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ABSTRACT 
The paper deals with a mathematical model for two-layered blood flow inside a catheterized asymmetric stenosed 
artery and velocity slip at the interface. The model consists of a core region of red blood cell suspension in the middle 
layer and the cell poor region peripheral plasma layer (PPL) in the outer region. It is assumed that both the core and 
the peripheral plasma layer are represented by a Newtonian fluid with different viscosities 1µ and 2µ respectively. 
Analytical expressions are obtained for axial velocity, flow rate, and wall shear stresses. The behaviour of three flow 
variables have been discussed. By employing velocity slip at interface, axial velocity and flow rate can be accelerated 
on one hand and impedance to flow can be retarded on the other. The present analysis includes some mathematical 
models as its special cases. Physiological implications of this theoretical modeling to blood flow situations, are also 
discussed in brief. 
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1. FLOW GEOMETRY 
 
A two layered model for blood flow in a catheterized asymmetric stenosis has been developed. The model basically 
consists of a core of red blood cell suspension in the middle layer and the peripheral plasma layer in the outer layer (as 
shown in figure1). It is assume that both the core and the peripheral layer are represented by a Newtonian fluid with 
different viscosities µ1 and µ2 respectively. 
 

 
 
The geometry of the stenosis which is developed at the arterial wall in an axially non symmetric but radially symmetric 
manner - a rigid tube with a circular section and a catheter kR0 (k<<1) coaxial to it as in from (fig.1) is mathematically 
modeled as given by (Ponalagusamy 1986) for PPL 
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The function ( )1 zR which represent the shape of the central layer has been assumed to be of the from  
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  ,    otherwiseα=                                        (2) 

where ( )R z  is the radius of the tube with stenosis, R0 is the constant radius of the false, L0 is the length of the 
stenosis, L the length of the tube, d the stenosis location, δs and δi are the maximum height of the stenosis in the PPL 

and that in the Core region respectively at 0

2
Lz d= + is a parameter determining the shape of the stenosis, 
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It is of interest to note that an increase in the value of n leads to the change of stenosis shape. When n = 2, the geometry 

of stenosis becomes symmetrical at 0   and  
2

z d L i
s

α δ
δ

= + = . 

 
3. MATHEMATICAL ANALYSIS 
 
Let us consider a steady, Laminar flow of blood through an axially non symmetric but radially symmetric stenosed 
artery - a circular tube with a catheter of radius kR0 (k<<1) co-axial to it and one-dimensional flow obeying the 
constitutive equation for a Newtonian fluid. Fluid velocity vector has the form (0,0, ( ))V u r=



in cylindrical polar 

system ( , , )r zθ representing the radial, circumferential and axial coordinate respectively. The equations of motion 

governing the fluid flow in ( , , )r zθ  coordinate system (schlichting, 1968) are written as follows 

0,p
r
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∂
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                                         (3) 
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                                     (4) 

. =u pr
r r r z
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                                    (5) 

Where ( )ru u= denotes the axial velocity, µ  is the viscosity of blood and p the pressure. 
 
As a result of equation (3-5), the governing equation of fluid flow is given by 

0 ( ). =0 ,      R zC r kR r
r r r
µ µ 

 
 
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                    (6) 

Where    ,dpC
dz

= −  is the pressure gradient. 

 
4. BOUNDARY CONDITIONS 
 
The boundary conditions for the present problem are given by 

2( )   0   at  ( )i u r R z= = ,     (zero-slip at stenotic wall)      

1 2 1( )     at  ( ),sii u u u r R z− = = , (slip at interface)       

1 0( ) 0   at  iii u r kR= = ,     (zero-slip at catheter wall)                   (7) 

1 2
1 2 0( )    at  u uiv r kR

r r
µ µ∂ ∂

= =
∂ ∂

, (stresses equal at interface)      
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Where 1 2 and µ µ  are viscosities of blood in core and peripheral plasma layer respectively. The equation (6) with 
boundary conditions (7), is a boundary value problem. 
 
5. SOLUTIONS OF THE PROBLEM 
 
Integrating the equation (6) twice and by employing the boundary conditions (7), the analytic expression for velocity 
function for the core region- 
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The volumetric flow rate for the core region 0 1( )kR r R z≤ ≤ is given by  
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And for PPL 1( ) ( )R z r R z≤ ≤  
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The total flow rate Q is expressed as 
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Shear stress at the stenotic wall and at the interface respectively given by 
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Apparent viscosity is given by 
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The non dimensional form of the flow variables and flow geometry can be expressed by using the following non-
dimensional variables: 
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Flow geometry 
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Second representations for Velocity function (core region) 
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A second representation of flow rate is defined by 
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A second representation of shear stress in the peripheral region is given by 
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5. RESULTS AND DISCUSSIONS 
 
