}$. Consider $A = \{a\}$. A is not a b^g-closed, However A is a πgb-closed.

Theorem 3.14: The following example shows that b^g-closed sets independent from α -closed set, $g\alpha$-closed set, g-closed set, rg-closed set, rwg-closed set.

Example 3.15: Let $X = \{a, b, c, d\}$ and $Y = \{a, b, c, d\}$ be the topological spaces.

(i) consider $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, Y\}$. Then the set $\{c\}$ is an α-closed set but not b^g-closed, and also the set $\{a\}$ is an b^g-closed but not α-closed.

(ii) consider $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, Y\}$. Then the set $\{d\}$ is an $g\alpha$-closed set but not b^g-closed set in X, and also the set $\{b, c\}$ is an b^g-closed but not $g\alpha$-closed.

(iii) consider $\tau = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b\}, \{a, b, d\}, \{a, c, d\}, X\}$. Then the set $\{c, d\}$ is an g-closed set but not b^g-closed set in X, and also the set $\{d\}$ is an b^g-closed but not g-closed.

(iv) consider $\tau = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b\}, \{a, b, d\}, \{a, c, d\}, X\}$. Then the set $\{a, d\}$ is an rg-closed set but not b^g-closed set in X, and also the set $\{b\}$ is an b^g-closed but not rg-closed.

(v) consider $\tau = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b\}, \{a, b, d\}, \{a, c, d\}, X\}$. Then the set $\{b, c\}$ is an rwg-closed set but not b^g-closed set in X, and also the set $\{d\}$ is an b^g-closed but not rwg-closed.

Theorem 3.16: Let A be a subset of a topological space X. Then $\text{cl}(\text{int}(A)) \cap \text{int}(\text{cl}(A)) \subseteq \text{bcl}(A) \subseteq b^g \text{cl}(A)$.

Proof: Obvious.

Theorem 3.17:

(i) If A is a p-set, then $\text{cl}(\text{int}(A)) \subseteq b^g \text{cl}(A)$,

(ii) If A is a q-set, then $\text{int}(\text{cl}(A)) \subseteq b^g \text{cl}(A)$,

(iii) If A is a t-set, then $\text{int}(A) \subseteq b^g \text{cl}(A)$.

Proof: Let A be a p-set. Then $\text{cl}(\text{int}(A)) \subseteq \text{int}(\text{cl}(A))$. That is $\text{cl}(\text{int}(A)) = \text{cl}(\text{int}(A)) \cap \text{int}(\text{cl}(A))$. Therefore by Theorem 3.16, $\text{cl}(\text{int}(A)) \subseteq \text{bcl}(A)$. This proves (i). Similarly the proof of (ii),(iii).
Remark 3.18:

\[\text{A} \rightarrow \text{B} \text{ means A imply B.} \quad \text{A} \not\rightarrow \text{B} \quad \text{means A does not imply B.} \quad \text{A} \leftrightarrow \text{B} \quad \text{means A and B are independent.} \]

4. CHARACTERIZATION

Theorem 4.1. Suppose \(A \) is a p-set and \(b^\# g \)-closed. Then

(i) \(A \) is \(\pi gp \)-closed,
(ii) \(A \) is \(\pi gb^* \)-closed,
(iii) \(A \) is \(gsp \)-closed.

Proof: Let \(A \) be a p-set and \(b^\# g \)-closed in \(X \). Then by using Theorem 3.16 (i) \(\text{cl(int}(A)) \subseteq b^\# \text{cl}(A) \). Let \(A \subseteq U \) and \(U \) is \(\pi \)-open. Then \(b^\# \text{cl}(A) \subseteq U \). This implies \(\text{cl(int}(A)) \subseteq U \). That is \(A \cup \text{cl(int}(A)) \subseteq U \). Hence \(pcl(A) \subseteq U \). Hence \(A \) is \(\pi gp \)-closed. This proves (i). Similarly the Proof of (ii) and (iii).

Theorem 4.2: Suppose \(A \) is a q-set and \(b^\# g \)-closed. Then \(A \) is \(\pi gs \)-closed.

Proof: Let \(A \) be a q-set and \(b^\# g \)-closed in \(X \). Then by using Theorem 3.16 (ii) \(\text{int(cl}(A)) \subseteq b^\# \text{cl}(A) \). Let \(A \subseteq U \) and \(U \) is \(\pi \)-open. Then \(b^\# \text{cl}(A) \subseteq U \). This implies \(\text{int(cl}(A)) \subseteq U \). That is \(A \cup \text{int}(\text{cl}(A)) \subseteq U \). Hence \(scl(A) \subseteq U \). Hence \(A \) is \(\pi gs \)-closed.

Remark 4.3: Union and intersection of any two \(b^\# g \)-closed need not be \(b^\# g \)-closed.

