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ABSTRACT 
In this paper we consider 3rd order Caputo fractional differential equation (CFDE) and obtain its solution 
analytically. The solutions of the 3rd  order CFDE are referred as fractional hyperbolic like functions. A few properties 
of these functions are studied. Further extended fractional hyperbolic like functions are obtained as solutions of the 

thn order CFDE of the same family. 
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1. INTRODUCTION 
 
Using the approach in [1] fractional hyperbolic functions have been studied in [8]. In this paper we give details of the 
proofs of results that were just mentioned in [8]. Thus we present results corresponding to fractional hyperbolic like 
functions using the theory of fractional differential equations. 
 
2. PRELIMINARIES 
 
In order to obtain results pertaining to fractional hyperbolic like functions we introduce definitions and concepts 
corresponding to fractional derivatives and fractional hyperbolic functions. We first begin with generalization of the 
exponential function known as the Mittag - Leffler function [5, 7]. 
 
Definition 2.1: The Mittag - Leffler function of one parameter, 𝐸𝑞(𝑧)  is defined by 
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Definition 2.2: The Mittag - Leffler function of two parameters, 𝐸𝑞,𝛽(𝑧) is defined by   
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The definitions of fractional derivatives for a series by Riemann and Caputo [4] are given below. 
 
Definition 2.3: Riemann - Liouville fractional derivative for series.  
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Definition 2.4: Caputo fractional derivative for series. 
If 
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Next we proceed to present the definitions of the fore mentioned derivatives in terms of the integrals. 
 
Definition 2.5: Riemann - Liouville derivative of   ( )x t    is given by   
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Definition 2.6: Caputo derivative of  x(t) is given by 
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The initial value problem for Riemann - Liouville fractional differential equation (RLFDE) and the initial value 
problem for Caputo fractional differential equation (CFDE) have a basic difference. The RLFDE has a singularity at the 
initial point and is given by  

0 1
0 0( ) ( , ( ))  ,   ( )( ,) /q qD x t f t x t x x t t t t t−= = − =  

and  the CFDE is given by 

0 0( ) ( , ( ))  ,   ( ) .c qD x t f t x t x t x= =  
 
There exists a relation between the CFDE and RLFDE which is given by  

0( ) [ ( ) ].c q qD x t D x t x= −  

 
It has been shown in [3, 6] that the results which hold for the initial value problem of RLFDE are also true for CFDE. 
On basis of this result we give the existence and uniqueness results for linear thn  order RLFDE and for systems and 
propose that they can be naturally extended for linear CFDE. We now introduce the q  - exponential function [5] which 
is needed to define the solution of the linear Reimann - Liouville fractional differential equation.    
 

Definition 2.7: The q - exponential function z
qeλ is defined by 
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Consider the linear fractional differential equation (LFDE) 
1
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where the coefficients 1
1{ }n

jja −
=  are real constants. Then we assume that the solution of the above RLFDE is of the form  
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Please refer to [5] for lemmas and theorems that are necessary to obtain the existence and uniqueness result for LFDE 
(2.9). 
 
We denote +  as the set of all non-negative real numbers. 
 
Next we state the theorem in which fractional hyperbolic functions are obtained as solutions of 2nd order Caputo 
fractional differential equation. 
 
Theorem 2.1: Consider the Initial value problem (IVP) of thα  order homogeneous fractional differential equation with 
Caputo derivative given by  

( )  ( )   0 , 1 2,  ,c D x t x t tα α +− = < ≤ ∈                                                                                                  (2.11) 
with initial conditions  
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2

q qα = < ≤                                                             (2.12) 

Then the general solution of (2.11) - (2.12) is given by ( ) ( )1 2 1 2c  x t c  y t  (c , c+ being arbitrary constants) where 

( )x t and ( )y t  are infinite series solutions of the form  
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The definition of Wronskian corresponding to Caputo fractional differential equation of order α  is as follows: 
 
This definition is parallel to the definition of Wronskian in Ordinary differential equations [2]. 
 