In carrying out the present work for blood flow through an annular region in (Fig 1) kRo ≤ r ≤ R(z) between a stenotic 
wall R(z) and a catheterized artery (k << 1, catheter radius kR0 << R0, artery radius), the following estimates for the 
constricted region, such as stenosis length L0  = 8, and d its location in the region d≤ z ≤ d+L0 (Biswas, 2000; Chaturani 
and Biswas, 1983), stenosis development in asymmetric manner and maximum heights of stenosis 

sδ  in 

dimensionless form ) equals to 1 3 / 2, 1 1/ 2,− −  and corresponding to an abnormal growth of 25, 50 and 75 
percents in three respective and gradual cases of mild, moderate and severe formations at the lumen of an artery, have 
been used in developing the current mathematical analysis. It is already reported that knowledge of rheological and 
fluid dynamic properties of blood and its flow, like velocity, pressure gradient, shear stress at wall, flow rate etc., might 
play an important role in the fundamental understanding, diagnosis and treatment of many cardiovascular (cvs), renal 
and arterial diseases (Dintenfass,1981; Punder and Punder, 2006; Cokelet,1972). In view of this, analytical expressions 
for axial velocity, flow rate, pressure gradient, resistance to flow, wall shear stress, apparent viscosity etc. have been 
obtained in this study and their graphical representations are shown in Figs. (2-6). It may be noticed that velocity is a 

function of shear viscosities (µ1, µ2), pressure gradient 
dp
dz

− , tube radii R0, R(z), R1(z)  and a catheter kR0 ≤ 1, 

stenosis length L0 , its location d, ,s iδ δ , axial coordinate z, radial coordinate r and slip velocity us. This is in contrast 
to Poiseuille flow of blood (behaving as a Newtonian fluid) wherein velocity depends only on Ro, µ1 and R. Also, the 
non- uniform radii R(z) and R1(z) in eqs. (18--19) depends on axial distance z, R0, δs and   δi in an unobstructed tube.     
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The present model includes the following cases: 
 
When 0 0kR =  and 1( ) ( )R z R z= ,  it results in Newtonian flow model of an arterial stenosis with no-slip (us = 0) 

and slip  0su ≠  respectively. In case R(z) = R1(z) = R0 and 0su ≥ , it reduces to annular flow between co-axial 
cylindrical tube models of Newtonian fluid with slip and no-slip conditions. 
 
When R(z) = R1(z) = R0, kR0 = 0 and us = 0, it expresses a Poiseuille flow of blood inside a uniform tube with slip or 
zero-slip at the  boundary. If R(z) ≠R1(z) ≠  R0, kR0≠ 0 and us≥ 0, then it represents a two-layered annular flow of 
blood through a uniform artery with slip or no-slip at interface. 
 
In the analysis, the combined influence of several parameters have been developed, in cases of uniform region. To 
analyze the quantitative effect of uniform artery, maximum height of stenosis δi , δs, slip velocities (us≥ 0)  at the 
interface, Newtonian behaviour of blood, two-layered flow etc., computer codes have been developed for the numerical 
evaluations of the analytic results obtained for velocity, flow rate, wall shear stress and pressure gradient for parameter 
values δs =0.15, δi =0.12, us =0.00,.05,.1, Q=0.5, 1.0, 1.5 (Verma and Parihar 2009, 2010) and viscosities µ1 =1.2 cp, µ2  
= 2 cp, 2 .62µ′ = ,α = 0.82 (< 1) for a full scale location from z = d to d+L0 , and 1 10 ( ) , ( ) ( )r R z R z r R z≤ ≤ ≤ ≤
for PPL and core regions have been used. In the forgoing analysis, an attempt is taken up to address the variations of 
velocity, flow rate characteristics etc., due to such parameters. 
 
(i). Axial Velocity profiles 
 
A comparison of velocity profiles that have been obtained from eqs. (20--21), for slip and no-slip cases, maximum 
heights of stenosis and different axial locations for z = d+L0/2, d+L0/4, d+3L0/4 for shape parameter n=2, 6, 9 and for 
other parameter values, is shown in Figs (2-3). As tube radius r/R ranges from 0 (at tube axis) to 1 (at wall) on either 
side of axis, velocity decreases from a greater value at axis to a smaller one slip velocity at interface and, then to a 
minimum magnitude zero-slip velocity at boundary. As expected, velocity increases with slip at interface. Its values are 
higher for flows with slip (us > 0) than those with no-slip (us = 0). Also it is observed from Figs. (2-3) that 

1 9 1 2 1 6| | |n n nu u u= = =< < . Although, it shows a little deviation from parabolic profile, in to the core region, its 
behaviour is parabolic in the peripheral region. For symmetric and asymmetric stenoses, it behaves differently. As slip 
velocity increases, velocity increases in all three forms of stenosis formation at an artery wall. 
 