Example 4.4: Let \(X = \{a, b, c, d\} \) with \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\} \). Then the sets \(\{a\} \) and \(\{b, c\} \) is \(b^\# g \)-closed but \(\{a, b, c\} \) is not \(b^\# g \)-closed. And also \(\{b, c\} \) and \(\{a, c, d\} \) is \(b^\# g \)-closed. But \(\{c\} \) is not \(b^\# g \)-closed.

Theorem 4.5: If \(A \) and \(B \) are two \(b^\# g \)-closed set in \(X \) such that either \(A \subseteq B = B \) or \(B \subseteq A \) both intersection and union of two \(b^\# g \)-closed set is \(b^\# g \)-closed.

Proof: Let \(A \) and \(B \) are two \(b^\# g \) closed set in a topological space \(X \). Since, \(A \subseteq B = B \subseteq A \) or \(A \cup B = B \). Since \(A \) and \(B \) are \(b^\# g \) closed sets then \(A \cup B = b^\# g \) closed. Similarly \(A \cap B = A \) or \(A \cap B \) then \(A \cap B \) is \(b^\# g \) closed.

Theorem 4.6: A set \(A \) is \(b^\# g \)-closed set if and only if \(b^\# \text{cl}(A) \subseteq A \) contains no non-empty \(b^- \)-closed sets.

Proof:

Necessity: Suppose that \(F \) is a non-empty \(b^- \)-closed subset of \(X \) such that \(F \subseteq b^\# \text{cl}(A) \). Then \(F \subseteq b^\# \text{cl}(A) \) and \(X \setminus F \) is \(b^- \)-open in \(X \). Since \(A \) is \(b^\# g \)-closed in \(X \), \(b^\# \text{cl}(A) \subseteq X \setminus F \), \(F \subseteq X \setminus b^\# \text{cl}(A) \). Thus \(F \subseteq b^\# \text{cl}(A) \cap (X \setminus b^\# \text{cl}(A)) = \emptyset \).
Sufficiency: A ⊆ U and U is b-open. Suppose b#cl(A) is not contain U, then b#cl(A) ∩ Uc is a non - empty b- closed set of b#cl(A):A, which is a contradiction. Therefore b#cl(A) ⊆ U and hence A is b#g-closed.

Theorem 4.7: If A is b#g closed. set and A⊆B⊆b#cl(A) then B is b#g closed. subset of X.

Proof: Let A be any b#g-closed. Set and B be any subset of X such that A⊆B⊆b#cl(A)

Let U be any b-open such that B⊆U. Since A⊆B, then A⊆U.Since A is b#g closed.

Then b#cl(A)⊆U. Since B⊆b#cl(A), then b#cl(B)⊆b#cl(A)⊆U.Therefore b#cl(A)⊆U. Hence B is b#g-closed.

Theorem 4.8: Let A be b#g-closed. Then A is b#g-closed if and only if b#cl(A):A is b#g closed.

Proof: Let A be a topological space (X, τ). Suppose A is b#g-closed. Then b#cl(A)=A. This implies b#cl(A):A=Φ, which is b#g closed. Conversely suppose that b#cl(A):A is b#g closed. Since A is b#g-closed, by above theorem 4.6, b#cl(A) does not contains any non-empty b-closed set. Therefore b#cl(A):A=Φ. Hence b#cl(A)=A. Thus A is b#g-closed.

Theorem 4.9: If a subset A of X is b#g-closed set in X then b#cl(A):A contains no non-empty Closed set.

Proof: using 4.6, we get the proof

Theorem 4.10: For every element x in a space X, X-{x} is a b#g- closed or b-open.

Proof: Suppose X-{x} is not b-open. Then X is the only b-open set containing X-{x}. This implies b#cl(X-{x})⊆X. Hence X-{x} is b#g closed.

Theorem 4.11: If A is both b-open and b#g-closed set in X, then A is b#g-closed set.

Proof: Since A is b-open and b#g-closed in X, b#cl(A)⊆A. But always A⊆b#cl(A). Therefore A= b#cl(A). Hence A is b#g-closed.

Theorem 4.12: Every subset is b#g-closed in X if and only if every b-open set is b#g-closed.

Proof: Let A be a b-open in X, by hypothesis A is b#g-closed in X. By theorem 4.11, A is a b#g-closed set conversely Let A be a subset of X and U a b-open set such that A⊆U. Then by hypothesis U is b#g-closed. This implies that b#cl(A)⊆b#cl(U)=U. Hence A is b#g-closed.

CONCLUSION

The present chapter has introduced a new concept called b#g-closed set in a topological spaces. It also analyzed some of properties. The implication shows the relationship between b#g-closed sets and the other existing sets.

REFERENCES