Definition 2.9 (Wronskian): Let  1 2, , , nφ φ φ… be n real or complex valued functions defined on some nonempty 

interval I  in + each having derivatives of order ,   .nq n Nα = ∈  Then the fractional Wronskian of these n
functions is the determinant of the matrix  W  of order  n  defined on  I   and whose value at  t I∈   is  
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3. FRACTIONAL HYPERBOLIC LIKE FUNCTIONS THROUGH THIRD ORDER CFDE 
             
In [8], 2nd order CFDE of the form ( )    ( )   0,1  2,c D x t x tα α− = < ≤ with initial conditions (0) 1,x =

(0) 0,c qD x = 1where 2 ,  1, 
2

q q tα += < ≤ ∈ is considered and results pertaining to this equation were stated 

and proved. 
 
In this section 3rd order CFDE of the same family is considered and some important results corresponding to this 
equation are obtained. 
 
We now state and prove the theorem in which the solutions of  3rd  order CFDE are obtained. 
Consider the thα order (2 3)α< ≤ homogeneous Caputo fractional initial value problem, 

( ) ( ) 0c D x t x tα − =                                                                                                                                      (3.1) 
2(0) 1,    (0) 0,    (0) 0c q c qx D x D x= = =                                                                                                  (3.2) 

where     
23 ,     1,     .
3

q q tα += < ≤ ∈  
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Theorem 3.1: The general solution of the CFDE (3.1) is given by  ( ) ( ) ( )1 2 3c x t c y t c z t+ +  ( 1, 2c c and 3c being 

arbitrary constants) where  ( ) ( )x t ,  y t   and   ( )z t   are infinite series solutions of the form 
3

0
( ) ,

(1 3 )

kq

k

tx t
kq

∞

=

=
Γ +∑                                                                                                                                 (3.3) 

(3 1)

0
( ) ,

(1 (3 1) )

k q

k

ty t
k q

+∞

=

=
Γ + +∑                                                                                                                        (3.4) 

(3 2)

0
( ) ,    .

(1 (3 2) )

k q

k

tz t t
k q

+∞

+
=

= ∈
Γ + +∑                                                                                                         (3.5) 

 

Proof: We transform the CFDE (3.1) to a system of equations of thq order,  
2 1
3

q< ≤ by taking 3qα = and setting  
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be the solutions of the IVP(3.1) - (3.2) where a ,  bk k and kc s′ are unknown constants and .t +∈  
 
Using the initial conditions (3.7) in (3.8) we obtain 
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Consider the equation  ( ) ( ).c qD x t z t=  

 
Substituting (3.8) in the above equation we get 

0 0
    .c q kq kq

k k
k k

D a t c t
∞ ∞

= =

  =  
∑ ∑  

This yields 

1
0 0

(1 ( 1) )     .
(1 )

kq kq
k k

k k

k qa t c t
kq

∞ ∞

+
= =

Γ + +
=

Γ +∑ ∑  

 
Further, comparing the coefficients of the same power we get 
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Similarly by using  ( ) ( )c qD y t x t=  and ( ) ( ),   ,c qD z t y t t += ∈  we obtain 
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By substituting successively, we obtain the values of all coefficients 1 2 1 2, , , , ,a a b b… …  and 1 2, ,c c …  and finally 
we get the solutions of CFDE (3.1) - (3.2) as 
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This completes the proof. 
 
Remark 3.2: We denote these series by 3,0 3,1, q qN N  and 3,2

qN  respectively.  
Hence  
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To verify the result in the Theorem 3.1 we provide another method below. 
 
Verification: 
Consider the IVP (3.1) - (3.2). 
 
Let the solutions of the IVP (3.1) - (3.2) be given by 
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To verify them, we consider 
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Differentiating using Caputo derivative both sides we get 
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Differentiating once again using Caputo derivative both sides we obtain 
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or          3 ( ) ( ) 0.c qD x t x t− =  
 
Also the initial condition  (0) 1x =  is satisfied. 
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Hence  
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Similarly we can verify that   y(t)   and   z(t)   are also the solutions of the IVP (3.1) - (3.2) . 
 
This completes the verification. 
 
We now state and prove a theorem that relates the Wronskian and the solutions of the CFDE (3.1). 
 
Theorem 3.3 (Wronskian Property): Let  ( ), ( )x t y t  and ( )z t  be three solutions of the CFDE (3.1). These three 

solutions are linearly independent on R+  if and only if the Wronskian  ( ) 0W t ≠  for every  .t +∈  
 
Proof: Suppose the Wronskian of the solutions ( ) ( )x t ,  y t  and  ( )z t  of CFDE (3.1) be such that ( ) 0.W t ≠  we 

show that ( ) ( )x t ,  y t  and ( )z t  are linearly independent solutions. If possible assume that  ( ) ( )x t ,  y t  and ( )z t  
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Hence  ( )W t 0,=  which is a contradiction. Therefore the solutions ( ) ( )x t ,  y t  and ( )z t  are linearly independent 
solutions. 
 