        
 
(ii). VARIATION OF FLOW RATE 
 
The variations of flow rate with different parameters are shown in Figure 4. It decreases in magnitude from the 
initiation position to the stenotic throat and there after it increases to the termination position. It is seen that Q  
decreases as shape parameter n decreases. The greatest magnitude is attained at the stenotic throat for n = 2 (symmetric 
case) at z = d+L0/2 and away from the throat for n > 2 (asymmetric case) at z = d+3L0/4. In all cases of stenosis, flow 
rate increases as slip velocity increases. 
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(iii). VARIATION OF WALL SHEAR STRESS 
 
Figs. (5--6) shows the variation of wall shear stress in the annular region. It decreases with increase in slip velocity. It 
shows the higher magnitude at the throught of the stanosis and minimum at the both initiation and termination of the 
stenosis. minimum constriction and therefore, it increases to a higher value at the other end of stenosis. 
 

        
 
6. CONCLUSION 
 
In the present paper, steady flow of blood (a Newtonian fluid) through a catheterized stenosed artery subject to the 
condition of slip at the interface of fluids layers with mild asymmetric stenosis, velocity slip and zero-slip at the 
catheter and at the tube wall, has been investigated. Analytic expressions for axial velocity, flow rate, wall shear stress 
have been obtained in this study. It can be noticed that velocity is a function of c , µ1 , µ2, tube radii R0, R1(z) and R(z) 
and a catheter radius kR0<< 1, stenosis length L0, its location d, heights δs, δi, axial (z), radial (r) co-ordinates and slip 
velocity us. This is in contrast to Poiseuille flow of blood (behaving as Newtonian fluid) wherein velocity depends only 
on R0, µ1 and R. Here three gradual advances of an abnormal growth (symmetric n = 2, n ≥  2) and lumen of an artery 
cases of a slip and no-slip at interface and a catheter boundary are dealt with. Important observation of the present 
analysis may be included in the following: 

(a) The current model includes Poiseuille flow of blood (Newtonian Fluid) with slip or zero-slip at vessel wall and 
non-Newtonian fluid with slip or zero-slip at stenotic wall, annular flow models between co-axial cylindrical 
tubes and a Newtonian fluid with slip and no-slip and Newtonian fluid models of blood flow in a catheterized 
stenosed uniform artery with slip or zero-slip conditions. 

(b) The velocity increases with an axial slip and it increases to higher magnitudes with the increasing values of 
slip whereas it decreases with an increase in height of the stenosis, as expected. 
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(c) The flow rate increases with a slip and attains the greatest magnitudes at either end of the constricted annular 

region and the least value at the throat of the stenosis.   
(d) Wall shear stress decreases with velocity slip and also with an increasing magnitude of slip velocity, but with 

slip in velocity, it is lowered. It decreases from a higher magnitude at the end of stenosis to the position of 
minimum constriction and therefore, it increases to a higher value at the other end of stenosis.  

 
It may be worth mentioning that by employing a velocity slip at interface, wall shear stress may be reduced to a 
considerable extent that in term will help in reducing damage or rupture to the arterial endothelium. Also apparent 
viscosity aµ  increases as tube radius increases in the annular constricted region decreases, it shows Inverse Fahraeus-
Lindqvist Effect (IFLE) for cases of slip or no-slip. Therefore the present model could explain an anomaly in blood 
flow. Also the reduction in wall shear stress enhancement in velocity and flow rate as a result of introducing at the axial 
velocity at the slip at interface, may be exploited for better functioning of the diseased arterial system and pressure 
flow-relationship in a uniform stenosed artery. Hence one may look forward for such device (drugs or tools) which 
could produce slip and used them for treatment and cure of PPL and arterial diseases as well as for rupture or damage 
to the arterial endothelium. Further the existing experimental work on blood flow through stenosed vessels, consider 
only pressure drop. It could be a matter of interest and important to determine the wall shear stress slip at interface in 
two-layered flow, velocity and flow rate etc. in the stenosed flow as well in the annular flow in a catheterized stenosed 
artery. Such investigation may be useful in determining the growth, development and progression of an arterial stenosis 
and investigating the pressure-flow relations and the behaviour of flow variables in the two-layered annular region 
caused by the invention of a catheter in an arterial stenosis and that in turn may be useful for better understanding of 
stenotic and arterial diseases like angina, pectoris, myocardial infarction, stroke, thrombosis and Hbss etc. 
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