Now to show that ( )W t 0,≠  when ( ) ( )x t ,  y t  and ( )z t  are linearly independent solutions. 

Suppose if possible   W(t) = 0   for some .t +∈  
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This implies that there exists a linear combination of columns as 

2 2 2

( ) ( ) ( )
( )

( ) (

( )

) ( )
0

( )

c q c q c q

c q c q c q

D x t D y t D z t
D x t D y

x t y t z t

D z
b

t
a

t
c

     
     + + =     
          

 

where at least one of    ,a b    and   c    is different from zero. 
 
Without loss of generality suppose   0a ≠ . 

Then   ( ) ( ) ( ).b cx t y t z t
a a

= − −  

This implies that solutions ( ), ( )x t y t  and ( )z t  are linearly dependent, which is a contradiction to the assumption that 
these solutions are linearly independent. 
 
Hence  ( ) 0.W t ≠  
 
Thus the proof is complete. 
 
We now present below the addition formulae for solutions of third order CFDE. The proofs can be obtained by 
following the technique used for solutions of the 2nd  order CFDE in [8]. 
 
Addition Formulae: 
Let  η +∈ Then the solution  ( ) ( ) ( )( )t , t , tx y z  of the CFDS (3.6) possesses the properties  

( ) ( ) ( ) ( ) ( ) ( ) ( ), x t x t x y t z z t yη η η η+ = + +                                                                                     (3.12) 
( ) ( ) ( ) ( ) ( ) ( ) ( ), y t x t y y t x z t zη η η η+ = + +                                                                                    (3.13) 
( ) ( ) ( ) ( ) ( ) ( ) ( ). z t x t z y t y z t xη η η η+ = + +                                                                                     (3.14) 

We use the method of linear algebra to prove these properties. Let  η +∈  be arbitrary. If  ( ) ( ) ( )( ) x t , y t , z t   is 

a solution of the CFDS (3.6) then  ( ( ), ( ), ( ))x t y t z tη η η+ + +  is also a solution of the CFDS (3.6) . 
 
Now  ( )x t η+  can be expressed as a linear combination of ( ) ( )x t ,  y t  and ( )z t . 
 
Hence    1 2 3( ) ( ) ( ) ( ),     .x t c x t c y t c z t tη ++ = + + ∈                                                                                       (3.15) 
 
For a given  1 2, ,c cη +∈  and 3c  need to be uniquely determined. 
 
For 0t = , in view of the initial conditions (3.7) we get 1 ( ).c x η=  
 
Further, we have 

1 2 3( ) ( ) ( ) ( ) ( )q c q c q c qcz t D x t c D x t c D y t c D z tη η+ = + = + +  

               ( ) ( ) ( )1 2 3c  z  t   c  x  t   c  y  t .= + +  
 

2
1 2 3( ) ( ) ( ) ( ) ( )q c q c q cc qy t D x t c D z t c D x t c D y tη η+ = + = + +  

                ( ) ( ) ( )1 2 3 c  y  t  c  z  t  c  x  t  .= + +  

For 0t = , we get 2 3( ), ( ).c z c yη η= =  Now we substitute the values of  1 2,c c  and 3c  in (3.15) to get the 
following relation. 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ).x t x t x y t z z t yη η η η+ = + +  
 
Similarly we can obtain the relations  

( ) ( ) ( ) ( ) ( ) ( ) ( )y t x t y y t x z t zη η η η+ = + +  
And         ( ) ( ) ( ) ( ) ( ) ( ) ( ).z t x t z y t y z t xη η η η+ = + +  

These are addition formulae for the solutions ( ) ( )x t , y t  and   ( )z t   of CFDE (3.1). 
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From these relations we derive, for  ,tη =  

2(2 ) ( ) ( ( ) 2 )x t x t y t z t= +                                                                                                                        (3.16) 
2(2 ) 2 ( ) ( ) ) (y t x t y t z t= +                                                                                                                       (3.17) 
2(2 ) 2 ( ) ( ) ( ).z t z t x t y t= +                                                                                                                      (3.18) 

These results may be easily used to obtain the values of ( ) ( )x 3t , y 3t  and (3 )z t  and many similar relations. 
 
Similar to the Euler's formulae for the  2nd  order CFDE in [8], we can obtain the Euler's formulae for the 3rd  order 
CFDE (3.1). 
 
Euler’s Formulae: The solutions of the CFDE (3.1) are ( ), ( )q q

q qE t E tω  and 2( )q
qE tω where 
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qE tω  in terms of 3,0 3,1( ), ( )q qN t N t  and 3,2 ( )qN t  respectively as follows: 

0
( )  ( ) ,   

(1 )

kq
q

q
k

ti E t t
kq

∞

+
=

= ∈
Γ +∑   

                  

2 3 4

3 6 4 2 5

3,0 3,1 3,2

1
(1 ) (1 2 ) (1 3 ) (1 4 )

1
(1 3 ) (1 6 ) (1 ) (1 4 ) (1 2 ) (1 5 )

( ) ( ) ( ).

q q q q

q q q q q q

q q q

t t t t
q q q q

t t t t t t
q q q q q q

N t N t N t

= + + + + +
Γ + Γ + Γ + Γ +

   
= + + + + + + + + +   Γ + Γ + Γ + Γ + Γ + Γ +   
= + +



  

 
 

0
( ) ( ) ,   

(1 )

k kq
q

q
k

tii E t t
kq

ωω
∞

+
=

= ∈
Γ +∑        

                   

2 2 3 4

3 6 4 2 5
2

2
3,0 3,1 3,2

1
(1 ) (1 2 ) (1 3 ) (1 4 )

1
(1 3 ) (1 6 ) (1 ) (1 4 ) (1 2 ) (1 5 )

( ) ( ) ( ).

q q q q

q q q q q q

q q q

t t t t
kq q q q

t t t t t t
q q q q q q

N t N t N t

ω ω ω

ω ω

ω ω

= + + + + +
Γ + Γ + Γ + Γ +

 
= + + + + + + + + + Γ + Γ + Γ + Γ + Γ + Γ +

 
 
  

= + +



  

 
 

2
2

0
( ) ( ) ,   

(1 )

k kq
q

q
k

tiii E t t
kq

ωω
∞

+
=

= ∈
Γ +∑   

                        

2 2 3 2 4

3 6 4 2 5
2

2
3,0 3,1 3,2

1
(1 ) (1 2 ) (1 3 ) (1 4 )

1
(1 3 ) (1 6 ) (1 ) (1 4 ) (1 2 ) (1 5 )

( ) ( ) ( ).

q q q q

q q q q q q

q q q

t t t t
q q q q

t t t t t t
q q q q q q

N t N t N t

ω ω ω

ω ω

ω ω

= + + + + +
Γ + Γ + Γ + Γ +

 
= + + + + + + + + Γ + Γ + Γ + Γ + Γ + Γ + 
= + +

 
+ 

 



    

 
Thus we obtain the following relations: 

3,0 3,1 3,2( ) ( ) ( ) ( ),q q q q
qE t N t N t N t= + +                                                                                                    (3.19) 

2
3,0 3,1 3,2( ) ( ) ( ) ( ),q q q q

qE t N t N t N tω ω ω= + +                                                                                                  (3.20) 
2 2

3,0 3,1 3,2( ) ( ) ( ) ( ),     .q q q q
qE t N t N t N t tω ω ω += + + ∈                                                                               (3.21) 

 



S. Nagamani* / A Few Properties of Fractional Hyperbolic Like Functions / IJMA- 8(5), May-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                        56  

 
We can also express 3,0 3,1( ), ( )q qN t N t  and 3,2 ( )qN t  in terms of ( ), ( )q q

q qE t E tω  and 2( ).q
qE tω   By solving 

(3.19) , (3.20) and (3.21) we get  
2

3,0
1 1 1( ) ( ) ( ) ( ),
3 3 3

 q q q q
q q qN t E t E t E tω ω= + +                                                                                (3.22) 

2
2

3,1
1( ) ( ) ( ) ( ),
3 3 3

q q q q
q q qN t E t E t E tω ωω ω= + +                                                                              (3.23) 

2
2

3,2
1( ) ( ) ( ) ( ),    .
3 3 3

q q q q
q q qN t E t E t E t tω ωω ω += + + ∈                                                             (3.24) 

 
4. EXTENSION OF FRACTIONAL HYPERBOLIC LIKE FUNCTIONS TO thn  ORDER CFDE. 
 
It is observed that, the results obtained in Section 3 can be generalized to the CFDE of order  ,  1 .n nα α− < ≤   We 
proceed to do so in this section. 
 
Consider the  thn  order fractional IVP of the form 

( ) ( ) 0c D x t x tα − =                                                                                                                                       (4.1) 
( 1)(0) 1,    (0) 0, , (0) 0c q c n qx D x D x−= = … =                                                                                       (4.2) 

where  1 ,n nα− < ≤   with ,nqα =  
1 1,   n q n N

n
−

< ≤ ∈  fixed. 

Theorem 4.1: The general solution of the CFDE (4.1) is given by 1 1 2 2( ) ( ) ( )n nc x t c x t c x t+ +…+  where

1 2, , , nc c c…  are arbitrary constants and   1 2( ), ( ), , ( )nx t x t x t… are series solutions of the form 

1
0

( 1)

2
0

( ( 1))

0

( ) ,
(1 )

( ) ,
(1 ( 1) )

                               

( ) ,    .
(1 ( ( 1)) )

nkq

k

nk q

k

nk n qn

n
k

tx t
nkq

tx t
nk q

tx t t
nk n q

∞

=

+∞

=

+ −

+
=

=
Γ +

=
Γ + +

= ∈
Γ + + −

∑

∑

∑

 



                                                                                            (4.3) 

 

Proof:  Let 1 2( ), ( ), , ( )nx t x t x t…  be ‘ n ’ solutions of the CFDE (4.1) - (4.2) such that 

1 2 1 1( ) ( ),   ( ) ( ), ,   ( ) ( )c q c q c q
n n nD x t x t D x t x t D x t x t−= = … =                                                              (4.4) 

with initial conditions 

1 2(0) 1, (0) 0, , (0) 0.nx x x= = … =                                                                                                           (4.5) 
Let 

1 1 2 2
0 0 0

( ) , ( ) , , ( )kq kq kq
k k n nk

k k k
x t a t x t a t x t a t

∞ ∞ ∞

= = =

= = … =∑ ∑ ∑                                                                 (4.6) 

where     ,  1, 2, , ,  0, 1, ,ika s i n k′ = … = … ∞  are unknown constants and .t +∈  
 
From the initial conditions (4.5), we obtain  

10 20 01, 0, , 0.na a a= = … =  
 
Now consider the equation  

1( ) ( ).c q
nD x t x t=  

Substituting (4.6) in the above equation we get  

1
0 0

 c q kq kq
k nk

k k
D a t a t

∞ ∞

= =

  =  
∑ ∑  
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which   gives  

1( 1)
0 0

(1 ( 1) )     .
(1 )

kq kq
k nk

k k

k qa t a t
kq

∞ ∞

+
= =

Γ + +
=

Γ +∑ ∑  

 
Further, comparison of the coefficients of the same power yields 

1( 1)
(1 )

(1 ( 1) )k nk
kqa a

k q+

Γ +
=
Γ + +

   for     0, 1, 2, .k = …  

 
Similarly by using   

2 1 1( ) ( ), , ( ) ( )c q c q
n nD x t x t D x t x t−= … =  we get 

2( 1) 1 3( 1) 2
(1 ) (1 )  ,    , .

(1 ( 1) ) (1 ( 1) )k k k k
kq kqa a a a

k q k q+ +

Γ + Γ +
= = …
Γ + + Γ + +

 

 
Using the above recursive relations, we obtain the values of 

11 12 21 22 1 2, , , , , , , ,n na a a a a a… … … 
and finally the solutions are given by 

1
0

( 1)

2
0

( ( 1))

0

( ) ,
(1 )

( ) ,
(1 ( 1) )

                           

( ) ,    .
(1 ( ( 1)) )

nkq

k

nk q

k

nk n qn

n
k

tx t
nkq

tx t
nk q

tx t t
nk n q

∞

=

+∞

=

+ −

+
=

=
Γ +

=
Γ + +

= ∈
Γ + + −

∑

∑

∑

 



                          

  
The proof is complete. 
 
Remark 4.2: For sake of parallel notation to the work in earlier section, the solutions 1 2( ), ( ). . ., ( )nx t x t x t  can be 

represented by  ,0 ,1 , 1, , ,q q q
n n n nN N N −…    respectively.  Thus  

,0
0

,
(1 )

nkq
q
n

k

tN
nkq

∞

=

=
Γ +∑  

( 1)

,1
0

,
(1 ( 1) )

nk q
q
n

k

tN
nk q

+∞

=

=
Γ + +∑                                                                                                                        (4.7) 

 

                            
( ( 1))

, 1
0

,    .
(1 ( ( 1)) )

nk n qn
q
n n

k

tN t
nk n q

+ −

− +
=

= ∈
Γ + + −∑   

 
A suitable notation to represent the above solutions conveniently is as follows: 

( )

,
0

( ) , 0,1, 2, , ( 1),   ,   .
(1 ( ) )

nk r q
q
n r

k

tN t r n n N t
nk r q

+∞

+
=

= = … − ∈ ∈
Γ + +∑                                                 (4.8) 

 
Functions  , ( )q

n rN t  in (4.8) are extended fractional hyperbolic like functions. 
 
Now we state and prove a theorem which relates the Wronskian and the solutions of the CFDE (4.1). 
 
Theorem 4.3: Let  1 2( ), ( ), , ( )nx t x t x t…  be  n  solutions of the CFDE (4.1). These n  solutions are linearly 

independent on +  if and only if the Wronskian ( ) 0W t ≠  for every  .t +∈  
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Proof: Let there be a point 1t  in +  such that 1( ) 0.W t ≠   Assume that there are n  constants 1 2, , nc c c…  such that 

1 1 2 2( ) ( ) ( ) 0,   .n nc x t c x t c x t t ++ +…+ = ∈   To show that 1 2( ), ( ), , ( )nx t x t x t…  are linearly independent, we 

must arrive at  1 2 0.nc c c= =… =   At 1t  t=  in +  we have 

1 1 1 2 2 1 1

1 1 1 2 2 1 1

( 1) ( 1) ( 1)
1 1 1 2 2 1 1

( ) ( ) ( ) 0

( ) ( ) ( ) 0
                                                       

( ) ( ) ( ) 0 

n n
c q c q c q

n n

c n q c n q c n q
n n

c x t c x t c x t
c D x t c D x t c D x t

c D x t c D x t c D x t− − −

+ + … + =

+ + … + =

+ + … + =

  

 

   
These are n  simultaneous homogeneous equations in 1 2, , nc c c…  as unknown coefficients. Observe that the 

determinant formed by the coefficients of the n  equations, 1( ) 0W t ≠ , hence clearly, 1 2 0.nc c c= =… =   
Therefore the solutions are linearly independent. 
 
To obtain a sufficient condition assume that the solutions 1 2( ), ( ), , ( )nx t x t x t…  are linearly independent. We show 

that Wronskian ( ) 0.W t ≠  
 
If possible suppose that  ( )W t 0=   for some  .t +∈   Then  

( )
1 2

( 1) ( 1) (

2

1)
2

1

1

( ) ( ) ( )

( ) ( ) (

t ( ) ( )

0.

)

c q c q c q
n

c n q c n q c n q
n

n

D x t D x t D x t

D x t D x t D x t

x x t x t

− − −

=





   



 

 
This implies that there exists a linear combination of columns as 

1 2

( 1)( 1) ( 1)

1 2

1 2

1 2

( )
( )( ) ( )

0

( )( ) ( )

( ) ( )

c

n
c qc q c q

n
n

c n qc n q c n q
n

x t
D x tD x t D x t

c

D x tD x t D x t

x t x t

c

−− −

   
   
   + +
   


 
 
 + =
 
 


 
   






 

 

where 1 2, , , nc c c…  are not simultaneously zero.  If 1 0c ≠  then 2
1 2

1

( ) ( )cx t x t
c

= − 3
3

1 1

( ) ( ).n
n

c cx t x t
c c

− − −   

This implies that  1 2( ), ( ), , ( )nx t x t x t…  are linearly dependent solutions,  
 
which is a contradiction to the assumption that these solutions are linearly independent. 
 
Hence        ( ) 0.W t ≠  
 
The proof is complete. 
 
5. CONCLUSION 

 
In this paper we have obtained the solutions of the 3rd  order CFDE in the form fractional hyperbolic like functions and 
their properties are studied. Further solutions of thn  order CFDE are also obtained. 
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